diff options
-rw-r--r-- | src/Makefile.am | 65 | ||||
-rw-r--r-- | src/Makefile.test.include | 1 | ||||
-rw-r--r-- | src/crypto/aes.cpp | 217 | ||||
-rw-r--r-- | src/crypto/aes.h | 118 | ||||
-rw-r--r-- | src/crypto/ctaes/COPYING | 21 | ||||
-rw-r--r-- | src/crypto/ctaes/README.md | 41 | ||||
-rw-r--r-- | src/crypto/ctaes/bench.c | 170 | ||||
-rw-r--r-- | src/crypto/ctaes/ctaes.c | 556 | ||||
-rw-r--r-- | src/crypto/ctaes/ctaes.h | 41 | ||||
-rw-r--r-- | src/crypto/ctaes/test.c | 110 | ||||
-rw-r--r-- | src/test/crypto_tests.cpp | 191 | ||||
-rw-r--r-- | src/wallet/crypter.cpp | 92 | ||||
-rw-r--r-- | src/wallet/crypter.h | 15 | ||||
-rw-r--r-- | src/wallet/test/crypto_tests.cpp | 230 |
14 files changed, 1790 insertions, 78 deletions
diff --git a/src/Makefile.am b/src/Makefile.am index f630ad4aa1..ea49efe92d 100644 --- a/src/Makefile.am +++ b/src/Makefile.am @@ -15,13 +15,12 @@ LIBUNIVALUE = $(UNIVALUE_LIBS) endif BITCOIN_CONFIG_INCLUDES=-I$(builddir)/config -BITCOIN_INCLUDES=-I$(builddir) -I$(builddir)/obj $(BOOST_CPPFLAGS) $(LEVELDB_CPPFLAGS) $(CRYPTO_CFLAGS) $(SSL_CFLAGS) +BITCOIN_INCLUDES=-I$(builddir) -I$(builddir)/obj $(BDB_CPPFLAGS) $(BOOST_CPPFLAGS) $(LEVELDB_CPPFLAGS) $(CRYPTO_CFLAGS) $(SSL_CFLAGS) BITCOIN_INCLUDES += -I$(srcdir)/secp256k1/include BITCOIN_INCLUDES += $(UNIVALUE_CFLAGS) LIBBITCOIN_SERVER=libbitcoin_server.a -LIBBITCOIN_WALLET=libbitcoin_wallet.a LIBBITCOIN_COMMON=libbitcoin_common.a LIBBITCOIN_CONSENSUS=libbitcoin_consensus.a LIBBITCOIN_CLI=libbitcoin_cli.a @@ -30,32 +29,32 @@ LIBBITCOIN_CRYPTO=crypto/libbitcoin_crypto.a LIBBITCOINQT=qt/libbitcoinqt.a LIBSECP256K1=secp256k1/libsecp256k1.la +if ENABLE_ZMQ +LIBBITCOIN_ZMQ=libbitcoin_zmq.a +endif +if BUILD_BITCOIN_LIBS +LIBBITCOINCONSENSUS=libbitcoinconsensus.la +endif +if ENABLE_WALLET +LIBBITCOIN_WALLET=libbitcoin_wallet.a +endif + $(LIBSECP256K1): $(wildcard secp256k1/src/*) $(wildcard secp256k1/include/*) $(AM_V_at)$(MAKE) $(AM_MAKEFLAGS) -C $(@D) $(@F) # Make is not made aware of per-object dependencies to avoid limiting building parallelization # But to build the less dependent modules first, we manually select their order here: EXTRA_LIBRARIES += \ - crypto/libbitcoin_crypto.a \ - libbitcoin_util.a \ - libbitcoin_common.a \ - libbitcoin_consensus.a \ - libbitcoin_server.a \ - libbitcoin_cli.a -if ENABLE_WALLET -BITCOIN_INCLUDES += $(BDB_CPPFLAGS) -EXTRA_LIBRARIES += libbitcoin_wallet.a -endif -if ENABLE_ZMQ -EXTRA_LIBRARIES += libbitcoin_zmq.a -endif + $(LIBBITCOIN_CRYPTO) \ + $(LIBBITCOIN_UTIL) \ + $(LIBBITCOIN_COMMON) \ + $(LIBBITCOIN_CONSENSUS) \ + $(LIBBITCOIN_SERVER) \ + $(LIBBITCOIN_CLI) \ + $(LIBBITCOIN_WALLET) \ + $(LIBBITCOIN_ZMQ) -if BUILD_BITCOIN_LIBS -lib_LTLIBRARIES = libbitcoinconsensus.la -LIBBITCOINCONSENSUS=libbitcoinconsensus.la -else -LIBBITCOINCONSENSUS= -endif +lib_LTLIBRARIES = $(LIBBITCOINCONSENSUS) bin_PROGRAMS = TESTS = @@ -196,8 +195,6 @@ libbitcoin_server_a_SOURCES = \ $(BITCOIN_CORE_H) if ENABLE_ZMQ -LIBBITCOIN_ZMQ=libbitcoin_zmq.a - libbitcoin_zmq_a_CPPFLAGS = $(BITCOIN_INCLUDES) $(ZMQ_CFLAGS) libbitcoin_zmq_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS) libbitcoin_zmq_a_SOURCES = \ @@ -225,6 +222,8 @@ libbitcoin_wallet_a_SOURCES = \ crypto_libbitcoin_crypto_a_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_CONFIG_INCLUDES) crypto_libbitcoin_crypto_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS) crypto_libbitcoin_crypto_a_SOURCES = \ + crypto/aes.cpp \ + crypto/aes.h \ crypto/common.h \ crypto/hmac_sha256.cpp \ crypto/hmac_sha256.h \ @@ -345,21 +344,15 @@ bitcoind_LDADD = \ $(LIBBITCOIN_COMMON) \ $(LIBUNIVALUE) \ $(LIBBITCOIN_UTIL) \ + $(LIBBITCOIN_WALLET) \ + $(LIBBITCOIN_ZMQ) \ $(LIBBITCOIN_CONSENSUS) \ $(LIBBITCOIN_CRYPTO) \ $(LIBLEVELDB) \ $(LIBMEMENV) \ $(LIBSECP256K1) -if ENABLE_ZMQ -bitcoind_LDADD += $(LIBBITCOIN_ZMQ) $(ZMQ_LIBS) -endif - -if ENABLE_WALLET -bitcoind_LDADD += libbitcoin_wallet.a -endif - -bitcoind_LDADD += $(BOOST_LIBS) $(BDB_LIBS) $(SSL_LIBS) $(CRYPTO_LIBS) $(MINIUPNPC_LIBS) $(EVENT_PTHREADS_LIBS) $(EVENT_LIBS) +bitcoind_LDADD += $(BOOST_LIBS) $(BDB_LIBS) $(SSL_LIBS) $(CRYPTO_LIBS) $(MINIUPNPC_LIBS) $(EVENT_PTHREADS_LIBS) $(EVENT_LIBS) $(ZMQ_LIBS) # bitcoin-cli binary # bitcoin_cli_SOURCES = bitcoin-cli.cpp @@ -418,6 +411,12 @@ libbitcoinconsensus_la_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS) endif # +CTAES_DIST = crypto/ctaes/bench.c +CTAES_DIST += crypto/ctaes/ctaes.c +CTAES_DIST += crypto/ctaes/ctaes.h +CTAES_DIST += crypto/ctaes/README.md +CTAES_DIST += crypto/ctaes/test.c + CLEANFILES = leveldb/libleveldb.a leveldb/libmemenv.a CLEANFILES += $(EXTRA_LIBRARIES) CLEANFILES += *.gcda *.gcno @@ -435,7 +434,7 @@ CLEANFILES += zmq/*.gcda zmq/*.gcno DISTCLEANFILES = obj/build.h -EXTRA_DIST = leveldb +EXTRA_DIST = leveldb $(CTAES_DIST) clean-local: -$(MAKE) -C leveldb clean diff --git a/src/Makefile.test.include b/src/Makefile.test.include index 897a7dd4a2..77cf1001e1 100644 --- a/src/Makefile.test.include +++ b/src/Makefile.test.include @@ -95,6 +95,7 @@ BITCOIN_TESTS += \ wallet/test/wallet_test_fixture.h \ wallet/test/accounting_tests.cpp \ wallet/test/wallet_tests.cpp \ + wallet/test/crypto_tests.cpp \ wallet/test/rpc_wallet_tests.cpp endif diff --git a/src/crypto/aes.cpp b/src/crypto/aes.cpp new file mode 100644 index 0000000000..1d469d0fb4 --- /dev/null +++ b/src/crypto/aes.cpp @@ -0,0 +1,217 @@ +// Copyright (c) 2016 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include "aes.h" +#include "crypto/common.h" + +#include <assert.h> +#include <string.h> + +extern "C" { +#include "crypto/ctaes/ctaes.c" +} + +AES128Encrypt::AES128Encrypt(const unsigned char key[16]) +{ + AES128_init(&ctx, key); +} + +AES128Encrypt::~AES128Encrypt() +{ + memset(&ctx, 0, sizeof(ctx)); +} + +void AES128Encrypt::Encrypt(unsigned char ciphertext[16], const unsigned char plaintext[16]) const +{ + AES128_encrypt(&ctx, 1, ciphertext, plaintext); +} + +AES128Decrypt::AES128Decrypt(const unsigned char key[16]) +{ + AES128_init(&ctx, key); +} + +AES128Decrypt::~AES128Decrypt() +{ + memset(&ctx, 0, sizeof(ctx)); +} + +void AES128Decrypt::Decrypt(unsigned char plaintext[16], const unsigned char ciphertext[16]) const +{ + AES128_decrypt(&ctx, 1, plaintext, ciphertext); +} + +AES256Encrypt::AES256Encrypt(const unsigned char key[32]) +{ + AES256_init(&ctx, key); +} + +AES256Encrypt::~AES256Encrypt() +{ + memset(&ctx, 0, sizeof(ctx)); +} + +void AES256Encrypt::Encrypt(unsigned char ciphertext[16], const unsigned char plaintext[16]) const +{ + AES256_encrypt(&ctx, 1, ciphertext, plaintext); +} + +AES256Decrypt::AES256Decrypt(const unsigned char key[32]) +{ + AES256_init(&ctx, key); +} + +AES256Decrypt::~AES256Decrypt() +{ + memset(&ctx, 0, sizeof(ctx)); +} + +void AES256Decrypt::Decrypt(unsigned char plaintext[16], const unsigned char ciphertext[16]) const +{ + AES256_decrypt(&ctx, 1, plaintext, ciphertext); +} + + +template <typename T> +static int CBCEncrypt(const T& enc, const unsigned char iv[AES_BLOCKSIZE], const unsigned char* data, int size, bool pad, unsigned char* out) +{ + int written = 0; + int padsize = size % AES_BLOCKSIZE; + unsigned char mixed[AES_BLOCKSIZE]; + + if (!data || !size || !out) + return 0; + + if (!pad && padsize != 0) + return 0; + + memcpy(mixed, iv, AES_BLOCKSIZE); + + // Write all but the last block + while (written + AES_BLOCKSIZE <= size) { + for (int i = 0; i != AES_BLOCKSIZE; i++) + mixed[i] ^= *data++; + enc.Encrypt(out + written, mixed); + memcpy(mixed, out + written, AES_BLOCKSIZE); + written += AES_BLOCKSIZE; + } + if (pad) { + // For all that remains, pad each byte with the value of the remaining + // space. If there is none, pad by a full block. + for (int i = 0; i != padsize; i++) + mixed[i] ^= *data++; + for (int i = padsize; i != AES_BLOCKSIZE; i++) + mixed[i] ^= AES_BLOCKSIZE - padsize; + enc.Encrypt(out + written, mixed); + written += AES_BLOCKSIZE; + } + return written; +} + +template <typename T> +static int CBCDecrypt(const T& dec, const unsigned char iv[AES_BLOCKSIZE], const unsigned char* data, int size, bool pad, unsigned char* out) +{ + unsigned char padsize = 0; + int written = 0; + bool fail = false; + const unsigned char* prev = iv; + + if (!data || !size || !out) + return 0; + + if (size % AES_BLOCKSIZE != 0) + return 0; + + // Decrypt all data. Padding will be checked in the output. + while (written != size) { + dec.Decrypt(out, data + written); + for (int i = 0; i != AES_BLOCKSIZE; i++) + *out++ ^= prev[i]; + prev = data + written; + written += AES_BLOCKSIZE; + } + + // When decrypting padding, attempt to run in constant-time + if (pad) { + // If used, padding size is the value of the last decrypted byte. For + // it to be valid, It must be between 1 and AES_BLOCKSIZE. + padsize = *--out; + fail = !padsize | (padsize > AES_BLOCKSIZE); + + // If not well-formed, treat it as though there's no padding. + padsize *= !fail; + + // All padding must equal the last byte otherwise it's not well-formed + for (int i = AES_BLOCKSIZE; i != 0; i--) + fail |= ((i > AES_BLOCKSIZE - padsize) & (*out-- != padsize)); + + written -= padsize; + } + return written * !fail; +} + +AES256CBCEncrypt::AES256CBCEncrypt(const unsigned char key[AES256_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn) + : enc(key), pad(padIn) +{ + memcpy(iv, ivIn, AES_BLOCKSIZE); +} + +int AES256CBCEncrypt::Encrypt(const unsigned char* data, int size, unsigned char* out) const +{ + return CBCEncrypt(enc, iv, data, size, pad, out); +} + +AES256CBCEncrypt::~AES256CBCEncrypt() +{ + memset(iv, 0, sizeof(iv)); +} + +AES256CBCDecrypt::AES256CBCDecrypt(const unsigned char key[AES256_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn) + : dec(key), pad(padIn) +{ + memcpy(iv, ivIn, AES_BLOCKSIZE); +} + + +int AES256CBCDecrypt::Decrypt(const unsigned char* data, int size, unsigned char* out) const +{ + return CBCDecrypt(dec, iv, data, size, pad, out); +} + +AES256CBCDecrypt::~AES256CBCDecrypt() +{ + memset(iv, 0, sizeof(iv)); +} + +AES128CBCEncrypt::AES128CBCEncrypt(const unsigned char key[AES128_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn) + : enc(key), pad(padIn) +{ + memcpy(iv, ivIn, AES_BLOCKSIZE); +} + +AES128CBCEncrypt::~AES128CBCEncrypt() +{ + memset(iv, 0, AES_BLOCKSIZE); +} + +int AES128CBCEncrypt::Encrypt(const unsigned char* data, int size, unsigned char* out) const +{ + return CBCEncrypt(enc, iv, data, size, pad, out); +} + +AES128CBCDecrypt::AES128CBCDecrypt(const unsigned char key[AES128_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn) + : dec(key), pad(padIn) +{ + memcpy(iv, ivIn, AES_BLOCKSIZE); +} + +AES128CBCDecrypt::~AES128CBCDecrypt() +{ + memset(iv, 0, AES_BLOCKSIZE); +} + +int AES128CBCDecrypt::Decrypt(const unsigned char* data, int size, unsigned char* out) const +{ + return CBCDecrypt(dec, iv, data, size, pad, out); +} diff --git a/src/crypto/aes.h b/src/crypto/aes.h new file mode 100644 index 0000000000..8cae357c12 --- /dev/null +++ b/src/crypto/aes.h @@ -0,0 +1,118 @@ +// Copyright (c) 2015 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. +// +// C++ wrapper around ctaes, a constant-time AES implementation + +#ifndef BITCOIN_CRYPTO_AES_H +#define BITCOIN_CRYPTO_AES_H + +extern "C" { +#include "crypto/ctaes/ctaes.h" +} + +static const int AES_BLOCKSIZE = 16; +static const int AES128_KEYSIZE = 16; +static const int AES256_KEYSIZE = 32; + +/** An encryption class for AES-128. */ +class AES128Encrypt +{ +private: + AES128_ctx ctx; + +public: + AES128Encrypt(const unsigned char key[16]); + ~AES128Encrypt(); + void Encrypt(unsigned char ciphertext[16], const unsigned char plaintext[16]) const; +}; + +/** A decryption class for AES-128. */ +class AES128Decrypt +{ +private: + AES128_ctx ctx; + +public: + AES128Decrypt(const unsigned char key[16]); + ~AES128Decrypt(); + void Decrypt(unsigned char plaintext[16], const unsigned char ciphertext[16]) const; +}; + +/** An encryption class for AES-256. */ +class AES256Encrypt +{ +private: + AES256_ctx ctx; + +public: + AES256Encrypt(const unsigned char key[32]); + ~AES256Encrypt(); + void Encrypt(unsigned char ciphertext[16], const unsigned char plaintext[16]) const; +}; + +/** A decryption class for AES-256. */ +class AES256Decrypt +{ +private: + AES256_ctx ctx; + +public: + AES256Decrypt(const unsigned char key[32]); + ~AES256Decrypt(); + void Decrypt(unsigned char plaintext[16], const unsigned char ciphertext[16]) const; +}; + +class AES256CBCEncrypt +{ +public: + AES256CBCEncrypt(const unsigned char key[AES256_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn); + ~AES256CBCEncrypt(); + int Encrypt(const unsigned char* data, int size, unsigned char* out) const; + +private: + const AES256Encrypt enc; + const bool pad; + unsigned char iv[AES_BLOCKSIZE]; +}; + +class AES256CBCDecrypt +{ +public: + AES256CBCDecrypt(const unsigned char key[AES256_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn); + ~AES256CBCDecrypt(); + int Decrypt(const unsigned char* data, int size, unsigned char* out) const; + +private: + const AES256Decrypt dec; + const bool pad; + unsigned char iv[AES_BLOCKSIZE]; +}; + +class AES128CBCEncrypt +{ +public: + AES128CBCEncrypt(const unsigned char key[AES128_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn); + ~AES128CBCEncrypt(); + int Encrypt(const unsigned char* data, int size, unsigned char* out) const; + +private: + const AES128Encrypt enc; + const bool pad; + unsigned char iv[AES_BLOCKSIZE]; +}; + +class AES128CBCDecrypt +{ +public: + AES128CBCDecrypt(const unsigned char key[AES128_KEYSIZE], const unsigned char ivIn[AES_BLOCKSIZE], bool padIn); + ~AES128CBCDecrypt(); + int Decrypt(const unsigned char* data, int size, unsigned char* out) const; + +private: + const AES128Decrypt dec; + const bool pad; + unsigned char iv[AES_BLOCKSIZE]; +}; + +#endif // BITCOIN_CRYPTO_AES_H diff --git a/src/crypto/ctaes/COPYING b/src/crypto/ctaes/COPYING new file mode 100644 index 0000000000..415b202a2a --- /dev/null +++ b/src/crypto/ctaes/COPYING @@ -0,0 +1,21 @@ +The MIT License (MIT) + +Copyright (c) 2016 Pieter Wuille + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/src/crypto/ctaes/README.md b/src/crypto/ctaes/README.md new file mode 100644 index 0000000000..0e7fe17751 --- /dev/null +++ b/src/crypto/ctaes/README.md @@ -0,0 +1,41 @@ +ctaes +===== + +Simple C module for constant-time AES encryption and decryption. + +Features: +* Simple, pure C code without any dependencies. +* No tables or data-dependent branches whatsoever, but using bit sliced approach from https://eprint.iacr.org/2009/129.pdf. +* Very small object code: slightly over 4k of executable code when compiled with -Os. +* Slower than implementations based on precomputed tables or specialized instructions, but can do ~15 MB/s on modern CPUs. + +Performance +----------- + +Compiled with GCC 5.3.1 with -O3, on an Intel(R) Core(TM) i7-4800MQ CPU, numbers in CPU cycles: + +| Algorithm | Key schedule | Encryption per byte | Decryption per byte | +| --------- | ------------:| -------------------:| -------------------:| +| AES-128 | 2.8k | 154 | 161 | +| AES-192 | 3.1k | 169 | 181 | +| AES-256 | 4.0k | 191 | 203 | + +Build steps +----------- + +Object code: + + $ gcc -O3 ctaes.c -c -o ctaes.o + +Tests: + + $ gcc -O3 ctaes.c test.c -o test + +Benchmark: + + $ gcc -O3 ctaes.c bench.c -o bench + +Review +------ + +Results of a formal review of the code can be found in http://bitcoin.sipa.be/ctaes/review.zip diff --git a/src/crypto/ctaes/bench.c b/src/crypto/ctaes/bench.c new file mode 100644 index 0000000000..a86df496c8 --- /dev/null +++ b/src/crypto/ctaes/bench.c @@ -0,0 +1,170 @@ +#include <stdio.h> +#include <math.h> +#include "sys/time.h" + +#include "ctaes.h" + +static double gettimedouble(void) { + struct timeval tv; + gettimeofday(&tv, NULL); + return tv.tv_usec * 0.000001 + tv.tv_sec; +} + +static void print_number(double x) { + double y = x; + int c = 0; + if (y < 0.0) { + y = -y; + } + while (y < 100.0) { + y *= 10.0; + c++; + } + printf("%.