aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--configure.ac37
-rw-r--r--src/Makefile.am26
-rw-r--r--src/crypto/sha256.cpp74
-rw-r--r--src/crypto/sha256_arm_shani.cpp899
-rw-r--r--src/crypto/sha256_x86_shani.cpp (renamed from src/crypto/sha256_shani.cpp)6
5 files changed, 1012 insertions, 30 deletions
diff --git a/configure.ac b/configure.ac
index 11a01f310c..452b7deec7 100644
--- a/configure.ac
+++ b/configure.ac
@@ -469,7 +469,7 @@ AX_CHECK_COMPILE_FLAG([-fno-extended-identifiers], [CXXFLAGS="$CXXFLAGS -fno-ext
enable_sse42=no
enable_sse41=no
enable_avx2=no
-enable_shani=no
+enable_x86_shani=no
if test "$use_asm" = "yes"; then
@@ -481,7 +481,7 @@ dnl x86
AX_CHECK_COMPILE_FLAG([-msse4.2], [SSE42_CXXFLAGS="-msse4.2"], [], [$CXXFLAG_WERROR])
AX_CHECK_COMPILE_FLAG([-msse4.1], [SSE41_CXXFLAGS="-msse4.1"], [], [$CXXFLAG_WERROR])
AX_CHECK_COMPILE_FLAG([-mavx -mavx2], [AVX2_CXXFLAGS="-mavx -mavx2"], [], [$CXXFLAG_WERROR])
-AX_CHECK_COMPILE_FLAG([-msse4 -msha], [SHANI_CXXFLAGS="-msse4 -msha"], [], [$CXXFLAG_WERROR])
+AX_CHECK_COMPILE_FLAG([-msse4 -msha], [X86_SHANI_CXXFLAGS="-msse4 -msha"], [], [$CXXFLAG_WERROR])
enable_clmul=
AX_CHECK_COMPILE_FLAG([-mpclmul], [enable_clmul=yes], [], [$CXXFLAG_WERROR], [AC_LANG_PROGRAM([
@@ -554,8 +554,8 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
CXXFLAGS="$TEMP_CXXFLAGS"
TEMP_CXXFLAGS="$CXXFLAGS"
-CXXFLAGS="$CXXFLAGS $SHANI_CXXFLAGS"
-AC_MSG_CHECKING([for SHA-NI intrinsics])
+CXXFLAGS="$CXXFLAGS $X86_SHANI_CXXFLAGS"
+AC_MSG_CHECKING([for x86 SHA-NI intrinsics])
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>
#include <immintrin.h>
@@ -565,17 +565,18 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
__m128i k = _mm_set1_epi32(2);
return _mm_extract_epi32(_mm_sha256rnds2_epu32(i, i, k), 0);
]])],
- [ AC_MSG_RESULT([yes]); enable_shani=yes; AC_DEFINE([ENABLE_SHANI], [1], [Define this symbol to build code that uses SHA-NI intrinsics]) ],
+ [ AC_MSG_RESULT([yes]); enable_x86_shani=yes; AC_DEFINE([ENABLE_X86_SHANI], [1], [Define this symbol to build code that uses x86 SHA-NI intrinsics]) ],
[ AC_MSG_RESULT([no])]
)
CXXFLAGS="$TEMP_CXXFLAGS"
# ARM
AX_CHECK_COMPILE_FLAG([-march=armv8-a+crc+crypto], [ARM_CRC_CXXFLAGS="-march=armv8-a+crc+crypto"], [], [$CXXFLAG_WERROR])
+AX_CHECK_COMPILE_FLAG([-march=armv8-a+crc+crypto], [ARM_SHANI_CXXFLAGS="-march=armv8-a+crc+crypto"], [], [$CXXFLAG_WERROR])
TEMP_CXXFLAGS="$CXXFLAGS"
CXXFLAGS="$CXXFLAGS $ARM_CRC_CXXFLAGS"
-AC_MSG_CHECKING([for AArch64 CRC32 intrinsics])
+AC_MSG_CHECKING([for ARMv8 CRC32 intrinsics])
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <arm_acle.h>
#include <arm_neon.h>
@@ -592,6 +593,24 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
)
CXXFLAGS="$TEMP_CXXFLAGS"
+TEMP_CXXFLAGS="$CXXFLAGS"
+CXXFLAGS="$CXXFLAGS $ARM_SHANI_CXXFLAGS"
+AC_MSG_CHECKING([for ARMv8 SHA-NI intrinsics])
+AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
+ #include <arm_acle.h>
+ #include <arm_neon.h>
+ ]],[[
+ uint32x4_t a, b, c;
+ vsha256h2q_u32(a, b, c);
+ vsha256hq_u32(a, b, c);
+ vsha256su0q_u32(a, b);
+ vsha256su1q_u32(a, b, c);
+ ]])],
+ [ AC_MSG_RESULT([yes]); enable_arm_shani=yes; AC_DEFINE([ENABLE_ARM_SHANI], [1], [Define this symbol to build code that uses ARMv8 SHA-NI intrinsics]) ],
+ [ AC_MSG_RESULT([no])]
+)
+CXXFLAGS="$TEMP_CXXFLAGS"
+
fi
CPPFLAGS="$CPPFLAGS -DHAVE_BUILD_INFO"
@@ -1774,8 +1793,9 @@ AM_CONDITIONAL([HARDEN], [test "$use_hardening" = "yes"])
AM_CONDITIONAL([ENABLE_SSE42], [test "$enable_sse42" = "yes"])
AM_CONDITIONAL([ENABLE_SSE41], [test "$enable_sse41" = "yes"])
AM_CONDITIONAL([ENABLE_AVX2], [test "$enable_avx2" = "yes"])
-AM_CONDITIONAL([ENABLE_SHANI], [test "$enable_shani" = "yes"])
+AM_CONDITIONAL([ENABLE_X86_SHANI], [test "$enable_x86_shani" = "yes"])
AM_CONDITIONAL([ENABLE_ARM_CRC], [test "$enable_arm_crc" = "yes"])
+AM_CONDITIONAL([ENABLE_ARM_SHANI], [test "$enable_arm_shani" = "yes"])
AM_CONDITIONAL([USE_ASM], [test "$use_asm" = "yes"])
AM_CONDITIONAL([WORDS_BIGENDIAN], [test "$ac_cv_c_bigendian" = "yes"])
AM_CONDITIONAL([USE_NATPMP], [test "$use_natpmp" = "yes"])
@@ -1832,8 +1852,9 @@ AC_SUBST(SSE42_CXXFLAGS)
AC_SUBST(SSE41_CXXFLAGS)
AC_SUBST(CLMUL_CXXFLAGS)
AC_SUBST(AVX2_CXXFLAGS)
-AC_SUBST(SHANI_CXXFLAGS)
+AC_SUBST(X86_SHANI_CXXFLAGS)
AC_SUBST(ARM_CRC_CXXFLAGS)
+AC_SUBST(ARM_SHANI_CXXFLAGS)
AC_SUBST(LIBTOOL_APP_LDFLAGS)
AC_SUBST(USE_SQLITE)
AC_SUBST(USE_BDB)
diff --git a/src/Makefile.am b/src/Makefile.am
index efc32da55d..417a611181 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -46,9 +46,13 @@ if ENABLE_AVX2
LIBBITCOIN_CRYPTO_AVX2 = crypto/libbitcoin_crypto_avx2.a
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_AVX2)
endif
-if ENABLE_SHANI
-LIBBITCOIN_CRYPTO_SHANI = crypto/libbitcoin_crypto_shani.a
-LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_SHANI)
+if ENABLE_X86_SHANI
+LIBBITCOIN_CRYPTO_X86_SHANI = crypto/libbitcoin_crypto_x86_shani.a
+LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_X86_SHANI)
+endif
+if ENABLE_ARM_SHANI
+LIBBITCOIN_CRYPTO_ARM_SHANI = crypto/libbitcoin_crypto_arm_shani.a
+LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_ARM_SHANI)
endif
$(LIBSECP256K1): $(wildcard secp256k1/src/*.h) $(wildcard secp256k1/src/*.c) $(wildcard secp256k1/include/*)
@@ -498,11 +502,17 @@ crypto_libbitcoin_crypto_avx2_a_CXXFLAGS += $(AVX2_CXXFLAGS)
crypto_libbitcoin_crypto_avx2_a_CPPFLAGS += -DENABLE_AVX2
crypto_libbitcoin_crypto_avx2_a_SOURCES = crypto/sha256_avx2.cpp
-crypto_libbitcoin_crypto_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
-crypto_libbitcoin_crypto_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
-crypto_libbitcoin_crypto_shani_a_CXXFLAGS += $(SHANI_CXXFLAGS)
-crypto_libbitcoin_crypto_shani_a_CPPFLAGS += -DENABLE_SHANI
-crypto_libbitcoin_crypto_shani_a_SOURCES = crypto/sha256_shani.cpp
+crypto_libbitcoin_crypto_x86_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
+crypto_libbitcoin_crypto_x86_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
+crypto_libbitcoin_crypto_x86_shani_a_CXXFLAGS += $(X86_SHANI_CXXFLAGS)
+crypto_libbitcoin_crypto_x86_shani_a_CPPFLAGS += -DENABLE_X86_SHANI
+crypto_libbitcoin_crypto_x86_shani_a_SOURCES = crypto/sha256_x86_shani.cpp
+
+crypto_libbitcoin_crypto_arm_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
+crypto_libbitcoin_crypto_arm_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
+crypto_libbitcoin_crypto_arm_shani_a_CXXFLAGS += $(ARM_SHANI_CXXFLAGS)
+crypto_libbitcoin_crypto_arm_shani_a_CPPFLAGS += -DENABLE_ARM_SHANI
+crypto_libbitcoin_crypto_arm_shani_a_SOURCES = crypto/sha256_arm_shani.cpp
# consensus: shared between all executables that validate any consensus rules.
libbitcoin_consensus_a_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_INCLUDES)
diff --git a/src/crypto/sha256.cpp b/src/crypto/sha256.cpp
index e35d526d35..cde543e68c 100644
--- a/src/crypto/sha256.cpp