*f", c, x); +} + +static void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) { + int i; + double min = HUGE_VAL; + double sum = 0.0; + double max = 0.0; + for (i = 0; i < count; i++) { + double begin, total; + if (setup != NULL) { + setup(data); + } + begin = gettimedouble(); + benchmark(data); + total = gettimedouble() - begin; + if (teardown != NULL) { + teardown(data); + } + if (total < min) { + min = total; + } + if (total > max) { + max = total; + } + sum += total; + } + printf("%s: min ", name); + print_number(min * 1000000000.0 / iter); + printf("ns / avg "); + print_number((sum / count) * 1000000000.0 / iter); + printf("ns / max "); + print_number(max * 1000000000.0 / iter); + printf("ns\n"); +} + +static void bench_AES128_init(void* data) { + AES128_ctx* ctx = (AES128_ctx*)data; + int i; + for (i = 0; i < 50000; i++) { + AES128_init(ctx, (unsigned char*)ctx); + } +} + +static void bench_AES128_encrypt_setup(void* data) { + AES128_ctx* ctx = (AES128_ctx*)data; + static const unsigned char key[16] = {0}; + AES128_init(ctx, key); +} + +static void bench_AES128_encrypt(void* data) { + const AES128_ctx* ctx = (const AES128_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES128_encrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES128_decrypt(void* data) { + const AES128_ctx* ctx = (const AES128_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES128_decrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES192_init(void* data) { + AES192_ctx* ctx = (AES192_ctx*)data; + int i; + for (i = 0; i < 50000; i++) { + AES192_init(ctx, (unsigned char*)ctx); + } +} + +static void bench_AES192_encrypt_setup(void* data) { + AES192_ctx* ctx = (AES192_ctx*)data; + static const unsigned char key[16] = {0}; + AES192_init(ctx, key); +} + +static void bench_AES192_encrypt(void* data) { + const AES192_ctx* ctx = (const AES192_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES192_encrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES192_decrypt(void* data) { + const AES192_ctx* ctx = (const AES192_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES192_decrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES256_init(void* data) { + AES256_ctx* ctx = (AES256_ctx*)data; + int i; + for (i = 0; i < 50000; i++) { + AES256_init(ctx, (unsigned char*)ctx); + } +} + + +static void bench_AES256_encrypt_setup(void* data) { + AES256_ctx* ctx = (AES256_ctx*)data; + static const unsigned char key[16] = {0}; + AES256_init(ctx, key); +} + +static void bench_AES256_encrypt(void* data) { + const AES256_ctx* ctx = (const AES256_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES256_encrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES256_decrypt(void* data) { + const AES256_ctx* ctx = (const AES256_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES256_decrypt(ctx, 1, scratch, scratch); + } +} + +int main(void) { + AES128_ctx ctx128; + AES192_ctx ctx192; + AES256_ctx ctx256; + run_benchmark("aes128_init", bench_AES128_init, NULL, NULL, &ctx128, 20, 50000); + run_benchmark("aes128_encrypt_byte", bench_AES128_encrypt, bench_AES128_encrypt_setup, NULL, &ctx128, 20, 4000000); + run_benchmark("aes128_decrypt_byte", bench_AES128_decrypt, bench_AES128_encrypt_setup, NULL, &ctx128, 20, 4000000); + run_benchmark("aes192_init", bench_AES192_init, NULL, NULL, &ctx192, 20, 50000); + run_benchmark("aes192_encrypt_byte", bench_AES192_encrypt, bench_AES192_encrypt_setup, NULL, &ctx192, 20, 4000000); + run_benchmark("aes192_decrypt_byte", bench_AES192_decrypt, bench_AES192_encrypt_setup, NULL, &ctx192, 20, 4000000); + run_benchmark("aes256_init", bench_AES256_init, NULL, NULL, &ctx256, 20, 50000); + run_benchmark("aes256_encrypt_byte", bench_AES256_encrypt, bench_AES256_encrypt_setup, NULL, &ctx256, 20, 4000000); + run_benchmark("aes256_decrypt_byte", bench_AES256_decrypt, bench_AES256_encrypt_setup, NULL, &ctx256, 20, 4000000); + return 0; +} diff --git a/src/crypto/ctaes/ctaes.c b/src/crypto/ctaes/ctaes.c new file mode 100644 index 0000000000..2389fc0bb2 --- /dev/null +++ b/src/crypto/ctaes/ctaes.c @@ -0,0 +1,556 @@ + /********************************************************************* + * Copyright (c) 2016 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +/* Constant time, unoptimized, concise, plain C, AES implementation + * Based On: + * Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM + * http://www.iacr.org/archive/ches2009/57470001/57470001.pdf + * But using 8 16-bit integers representing a single AES state rather than 8 128-bit + * integers representing 8 AES states. + */ + +#include "ctaes.h" + +/* Slice variable slice_i contains the i'th bit of the 16 state variables in this order: + * 0 1 2 3 + * 4 5 6 7 + * 8 9 10 11 + * 12 13 14 15 + */ + +/** Convert a byte to sliced form, storing it corresponding to given row and column in s */ +static void LoadByte(AES_state* s, unsigned char byte, int r, int c) { + int i; + for (i = 0; i < 8; i++) { + s->slice[i] |= (byte & 1) << (r * 4 + c); + byte >>= 1; + } +} + +/** Load 16 bytes of data into 8 sliced integers */ +static void LoadBytes(AES_state *s, const unsigned char* data16) { + int c; + for (c = 0; c < 4; c++) { + int r; + for (r = 0; r < 4; r++) { + LoadByte(s, *(data16++), r, c); + } + } +} + +/** Convert 8 sliced integers into 16 bytes of data */ +static void SaveBytes(unsigned char* data16, const AES_state *s) { + int c; + for (c = 0; c < 4; c++) { + int r; + for (r = 0; r < 4; r++) { + int b; + uint8_t v = 0; + for (b = 0; b < 8; b++) { + v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b; + } + *(data16++) = v; + } + } +} + +/* S-box implementation based on the gate logic from: + * Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box. + * https://eprint.iacr.org/2011/332.pdf +*/ +static void SubBytes(AES_state *s, int inv) { + /* Load the bit slices */ + uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4]; + uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0]; + + uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16; + uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D; + uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40; + uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54; + uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63; + + if (inv) { + uint16_t R5, R13, R17, R18, R19; + /* Undo linear postprocessing */ + T23 = U0 ^ U3; + T22 = ~(U1 ^ U3); + T2 = ~(U0 ^ U1); + T1 = U3 ^ U4; + T24 = ~(U4 ^ U7); + R5 = U6 ^ U7; + T8 = ~(U1 ^ T23); + T19 = T22 ^ R5; + T9 = ~(U7 ^ T1); + T10 = T2 ^ T24; + T13 = T2 ^ R5; + T3 = T1 ^ R5; + T25 = ~(U2 ^ T1); + R13 = U1 ^ U6; + T17 = ~(U2 ^ T19); + T20 = T24 ^ R13; + T4 = U4 ^ T8; + R17 = ~(U2 ^ U5); + R18 = ~(U5 ^ U6); + R19 = ~(U2 ^ U4); + D = U0 ^ R17; + T6 = T22 ^ R17; + T16 = R13 ^ R19; + T27 = T1 ^ R18; + T15 = T10 ^ T27; + T14 = T10 ^ R18; + T26 = T3 ^ T16; + } else { + /* Linear preprocessing. */ + T1 = U0 ^ U3; + T2 = U0 ^ U5; + T3 = U0 ^ U6; + T4 = U3 ^ U5; + T5 = U4 ^ U6; + T6 = T1 ^ T5; + T7 = U1 ^ U2; + T8 = U7 ^ T6; + T9 = U7 ^ T7; + T10 = T6 ^ T7; + T11 = U1 ^ U5; + T12 = U2 ^ U5; + T13 = T3 ^ T4; + T14 = T6 ^ T11; + T15 = T5 ^ T11; + T16 = T5 ^ T12; + T17 = T9 ^ T16; + T18 = U3 ^ U7; + T19 = T7 ^ T18; + T20 = T1 ^ T19; + T21 = U6 ^ U7; + T22 = T7 ^ T21; + T23 = T2 ^ T22; + T24 = T2 ^ T10; + T25 = T20 ^ T17; + T26 = T3 ^ T16; + T27 = T1 ^ T12; + D = U7; + } + + /* Non-linear transformation (identical to the code in SubBytes) */ + M1 = T13 & T6; + M6 = T3 & T16; + M11 = T1 & T15; + M13 = (T4 & T27) ^ M11; + M15 = (T2 & T10) ^ M11; + M20 = T14 ^ M1 ^ (T23 & T8) ^ M13; + M21 = (T19 & D) ^ M1 ^ T24 ^ M15; + M22 = T26 ^ M6 ^ (T22 & T9) ^ M13; + M23 = (T20 & T17) ^ M6 ^ M15 ^ T25; + M25 = M22 & M20; + M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25)); + M38 = M20 ^ M25 ^ (M21 | (M20 & M23)); + M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25)); + M40 = M22 ^ M25 ^ (M23 | (M21 & M22)); + M41 = M38 ^ M40; + M42 = M37 ^ M39; + M43 = M37 ^ M38; + M44 = M39 ^ M40; + M45 = M42 ^ M41; + M46 = M44 & T6; + M47 = M40 & T8; + M48 = M39 & D; + M49 = M43 & T16; + M50 = M38 & T9; + M51 = M37 & T17; + M52 = M42 & T15; + M53 = M45 & T27; + M54 = M41 & T10; + M55 = M44 & T13; + M56 = M40 & T23; + M57 = M39 & T19; + M58 = M43 & T3; + M59 = M38 & T22; + M60 = M37 & T20; + M61 = M42 & T1; + M62 = M45 & T4; + M63 = M41 & T2; + + if (inv){ + /* Undo linear preprocessing */ + uint16_t P0 = M52 ^ M61; + uint16_t P1 = M58 ^ M59; + uint16_t P2 = M54 ^ M62; + uint16_t P3 = M47 ^ M50; + uint16_t P4 = M48 ^ M56; + uint16_t P5 = M46 ^ M51; + uint16_t P6 = M49 ^ M60; + uint16_t P7 = P0 ^ P1; + uint16_t P8 = M50 ^ M53; + uint16_t P9 = M55 ^ M63; + uint16_t P10 = M57 ^ P4; + uint16_t P11 = P0 ^ P3; + uint16_t P12 = M46 ^ M48; + uint16_t P13 = M49 ^ M51; + uint16_t P14 = M49 ^ M62; + uint16_t P15 = M54 ^ M59; + uint16_t P16 = M57 ^ M61; + uint16_t P17 = M58 ^ P2; + uint16_t P18 = M63 ^ P5; + uint16_t P19 = P2 ^ P3; + uint16_t P20 = P4 ^ P6; + uint16_t P22 = P2 ^ P7; + uint16_t P23 = P7 ^ P8; + uint16_t P24 = P5 ^ P7; + uint16_t P25 = P6 ^ P10; + uint16_t P26 = P9 ^ P11; + uint16_t P27 = P10 ^ P18; + uint16_t P28 = P11 ^ P25; + uint16_t P29 = P15 ^ P20; + s->slice[7] = P13 ^ P22; + s->slice[6] = P26 ^ P29; + s->slice[5] = P17 ^ P28; + s->slice[4] = P12 ^ P22; + s->slice[3] = P23 ^ P27; + s->slice[2] = P19 ^ P24; + s->slice[1] = P14 ^ P23; + s->slice[0] = P9 ^ P16; + } else { + /* Linear postprocessing */ + uint16_t L0 = M61 ^ M62; + uint16_t L1 = M50 ^ M56; + uint16_t L2 = M46 ^ M48; + uint16_t L3 = M47 ^ M55; + uint16_t L4 = M54 ^ M58; + uint16_t L5 = M49 ^ M61; + uint16_t L6 = M62 ^ L5; + uint16_t L7 = M46 ^ L3; + uint16_t L8 = M51 ^ M59; + uint16_t L9 = M52 ^ M53; + uint16_t L10 = M53 ^ L4; + uint16_t L11 = M60 ^ L2; + uint16_t L12 = M48 ^ M51; + uint16_t L13 = M50 ^ L0; + uint16_t L14 = M52 ^ M61; + uint16_t L15 = M55 ^ L1; + uint16_t L16 = M56 ^ L0; + uint16_t L17 = M57 ^ L1; + uint16_t L18 = M58 ^ L8; + uint16_t L19 = M63 ^ L4; + uint16_t L20 = L0 ^ L1; + uint16_t L21 = L1 ^ L7; + uint16_t L22 = L3 ^ L12; + uint16_t L23 = L18 ^ L2; + uint16_t L24 = L15 ^ L9; + uint16_t L25 = L6 ^ L10; + uint16_t L26 = L7 ^ L9; + uint16_t L27 = L8 ^ L10; + uint16_t L28 = L11 ^ L14; + uint16_t L29 = L11 ^ L17; + s->slice[7] = L6 ^ L24; + s->slice[6] = ~(L16 ^ L26); + s->slice[5] = ~(L19 ^ L28); + s->slice[4] = L6 ^ L21; + s->slice[3] = L20 ^ L22; + s->slice[2] = L25 ^ L29; + s->slice[1] = ~(L13 ^ L27); + s->slice[0] = ~(L6 ^ L23); + } +} + +#define BIT_RANGE(from,to) (((1 << ((to) - (from))) - 1) << (from)) + +#define BIT_RANGE_LEFT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) << (shift)) +#define BIT_RANGE_RIGHT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) >> (shift)) + +static void ShiftRows(AES_state* s) { + int i; + for (i = 0; i < 8; i++) { + uint16_t v = s->slice[i]; + s->slice[i] = + (v & BIT_RANGE(0, 4)) | + BIT_RANGE_LEFT(v, 4, 5, 3) | BIT_RANGE_RIGHT(v, 5, 8, 1) | + BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) | + BIT_RANGE_LEFT(v, 12, 15, 1) | BIT_RANGE_RIGHT(v, 15, 16, 3); + } +} + +static void InvShiftRows(AES_state* s) { + int i; + for (i = 0; i < 8; i++) { + uint16_t v = s->slice[i]; + s->slice[i] = + (v & BIT_RANGE(0, 4)) | + BIT_RANGE_LEFT(v, 4, 7, 1) | BIT_RANGE_RIGHT(v, 7, 8, 3) | + BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) | + BIT_RANGE_LEFT(v, 12, 13, 3) | BIT_RANGE_RIGHT(v, 13, 16, 1); + } +} + +#define ROT(x,b) (((x) >> ((b) * 4)) | ((x) << ((4-(b)) * 4))) + +static void MixColumns(AES_state* s, int inv) { + /* The MixColumns transform treats the bytes of the columns of the state as + * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them + * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo + * x^4 + {01}. + * + * In the inverse transform, we multiply by the inverse of a(x), + * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to + * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code + * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna) + * + * In the bitsliced representation, a multiplication of every column by x + * mod x^4 + 1 is simply a right rotation. + */ + + /* Shared for both directions is a multiplication by a(x), which can be + * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}). + * + * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01 + * variables and (x^3 + x^2 + x)*s into the s?_123 variables. + */ + uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2], s3 = s->slice[3]; + uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6], s7 = s->slice[7]; + uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3); + uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3); + uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3); + uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3); + uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3); + uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3); + uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3); + uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3); + /* Now compute s = s?_123 + {02} * s?_01. */ + s->slice[0] = s7_01 ^ s0_123; + s->slice[1] = s7_01 ^ s0_01 ^ s1_123; + s->slice[2] = s1_01 ^ s2_123; + s->slice[3] = s7_01 ^ s2_01 ^ s3_123; + s->slice[4] = s7_01 ^ s3_01 ^ s4_123; + s->slice[5] = s4_01 ^ s5_123; + s->slice[6] = s5_01 ^ s6_123; + s->slice[7] = s6_01 ^ s7_123; + if (inv) { + /* In the reverse direction, we further need to multiply by + * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}. + * + * First compute (x^2 + {01}) * s into the t?_02 variables: */ + uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2); + uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2); + uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2); + uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2); + uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2); + uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2); + uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2); + uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2); + /* And then update s += {04} * t?_02 */ + s->slice[0] ^= t6_02; + s->slice[1] ^= t6_02 ^ t7_02; + s->slice[2] ^= t0_02 ^ t7_02; + s->slice[3] ^= t1_02 ^ t6_02; + s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02; + s->slice[5] ^= t3_02 ^ t7_02; + s->slice[6] ^= t4_02; + s->slice[7] ^= t5_02; + } +} + +static void AddRoundKey(AES_state* s, const AES_state* round) { + int b; + for (b = 0; b < 8; b++) { + s->slice[b] ^= round->slice[b]; + } +} + +/** column_0(s) = column_c(a) */ +static void GetOneColumn(AES_state* s, const AES_state* a, int c) { + int b; + for (b = 0; b < 8; b++) { + s->slice[b] = (a->slice[b] >> c) & 0x1111; + } +} + +/** column_c1(r) |= (column_0(s) ^= column_c2(a)) */ +static void KeySetupColumnMix(AES_state* s, AES_state* r, const AES_state* a, int c1, int c2) { + int b; + for (b = 0; b < 8; b++) { + r->slice[b] |= ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1; + } +} + +/** Rotate the rows in s one position upwards, and xor in r */ +static void KeySetupTransform(AES_state* s, const AES_state* r) { + int b; + for (b = 0; b < 8; b++) { + s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b]; + } +} + +/* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 + x + 1 */ +static void MultX(AES_state* s) { + uint16_t top = s->slice[7]; + s->slice[7] = s->slice[6]; + s->slice[6] = s->slice[5]; + s->slice[5] = s->slice[4]; + s->slice[4] = s->slice[3] ^ top; + s->slice[3] = s->slice[2] ^ top; + s->slice[2] = s->slice[1]; + s->slice[1] = s->slice[0] ^ top; + s->slice[0] = top; +} + +/** Expand the cipher key into the key schedule. + * + * state must be a pointer to an array of size nrounds + 1. + * key must be a pointer to 4 * nkeywords bytes. + * + * AES128 uses nkeywords = 4, nrounds = 10 + * AES192 uses nkeywords = 6, nrounds = 12 + * AES256 uses nkeywords = 8, nrounds = 14 + */ +static void AES_setup(AES_state* rounds, const uint8_t* key, int nkeywords, int nrounds) +{ + int i; + + /* The one-byte round constant */ + AES_state rcon = {{1,0,0,0,0,0,0,0}}; + /* The number of the word being generated, modulo nkeywords */ + int pos = 0; + /* The column representing the word currently being processed */ + AES_state column; + + for (i = 0; i < nrounds + 1; i++) { + int b; + for (b = 0; b < 8; b++) { + rounds[i].slice[b] = 0; + } + } + + /* The first nkeywords round columns are just taken from the key directly. */ + for (i = 0; i < nkeywords; i++) { + int r; + for (r = 0; r < 4; r++) { + LoadByte(&rounds[i >> 2], *(key++), r, i & 3); + } + } + + GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3); + + for (i = nkeywords; i < 4 * (nrounds + 1); i++) { + /* Transform column */ + if (pos == 0) { + SubBytes(&column, 0); + KeySetupTransform(&column, &rcon); + MultX(&rcon); + } else if (nkeywords > 6 && pos == 4) { + SubBytes(&column, 0); + } + if (++pos == nkeywords) pos = 0; + KeySetupColumnMix(&column, &rounds[i >> 2], &rounds[(i - nkeywords) >> 2], i & 3, (i - nkeywords) & 3); + } +} + +static void AES_encrypt(const AES_state* rounds, int nrounds, unsigned char* cipher16, const unsigned char* plain16) { + AES_state s = {{0}}; + int round; + + LoadBytes(&s, plain16); + AddRoundKey(&s, rounds++); + + for (round = 1; round < nrounds; round++) { + SubBytes(&s, 0); + ShiftRows(&s); + MixColumns(&s, 0); + AddRoundKey(&s, rounds++); + } + + SubBytes(&s, 0); + ShiftRows(&s); + AddRoundKey(&s, rounds); + + SaveBytes(cipher16, &s); +} + +static void AES_decrypt(const AES_state* rounds, int nrounds, unsigned char* plain16, const unsigned char* cipher16) { + /* Most AES decryption implementations use the alternate scheme + * (the Equivalent Inverse Cipher), which looks more like encryption, but + * needs different round