+++ b/src/crypto/sha256.cpp
@@ -10,6 +10,16 @@
#include <compat/cpuid.h>
+#if defined(__linux__) && defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
+#include <sys/auxv.h>
+#include <asm/hwcap.h>
+#endif
+
+#if defined(MAC_OSX) && defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#endif
+
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
#if defined(USE_ASM)
namespace sha256_sse4
@@ -29,16 +39,26 @@ namespace sha256d64_avx2
void Transform_8way(unsigned char* out, const unsigned char* in);
}
-namespace sha256d64_shani
+namespace sha256d64_x86_shani
{
void Transform_2way(unsigned char* out, const unsigned char* in);
}
-namespace sha256_shani
+namespace sha256_x86_shani
{
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks);
}
+namespace sha256_arm_shani
+{
+void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks);
+}
+
+namespace sha256d64_arm_shani
+{
+void Transform_2way(unsigned char* out, const unsigned char* in);
+}
+
// Internal implementation code.
namespace
{
@@ -567,7 +587,7 @@ std::string SHA256AutoDetect()
bool have_xsave = false;
bool have_avx = false;
bool have_avx2 = false;
- bool have_shani = false;
+ bool have_x86_shani = false;
bool enabled_avx = false;
(void)AVXEnabled;
@@ -575,7 +595,7 @@ std::string SHA256AutoDetect()
(void)have_avx;
(void)have_xsave;
(void)have_avx2;
- (void)have_shani;
+ (void)have_x86_shani;
(void)enabled_avx;
uint32_t eax, ebx, ecx, edx;
@@ -589,15 +609,15 @@ std::string SHA256AutoDetect()
if (have_sse4) {
GetCPUID(7, 0, eax, ebx, ecx, edx);
have_avx2 = (ebx >> 5) & 1;
- have_shani = (ebx >> 29) & 1;
+ have_x86_shani = (ebx >> 29) & 1;
}
-#if defined(ENABLE_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
- if (have_shani) {
- Transform = sha256_shani::Transform;
- TransformD64 = TransformD64Wrapper<sha256_shani::Transform>;
- TransformD64_2way = sha256d64_shani::Transform_2way;
- ret = "shani(1way,2way)";
+#if defined(ENABLE_X86_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
+ if (have_x86_shani) {
+ Transform = sha256_x86_shani::Transform;
+ TransformD64 = TransformD64Wrapper<sha256_x86_shani::Transform>;
+ TransformD64_2way = sha256d64_x86_shani::Transform_2way;
+ ret = "x86_shani(1way,2way)";
have_sse4 = false; // Disable SSE4/AVX2;
have_avx2 = false;
}
@@ -623,6 +643,38 @@ std::string SHA256AutoDetect()
#endif
#endif
+#if defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
+ bool have_arm_shani = false;
+
+#if defined(__linux__)
+#if defined(__arm__) // 32-bit
+ if (getauxval(AT_HWCAP2) & HWCAP2_SHA2) {
+ have_arm_shani = true;
+ }
+#endif
+#if defined(__aarch64__) // 64-bit
+ if (getauxval(AT_HWCAP) & HWCAP_SHA2) {
+ have_arm_shani = true;
+ }
+#endif
+#endif
+
+#if defined(MAC_OSX)
+ int val = 0;
+ size_t len = sizeof(val);
+ if (sysctlbyname("hw.optional.arm.FEAT_SHA256", &val, &len, nullptr, 0) == 0) {
+ have_arm_shani = val != 0;
+ }
+#endif
+
+ if (have_arm_shani) {
+ Transform = sha256_arm_shani::Transform;
+ TransformD64 = TransformD64Wrapper<sha256_arm_shani::Transform>;
+ TransformD64_2way = sha256d64_arm_shani::Transform_2way;
+ ret = "arm_shani(1way,2way)";
+ }
+#endif
+
assert(SelfTest());
return ret;
}
diff --git a/src/crypto/sha256_arm_shani.cpp b/src/crypto/sha256_arm_shani.cpp
new file mode 100644
index 0000000000..7ffa56be70
--- /dev/null
+++ b/src/crypto/sha256_arm_shani.cpp
@@ -0,0 +1,899 @@
+// Copyright (c) 2022 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+//