constants. We can't reuse any code here anyway, so + * don't bother. */ + AES_state s = {{0}}; + int round; + + rounds += nrounds; + + LoadBytes(&s, cipher16); + AddRoundKey(&s, rounds--); + + for (round = 1; round < nrounds; round++) { + InvShiftRows(&s); + SubBytes(&s, 1); + AddRoundKey(&s, rounds--); + MixColumns(&s, 1); + } + + InvShiftRows(&s); + SubBytes(&s, 1); + AddRoundKey(&s, rounds); + + SaveBytes(plain16, &s); +} + +void AES128_init(AES128_ctx* ctx, const unsigned char* key16) { + AES_setup(ctx->rk, key16, 4, 10); +} + +void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) { + while (blocks--) { + AES_encrypt(ctx->rk, 10, cipher16, plain16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) { + while (blocks--) { + AES_decrypt(ctx->rk, 10, plain16, cipher16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES192_init(AES192_ctx* ctx, const unsigned char* key24) { + AES_setup(ctx->rk, key24, 6, 12); +} + +void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) { + while (blocks--) { + AES_encrypt(ctx->rk, 12, cipher16, plain16); + cipher16 += 16; + plain16 += 16; + } + +} + +void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) { + while (blocks--) { + AES_decrypt(ctx->rk, 12, plain16, cipher16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES256_init(AES256_ctx* ctx, const unsigned char* key32) { + AES_setup(ctx->rk, key32, 8, 14); +} + +void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) { + while (blocks--) { + AES_encrypt(ctx->rk, 14, cipher16, plain16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) { + while (blocks--) { + AES_decrypt(ctx->rk, 14, plain16, cipher16); + cipher16 += 16; + plain16 += 16; + } +} diff --git a/src/crypto/ctaes/ctaes.h b/src/crypto/ctaes/ctaes.h new file mode 100644 index 0000000000..2f0af04216 --- /dev/null +++ b/src/crypto/ctaes/ctaes.h @@ -0,0 +1,41 @@ + /********************************************************************* + * Copyright (c) 2016 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _CTAES_H_ +#define _CTAES_H_ 1 + +#include <stdint.h> +#include <stdlib.h> + +typedef struct { + uint16_t slice[8]; +} AES_state; + +typedef struct { + AES_state rk[11]; +} AES128_ctx; + +typedef struct { + AES_state rk[13]; +} AES192_ctx; + +typedef struct { + AES_state rk[15]; +} AES256_ctx; + +void AES128_init(AES128_ctx* ctx, const unsigned char* key16); +void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16); +void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16); + +void AES192_init(AES192_ctx* ctx, const unsigned char* key24); +void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16); +void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16); + +void AES256_init(AES256_ctx* ctx, const unsigned char* key32); +void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16); +void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16); + +#endif diff --git a/src/crypto/ctaes/test.c b/src/crypto/ctaes/test.c new file mode 100644 index 0000000000..fce1696acd --- /dev/null +++ b/src/crypto/ctaes/test.c @@ -0,0 +1,110 @@ + /********************************************************************* + * Copyright (c) 2016 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#include "ctaes.h" + +#include <stdio.h> +#include <string.h> +#include <assert.h> + +typedef struct { + int keysize; + const char* key; + const char* plain; + const char* cipher; +} ctaes_test; + +static const ctaes_test ctaes_tests[] = { + /* AES test vectors from FIPS 197. */ + {128, "000102030405060708090a0b0c0d0e0f", "00112233445566778899aabbccddeeff", "69c4e0d86a7b0430d8cdb78070b4c55a"}, + {192, "000102030405060708090a0b0c0d0e0f1011121314151617", "00112233445566778899aabbccddeeff", "dda97ca4864cdfe06eaf70a0ec0d7191"}, + {256, "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", "00112233445566778899aabbccddeeff", "8ea2b7ca516745bfeafc49904b496089"}, + + /* AES-ECB test vectors from NIST sp800-38a. */ + {128, "2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "3ad77bb40d7a3660a89ecaf32466ef97"}, + {128, "2b7e151628aed2a6abf7158809cf4f3c", "ae2d8a571e03ac9c9eb76fac45af8e51", "f5d3d58503b9699de785895a96fdbaaf"}, + {128, "2b7e151628aed2a6abf7158809cf4f3c", "30c81c46a35ce411e5fbc1191a0a52ef", "43b1cd7f598ece23881b00e3ed030688"}, + {128, "2b7e151628aed2a6abf7158809cf4f3c", "f69f2445df4f9b17ad2b417be66c3710", "7b0c785e27e8ad3f8223207104725dd4"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "6bc1bee22e409f96e93d7e117393172a", "bd334f1d6e45f25ff712a214571fa5cc"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "ae2d8a571e03ac9c9eb76fac45af8e51", "974104846d0ad3ad7734ecb3ecee4eef"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "30c81c46a35ce411e5fbc1191a0a52ef", "ef7afd2270e2e60adce0ba2face6444e"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "f69f2445df4f9b17ad2b417be66c3710", "9a4b41ba738d6c72fb16691603c18e0e"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "6bc1bee22e409f96e93d7e117393172a", "f3eed1bdb5d2a03c064b5a7e3db181f8"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "ae2d8a571e03ac9c9eb76fac45af8e51", "591ccb10d410ed26dc5ba74a31362870"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "30c81c46a35ce411e5fbc1191a0a52ef", "b6ed21b99ca6f4f9f153e7b1beafed1d"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f69f2445df4f9b17ad2b417be66c3710", "23304b7a39f9f3ff067d8d8f9e24ecc7"} +}; + +static void from_hex(unsigned char* data, int len, const char* hex) { + int p; + for (p = 0; p < len; p++) { + int v = 0; + int n; + for (n = 0; n < 2; n++) { + assert((*hex >= '0' && *hex <= '9') || (*hex >= 'a' && *hex <= 'f')); + if (*hex >= '0' && *hex <= '9') { + v |= (*hex - '0') << (4 * (1 - n)); + } else { + v |= (*hex - 'a' + 10) << (4 * (1 - n)); + } + hex++; + } + *(data++) = v; + } + assert(*hex == 0); +} + +int main(void) { + int i; + int fail = 0; + for (i = 0; i < sizeof(ctaes_tests) / sizeof(ctaes_tests[0]); i++) { + unsigned char key[32], plain[16], cipher[16], ciphered[16], deciphered[16]; + const ctaes_test* test = &ctaes_tests[i]; + assert(test->keysize == 128 || test->keysize == 192 || test->keysize == 256); + from_hex(plain, 16, test->plain); + from_hex(cipher, 16, test->cipher); + switch (test->keysize) { + case 128: { + AES128_ctx ctx; + from_hex(key, 16, test->key); + AES128_init(&ctx, key); + AES128_encrypt(&ctx, 1, ciphered, plain); + AES128_decrypt(&ctx, 1, deciphered, cipher); + break; + } + case 192: { + AES192_ctx ctx; + from_hex(key, 24, test->key); + AES192_init(&ctx, key); + AES192_encrypt(&ctx, 1, ciphered, plain); + AES192_decrypt(&ctx, 1, deciphered, cipher); + break; + } + case 256: { + AES256_ctx ctx; + from_hex(key, 32, test->key); + AES256_init(&ctx, key); + AES256_encrypt(&ctx, 1, ciphered, plain); + AES256_decrypt(&ctx, 1, deciphered, cipher); + break; + } + } + if (memcmp(cipher, ciphered, 16)) { + fprintf(stderr, "E(key=\"%s\", plain=\"%s\") != \"%s\"\n", test->key, test->plain, test->cipher); + fail++; + } + if (memcmp(plain, deciphered, 16)) { + fprintf(stderr, "D(key=\"%s\", cipher=\"%s\") != \"%s\"\n", test->key, test->cipher, test->plain); + fail++; + } + } + if (fail == 0) { + fprintf(stderr, "All tests succesful\n"); + } else { + fprintf(stderr, "%i tests failed\n", fail); + } + return (fail != 0); +} diff --git a/src/test/crypto_tests.cpp b/src/test/crypto_tests.cpp index 0b46d718d1..58a62ee022 100644 --- a/src/test/crypto_tests.cpp +++ b/src/test/crypto_tests.cpp @@ -2,6 +2,7 @@ // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. +#include "crypto/aes.h" #include "crypto/ripemd160.h" #include "crypto/sha1.h" #include "crypto/sha256.h" @@ -16,6 +17,8 @@ #include <boost/assign/list_of.hpp> #include <boost/test/unit_test.hpp> +#include <openssl/aes.h> +#include <openssl/evp.h> BOOST_FIXTURE_TEST_SUITE(crypto_tests, BasicTestingSetup) @@ -63,6 +66,127 @@ void TestHMACSHA512(const std::string &hexkey, const std::string &hexin, const s TestVector(CHMAC_SHA512(&key[0], key.size()), ParseHex(hexin), ParseHex(hexout)); } +void TestAES128(const std::string &hexkey, const std::string &hexin, const std::string &hexout) +{ + std::vector<unsigned char> key = ParseHex(hexkey); + std::vector<unsigned char> in = ParseHex(hexin); + std::vector<unsigned char> correctout = ParseHex(hexout); + std::vector<unsigned char> buf, buf2; + + assert(key.size() == 16); + assert(in.size() == 16); + assert(correctout.size() == 16); + AES128Encrypt enc(&key[0]); + buf.resize(correctout.size()); + buf2.resize(correctout.size()); + enc.Encrypt(&buf[0], &in[0]); + BOOST_CHECK_EQUAL(HexStr(buf), HexStr(correctout)); + AES128Decrypt dec(&key[0]); + dec.Decrypt(&buf2[0], &buf[0]); + BOOST_CHECK_EQUAL(HexStr(buf2), HexStr(in)); +} + +void TestAES256(const std::string &hexkey, const std::string &hexin, const std::string &hexout) +{ + std::vector<unsigned char> key = ParseHex(hexkey); + std::vector<unsigned char> in = ParseHex(hexin); + std::vector<unsigned char> correctout = ParseHex(hexout); + std::vector<unsigned char> buf; + + assert(key.size() == 32); + assert(in.size() == 16); + assert(correctout.size() == 16); + AES256Encrypt enc(&key[0]); + buf.resize(correctout.size()); + enc.Encrypt(&buf[0], &in[0]); + BOOST_CHECK(buf == correctout); + AES256Decrypt dec(&key[0]); + dec.Decrypt(&buf[0], &buf[0]); + BOOST_CHECK(buf == in); +} + +void TestAES128CBC(const std::string &hexkey, const std::string &hexiv, bool pad, const std::string &hexin, const std::string &hexout) +{ + std::vector<unsigned char> key = ParseHex(hexkey); + std::vector<unsigned char> iv = ParseHex(hexiv); + std::vector<unsigned char> in = ParseHex(hexin); + std::vector<unsigned char> correctout = ParseHex(hexout); + std::vector<unsigned char> realout(in.size() + AES_BLOCKSIZE); + + // Encrypt the plaintext and verify that it equals the cipher + AES128CBCEncrypt enc(&key[0], &iv[0], pad); + int size = enc.Encrypt(&in[0], in.size(), &realout[0]); + realout.resize(size); + BOOST_CHECK(realout.size() == correctout.size()); + BOOST_CHECK_MESSAGE(realout == correctout, HexStr(realout) + std::string(" != ") + hexout); + + // Decrypt the cipher and verify that it equals the plaintext + std::vector<unsigned char> decrypted(correctout.size()); + AES128CBCDecrypt dec(&key[0], &iv[0], pad); + size = dec.Decrypt(&correctout[0], correctout.size(), &decrypted[0]); + decrypted.resize(size); + BOOST_CHECK(decrypted.size() == in.size()); + BOOST_CHECK_MESSAGE(decrypted == in, HexStr(decrypted) + std::string(" != ") + hexin); + + // Encrypt and re-decrypt substrings of the plaintext and verify that they equal each-other + for(std::vector<unsigned char>::iterator i(in.begin()); i != in.end(); ++i) + { + std::vector<unsigned char> sub(i, in.end()); + std::vector<unsigned char> subout(sub.size() + AES_BLOCKSIZE); + int size = enc.Encrypt(&sub[0], sub.size(), &subout[0]); + if (size != 0) + { + subout.resize(size); + std::vector<unsigned char> subdecrypted(subout.size()); + size = dec.Decrypt(&subout[0], subout.size(), &subdecrypted[0]); + subdecrypted.resize(size); + BOOST_CHECK(decrypted.size() == in.size()); + BOOST_CHECK_MESSAGE(subdecrypted == sub, HexStr(subdecrypted) + std::string(" != ") + HexStr(sub)); + } + } +} + +void TestAES256CBC(const std::string &hexkey, const std::string &hexiv, bool pad, const std::string &hexin, const std::string &hexout) +{ + std::vector<unsigned char> key = ParseHex(hexkey); + std::vector<unsigned char> iv = ParseHex(hexiv); + std::vector<unsigned char> in = ParseHex(hexin); + std::vector<unsigned char> correctout = ParseHex(hexout); + std::vector<unsigned char> realout(in.size() + AES_BLOCKSIZE); + + // Encrypt the plaintext and verify that it equals the cipher + AES256CBCEncrypt enc(&key[0], &iv[0], pad); + int size = enc.Encrypt(&in[0], in.size(), &realout[0]); + realout.resize(size); + BOOST_CHECK(realout.size() == correctout.size()); + BOOST_CHECK_MESSAGE(realout == correctout, HexStr(realout) + std::string(" != ") + hexout); + + // Decrypt the cipher and verify that it equals the plaintext + std::vector<unsigned char> decrypted(correctout.size()); + AES256CBCDecrypt dec(&key[0], &iv[0], pad); + size = dec.Decrypt(&correctout[0], correctout.size(), &decrypted[0]); + decrypted.resize(size); + BOOST_CHECK(decrypted.size() == in.size()); + BOOST_CHECK_MESSAGE(decrypted == in, HexStr(decrypted) + std::string(" != ") + hexin); + + // Encrypt and re-decrypt substrings of the plaintext and verify that they equal each-other + for(std::vector<unsigned char>::iterator i(in.begin()); i != in.end(); ++i) + { + std::vector<unsigned char> sub(i, in.end()); + std::vector<unsigned char> subout(sub.size() + AES_BLOCKSIZE); + int size = enc.Encrypt(&sub[0], sub.size(), &subout[0]); + if (size != 0) + { + subout.resize(size); + std::vector<unsigned char> subdecrypted(subout.size()); + size = dec.Decrypt(&subout[0], subout.size(), &subdecrypted[0]); + subdecrypted.resize(size); + BOOST_CHECK(decrypted.size() == in.size()); + BOOST_CHECK_MESSAGE(subdecrypted == sub, HexStr(subdecrypted) + std::string(" != ") + HexStr(sub)); + } + } +} + std::string LongTestString(void) { std::string ret; for (int i=0; i<200000; i++) { @@ -248,4 +372,71 @@ BOOST_AUTO_TEST_CASE(hmac_sha512_testvectors) { "b6022cac3c4982b10d5eeb55c3e4de15134676fb6de0446065c97440fa8c6a58"); } +BOOST_AUTO_TEST_CASE(aes_testvectors) { + // AES test vectors from FIPS 197. + TestAES128("000102030405060708090a0b0c0d0e0f", "00112233445566778899aabbccddeeff", "69c4e0d86a7b0430d8cdb78070b4c55a"); + TestAES256("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", "00112233445566778899aabbccddeeff", "8ea2b7ca516745bfeafc49904b496089"); + + // AES-ECB test vectors from NIST sp800-38a. + TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "3ad77bb40d7a3660a89ecaf32466ef97"); + TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "ae2d8a571e03ac9c9eb76fac45af8e51", "f5d3d58503b9699de785895a96fdbaaf"); + TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "30c81c46a35ce411e5fbc1191a0a52ef", "43b1cd7f598ece23881b00e3ed030688"); + TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "f69f2445df4f9b17ad2b417be66c3710", "7b0c785e27e8ad3f8223207104725dd4"); + TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "6bc1bee22e409f96e93d7e117393172a", "f3eed1bdb5d2a03c064b5a7e3db181f8"); + TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "ae2d8a571e03ac9c9eb76fac45af8e51", "591ccb10d410ed26dc5ba74a31362870"); + TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "30c81c46a35ce411e5fbc1191a0a52ef", "b6ed21b99ca6f4f9f153e7b1beafed1d"); + TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f69f2445df4f9b17ad2b417be66c3710", "23304b7a39f9f3ff067d8d8f9e24ecc7"); +} + +BOOST_AUTO_TEST_CASE(aes_cbc_testvectors) { + + // NIST AES CBC 128-bit encryption test-vectors + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", false, \ + "6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d"); + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", false, \ + "ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b2"); + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "5086cb9b507219ee95db113a917678b2", false, \ + "30c81c46a35ce411e5fbc1191a0a52ef", "73bed6b8e3c1743b7116e69e22229516"); + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "73bed6b8e3c1743b7116e69e22229516", false, \ + "f69f2445df4f9b17ad2b417be66c3710", "3ff1caa1681fac09120eca307586e1a7"); + + // The same vectors with padding enabled + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", true, \ + "6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d8964e0b149c10b7b682e6e39aaeb731c"); + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", true, \ + "ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b255e21d7100b988ffec32feeafaf23538"); + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "5086cb9b507219ee95db113a917678b2", true, \ + "30c81c46a35ce411e5fbc1191a0a52ef", "73bed6b8e3c1743b7116e69e22229516f6eccda327bf8e5ec43718b0039adceb"); + TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "73bed6b8e3c1743b7116e69e22229516", true, \ + "f69f2445df4f9b17ad2b417be66c3710", "3ff1caa1681fac09120eca307586e1a78cb82807230e1321d3fae00d18cc2012"); + + // NIST AES CBC 256-bit encryption test-vectors + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "000102030405060708090A0B0C0D0E0F", false, "6bc1bee22e409f96e93d7e117393172a", \ + "f58c4c04d6e5f1ba779eabfb5f7bfbd6"); + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "F58C4C04D6E5F1BA779EABFB5F7BFBD6", false, "ae2d8a571e03ac9c9eb76fac45af8e51", \ + "9cfc4e967edb808d679f777bc6702c7d"); + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "9CFC4E967EDB808D679F777BC6702C7D", false, "30c81c46a35ce411e5fbc1191a0a52ef", + "39f23369a9d9bacfa530e26304231461"); + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "39F23369A9D9BACFA530E26304231461", false, "f69f2445df4f9b17ad2b417be66c3710", \ + "b2eb05e2c39be9fcda6c19078c6a9d1b"); + + // The same vectors with padding enabled + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "000102030405060708090A0B0C0D0E0F", true, "6bc1bee22e409f96e93d7e117393172a", \ + "f58c4c04d6e5f1ba779eabfb5f7bfbd6485a5c81519cf378fa36d42b8547edc0"); + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "F58C4C04D6E5F1BA779EABFB5F7BFBD6", true, "ae2d8a571e03ac9c9eb76fac45af8e51", \ + "9cfc4e967edb808d679f777bc6702c7d3a3aa5e0213db1a9901f9036cf5102d2"); + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "9CFC4E967EDB808D679F777BC6702C7D", true, "30c81c46a35ce411e5fbc1191a0a52ef", + "39f23369a9d9bacfa530e263042314612f8da707643c90a6f732b3de1d3f5cee"); + TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ + "39F23369A9D9BACFA530E26304231461", true, "f69f2445df4f9b17ad2b417be66c3710", \ + "b2eb05e2c39be9fcda6c19078c6a9d1b3f461796d6b0d6b2e0c2a72b4d80e644"); +} + BOOST_AUTO_TEST_SUITE_END() diff --git a/src/wallet/crypter.cpp b/src/wallet/crypter.cpp index 95aa4c2593..190f8ecf2a 100644 --- a/src/wallet/crypter.cpp +++ b/src/wallet/crypter.cpp @@ -4,6 +4,8 @@ #include "crypter.h" +#include "crypto/aes.h" +#include "crypto/sha512.h" #include "script/script.h" #include "script/standard.h" #include "util.h" @@ -11,8 +13,33 @@ #include <string> #include <vector> #include <boost/foreach.hpp> -#include <openssl/aes.h> -#include <openssl/evp.h> + +int CCrypter::BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const +{ + // This mimics the behavior of openssl's EVP_BytesToKey with an aes256cbc + // cipher and sha512 message digest. Because sha512's output size (64b) is + // greater than the aes256 block size (16b) + aes256 key size (32b), + // there's no need to process more than once (D_0). + + if(!count || !key || !iv) + return 0; + + unsigned char buf[CSHA512::OUTPUT_SIZE]; + CSHA512 di; + + di.Write((const unsigned char*)strKeyData.c_str(), strKeyData.size()); + if(chSalt.size()) + di.Write(&chSalt[0], chSalt.size()); + di.Finalize(buf); + + for(int i = 0; i != count - 1; i++) + di.Reset().Write(buf, sizeof(buf)).Finalize(buf); + + memcpy(key, buf, WALLET_CRYPTO_KEY_SIZE); + memcpy(iv, buf + WALLET_CRYPTO_KEY_SIZE, WALLET_CRYPTO_IV_SIZE); + memory_cleanse(buf, sizeof(buf)); + return WALLET_CRYPTO_KEY_SIZE; +} bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod) { @@ -21,8 +48,7 @@ bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::v int i = 0; if (nDerivationMethod == 0) - i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0], - (unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV); + i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, chKey, chIV); if (i != (int)WALLET_CRYPTO_KEY_SIZE) { @@ -37,7 +63,7 @@ bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::v bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV) { - if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_KEY_SIZE) + if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_IV_SIZE) return false; memcpy(&chKey[0], &chNewKey[0], sizeof chKey); @@ -47,57 +73,39 @@ bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigne return true; } -bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) +bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) const { if (!fKeySet) return false; // max ciphertext len for a n bytes of plaintext is - // n + AES_BLOCK_SIZE - 1 bytes - int nLen = vchPlaintext.size(); - int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0; - vchCiphertext = std::vector<unsigned char> (nCLen); - - EVP_CIPHER_CTX ctx; + // n + AES_BLOCKSIZE bytes + vchCiphertext.resize(vchPlaintext.size() + AES_BLOCKSIZE); - bool fOk = true; - - EVP_CIPHER_CTX_init(&ctx); - if (fOk) fOk = EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; - if (fOk) fOk = EVP_EncryptUpdate(&ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen) != 0; - if (fOk) fOk = EVP_EncryptFinal_ex(&ctx, (&vchCiphertext[0]) + nCLen, &nFLen) != 0; - EVP_CIPHER_CTX_cleanup(&ctx); - - if (!fOk) return false; + AES256CBCEncrypt enc(chKey, chIV, true); + size_t nLen = enc.Encrypt(&vchPlaintext[0], vchPlaintext.size(), &vchCiphertext[0]); + if(nLen < vchPlaintext.size()) + return false; + vchCiphertext.resize(nLen); - vchCiphertext.resize(nCLen + nFLen); return true; } -bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) +bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) const { if (!fKeySet) return false; // plaintext will always be equal to or lesser than length of ciphertext int nLen = vchCiphertext.size(); - int nPLen = nLen, nFLen = 0; - - vchPlaintext = CKeyingMaterial(nPLen); - EVP_CIPHER_CTX ctx; + vchPlaintext.resize(nLen); - bool fOk = true; - - EVP_CIPHER_CTX_init(&ctx); - if (fOk) fOk = EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; - if (fOk) fOk = EVP_DecryptUpdate(&ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen) != 0; - if (fOk) fOk = EVP_DecryptFinal_ex(&ctx, (&vchPlaintext[0]) + nPLen, &nFLen) != 0; - EVP_CIPHER_CTX_cleanup(&ctx); - - if (!fOk) return false; - - vchPlaintext.resize(nPLen + nFLen); + AES256CBCDecrypt dec(chKey, chIV, true); + nLen = dec.Decrypt(&vchCiphertext[0], vchCiphertext.size(), &vchPlaintext[0]); + if(nLen == 0) + return false; + vchPlaintext.resize(nLen); return true; } @@ -105,8 +113,8 @@ bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingM static bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext) { CCrypter cKeyCrypter; - std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE); - memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE); + std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE); + memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE); if(!cKeyCrypter.SetKey(vMasterKey, chIV)) return false; return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext); @@ -115,8 +123,8 @@ static bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMateri static bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext) { CCrypter cKeyCrypter; - std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE); - memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE); + std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE); + memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE); if(!cKeyCrypter.SetKey(vMasterKey, chIV)) return false; return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext)); diff --git a/src/wallet/crypter.h b/src/wallet/crypter.h index eb06a7866a..5d0a4a3305 100644 --- a/src/wallet/crypter.h +++ b/src/wallet/crypter.h @@ -13,6 +13,7 @@ class uint256; const unsigned int WALLET_CRYPTO_KEY_SIZE = 32; const unsigned int WALLET_CRYPTO_SALT_SIZE = 8; +const unsigned int WALLET_CRYPTO_IV_SIZE = 16; /** * Private key encryption is done based on a CMasterKey, @@ -66,18 +67,26 @@ public: typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial; +namespace wallet_crypto +{ + class TestCrypter; +} + /** Encryption/decryption context with key information */ class CCrypter { +friend class wallet_crypto::TestCrypter; // for test access to chKey/chIV private: unsigned char chKey[WALLET_CRYPTO_KEY_SIZE]; - unsigned char chIV[WALLET_CRYPTO_KEY_SIZE]; + unsigned char chIV[WALLET_CRYPTO_IV_SIZE]; bool fKeySet; + int BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const; + public: bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod); - bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext); - bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext); + bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) const; + bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) const; bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV); void CleanKey() diff --git a/src/wallet/test/crypto_tests.cpp b/src/wallet/test/crypto_tests.cpp new file mode 100644 index 0000000000..05387f5f2b --- /dev/null +++ b/src/wallet/test/crypto_tests.cpp @@ -0,0 +1,230 @@ +// Copyright (c) 2014 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include "random.h" +#include "utilstrencodings.h" +#include "test/test_bitcoin.h" +#include "wallet/crypter.h" + +#include <vector> + +#include <boost/test/unit_test.hpp> +#include <openssl/aes.h> +#include <openssl/evp.h> + +BOOST_FIXTURE_TEST_SUITE(wallet_crypto, BasicTestingSetup) + +bool OldSetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod, unsigned char* chKey, unsigned char* chIV) +{ + if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE) + return false; + + int i = 0; + if (nDerivationMethod == 0) + i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0], + (unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV); + + if (i != (int)WALLET_CRYPTO_KEY_SIZE) + { + memory_cleanse(chKey, sizeof(chKey)); + memory_cleanse(chIV, sizeof(chIV)); + return false; + } + return true; +} + +bool OldEncrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext, const unsigned char chKey[32], const unsigned char chIV[16]) +{ + // max ciphertext len for a n bytes of plaintext is + // n + AES_BLOCK_SIZE - 1 bytes + int nLen = vchPlaintext.size(); + int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0; + vchCiphertext = std::vector<unsigned char> (nCLen); + + EVP_CIPHER_CTX ctx; + + bool fOk = true; + + EVP_CIPHER_CTX_init(&ctx); + if (fOk) fOk = EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; + if (fOk) fOk = EVP_EncryptUpdate(&ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen) != 0; + if (fOk) fOk = EVP_EncryptFinal_ex(&ctx, (&vchCiphertext[0]) + nCLen, &nFLen) != 0; + EVP_CIPHER_CTX_cleanup(&ctx); + + if (!fOk) return false; + + vchCiphertext.resize(nCLen + nFLen); + return true; +} + +bool OldDecrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext, const unsigned char chKey[32], const unsigned char chIV[16]) +{ + // plaintext will always be equal to or lesser than length of ciphertext + int nLen = vchCiphertext.size(); + int nPLen = nLen, nFLen = 0; + + vchPlaintext = CKeyingMaterial(nPLen); + + EVP_CIPHER_CTX ctx; + + bool fOk = true; + + EVP_CIPHER_CTX_init(&ctx); + if (fOk) fOk = EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; + if (fOk) fOk = EVP_DecryptUpdate(&ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen) != 0; + if (fOk) fOk = EVP_DecryptFinal_ex(&ctx, (&vchPlaintext[0]) + nPLen, &nFLen) != 0; + EVP_CIPHER_CTX_cleanup(&ctx); + + if (!fOk) return false; + + vchPlaintext.resize(nPLen + nFLen); + return true; +} + +class TestCrypter +{ +public: +static void TestPassphraseSingle(const std::vector<unsigned char>& vchSalt, const SecureString& passphrase, uint32_t rounds, + const std::vector<unsigned char>& correctKey = std::vector<unsigned char>(), + const std::vector<unsigned char>& correctIV=std::vector<unsigned char>()) +{ + unsigned char chKey[WALLET_CRYPTO_KEY_SIZE]; + unsigned char chIV[WALLET_CRYPTO_IV_SIZE]; + + CCrypter crypt; + crypt.SetKeyFromPassphrase(passphrase, vchSalt, rounds, 0); + + OldSetKeyFromPassphrase(passphrase, vchSalt, rounds, 0, chKey, chIV); + + BOOST_CHECK_MESSAGE(memcmp(chKey, crypt.chKey, sizeof(chKey)) == 0, \ + HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(crypt.chKey, crypt.chKey + (sizeof crypt.chKey))); + BOOST_CHECK_MESSAGE(memcmp(chIV, crypt.chIV, sizeof(chIV)) == 0, \ + HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(crypt.chIV, crypt.chIV + (sizeof crypt.chIV))); + + if(!correctKey.empty()) + BOOST_CHECK_MESSAGE(memcmp(chKey, &correctKey[0], sizeof(chKey)) == 0, \ + HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(correctKey.begin(), correctKey.end())); + if(!correctIV.empty()) + BOOST_CHECK_MESSAGE(memcmp(chIV, &correctIV[0], sizeof(chIV)) == 0, + HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(correctIV.begin(), correctIV.end())); +} + +static void TestPassphrase(const std::vector<unsigned char>& vchSalt, const SecureString& passphrase, uint32_t rounds, + const std::vector<unsigned char>& correctKey = std::vector<unsigned char>(), + const std::vector<unsigned char>& correctIV=std::vector<unsigned char>()) +{ + TestPassphraseSingle(vchSalt, passphrase, rounds, correctKey, correctIV); + for(SecureString::const_iterator i(passphrase.begin()); i != passphrase.end(); ++i) + TestPassphraseSingle(vchSalt, SecureString(i, passphrase.end()), rounds); +} + + +static void TestDecrypt(const CCrypter& crypt, const std::vector<unsigned char>& vchCiphertext, \ + const std::vector<unsigned char>& vchPlaintext = std::vector<unsigned char>()) +{ + CKeyingMaterial vchDecrypted1; + CKeyingMaterial vchDecrypted2; + int result1, result2; + result1 = crypt.Decrypt(vchCiphertext, vchDecrypted1); + result2 = OldDecrypt(vchCiphertext, vchDecrypted2, crypt.chKey, crypt.chIV); + BOOST_CHECK(result1 == result2); + + // These two should be equal. However, OpenSSL 1.0.1j introduced a change + // that would zero all padding except for the last byte for failed decrypts. + // This behavior was reverted for 1.0.1k. + if (vchDecrypted1 != vchDecrypted2 && vchDecrypted1.size() >= AES_BLOCK_SIZE && SSLeay() == 0x100010afL) + { + for(CKeyingMaterial::iterator it = vchDecrypted1.end() - AES_BLOCK_SIZE; it != vchDecrypted1.end() - 1; it++) + *it = 0; + } + + BOOST_CHECK_MESSAGE(vchDecrypted1 == vchDecrypted2, HexStr(vchDecrypted1.begin(), vchDecrypted1.end()) + " != " + HexStr(vchDecrypted2.begin(), vchDecrypted2.end())); + + if (vchPlaintext.size()) + BOOST_CHECK(CKeyingMaterial(vchPlaintext.begin(), vchPlaintext.end()) == vchDecrypted2); +} + +static void TestEncryptSingle(const CCrypter& crypt, const CKeyingMaterial& vchPlaintext, + const std::vector<unsigned char>& vchCiphertextCorrect = std::vector<unsigned char>()) +{ + std::vector<unsigned char> vchCiphertext1; + std::vector<unsigned char> vchCiphertext2; + int result1 = crypt.Encrypt(vchPlaintext, vchCiphertext1); + + int result2 = OldEncrypt(vchPlaintext, vchCiphertext2, crypt.chKey, crypt.chIV); + BOOST_CHECK(result1 == result2); + BOOST_CHECK(vchCiphertext1 == vchCiphertext2); + + if (!vchCiphertextCorrect.empty()) + BOOST_CHECK(vchCiphertext2 == vchCiphertextCorrect); + + const std::vector<unsigned char> vchPlaintext2(vchPlaintext.begin(), vchPlaintext.end()); + + if(vchCiphertext1 == vchCiphertext2) + TestDecrypt(crypt, vchCiphertext1, vchPlaintext2); +} + +static void TestEncrypt(const CCrypter& crypt, const std::vector<unsigned char>& vchPlaintextIn, \ + const std::vector<unsigned char>& vchCiphertextCorrect = std::vector<unsigned char>()) +{ + TestEncryptSingle(crypt, CKeyingMaterial(vchPlaintextIn.begin(), vchPlaintextIn.end()), vchCiphertextCorrect); + for(std::vector<unsigned char>::const_iterator i(vchPlaintextIn.begin()); i != vchPlaintextIn.end(); ++i) + TestEncryptSingle(crypt, CKeyingMaterial(i, vchPlaintextIn.end())); +} + +}; + +BOOST_AUTO_TEST_CASE(passphrase) { + // These are expensive. + + TestCrypter::TestPassphrase(ParseHex("0000deadbeef0000"), "test", 25000, \ + ParseHex("fc7aba077ad5f4c3a0988d8daa4810d0d4a0e3bcb53af662998898f33df0556a"), \ + ParseHex("cf2f2691526dd1aa220896fb8bf7c369")); + + std::string hash(GetRandHash().ToString()); + std::vector<unsigned char> vchSalt(8); + GetRandBytes(&vchSalt[0], vchSalt.size()); + uint32_t rounds = insecure_rand(); + if (rounds > 30000) + rounds = 30000; + TestCrypter::TestPassphrase(vchSalt, SecureString(hash.begin(), hash.end()), rounds); +} + +BOOST_AUTO_TEST_CASE(encrypt) { + std::vector<unsigned char> vchSalt = ParseHex("0000deadbeef0000"); + BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE); + CCrypter crypt; + crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0); + TestCrypter::TestEncrypt(crypt, ParseHex("22bcade09ac03ff6386914359cfe885cfeb5f77ff0d670f102f619687453b29d")); + + for (int i = 0; i != 100; i++) + { + uint256 hash(GetRandHash()); + TestCrypter::TestEncrypt(crypt, std::vector<unsigned char>(hash.begin(), hash.end())); + } + +} + +BOOST_AUTO_TEST_CASE(decrypt) { + std::vector<unsigned char> vchSalt = ParseHex("0000deadbeef0000"); + BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE); + CCrypter crypt; + crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0); + + // Some corner cases the came up while testing + TestCrypter::TestDecrypt(crypt,ParseHex("795643ce39d736088367822cdc50535ec6f103715e3e48f4f3b1a60a08ef59ca")); + TestCrypter::TestDecrypt(crypt,ParseHex("de096f4a8f9bd97db012aa9d90d74de8cdea779c3ee8bc7633d8b5d6da703486")); + TestCrypter::TestDecrypt(crypt,ParseHex("32d0a8974e3afd9c6c3ebf4d66aa4e6419f8c173de25947f98cf8b7ace49449c")); + TestCrypter::TestDecrypt(crypt,ParseHex("e7c055cca2faa78cb9ac22c9357a90b4778ded9b2cc220a14cea49f931e596ea")); + TestCrypter::TestDecrypt(crypt,ParseHex("b88efddd668a6801d19516d6830da4ae9811988ccbaf40df8fbb72f3f4d335fd")); + TestCrypter::TestDecrypt(crypt,ParseHex("8cae76aa6a43694e961ebcb28c8ca8f8540b84153d72865e8561ddd93fa7bfa9")); + + for (int i = 0; i != 100; i++) + { + uint256 hash(GetRandHash()); + TestCrypter::TestDecrypt(crypt, std::vector<unsigned char>(hash.begin(), hash.end())); + } +} + +BOOST_AUTO_TEST_SUITE_END() |