+// Based on https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-arm.c,
+// Written and placed in public domain by Jeffrey Walton.
+// Based on code from ARM, and by Johannes Schneiders, Skip Hovsmith and
+// Barry O'Rourke for the mbedTLS project.
+// Variant specialized for 64-byte inputs added by Pieter Wuille.
+
+#ifdef ENABLE_ARM_SHANI
+
+#include <array>
+#include <cstdint>
+#include <cstddef>
+#include <arm_acle.h>
+#include <arm_neon.h>
+
+namespace {
+alignas(uint32x4_t) static constexpr std::array<uint32_t, 64> K =
+{
+ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
+ 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
+ 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
+ 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
+ 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
+ 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
+ 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
+ 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
+ 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
+ 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
+ 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
+ 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
+ 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
+ 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
+ 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
+ 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
+};
+}
+
+namespace sha256_arm_shani {
+void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
+{
+ uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE;
+ uint32x4_t MSG0, MSG1, MSG2, MSG3;
+ uint32x4_t TMP0, TMP2;
+
+ // Load state
+ STATE0 = vld1q_u32(&s[0]);
+ STATE1 = vld1q_u32(&s[4]);
+
+ while (blocks--)
+ {
+ // Save state
+ ABEF_SAVE = STATE0;
+ CDGH_SAVE = STATE1;
+
+ // Load and convert input chunk to Big Endian
+ MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 0)));
+ MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 16)));
+ MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 32)));
+ MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 48)));
+ chunk += 64;
+
+ // Original implemenation preloaded message and constant addition which was 1-3% slower.
+ // Now included as first step in quad round code saving one Q Neon register
+ // "TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0]));"
+
+ // Rounds 1-4
+ TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0]));
+ TMP2 = STATE0;
+ MSG0 = vsha256su0q_u32(MSG0, MSG1);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
+
+ // Rounds 5-8
+ TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[4]));
+ TMP2 = STATE0;
+ MSG1 = vsha256su0q_u32(MSG1, MSG2);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
+
+ // Rounds 9-12
+ TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[8]));
+ TMP2 = STATE0;
+ MSG2 = vsha256su0q_u32(MSG2, MSG3);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
+
+ // Rounds 13-16
+ TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[12]));
+ TMP2 = STATE0;
+ MSG3 = vsha256su0q_u32(MSG3, MSG0);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
+
+ // Rounds 17-20
+ TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[16]));
+ TMP2 = STATE0;
+ MSG0 = vsha256su0q_u32(MSG0, MSG1);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
+
+ // Rounds 21-24
+ TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[20]));
+ TMP2 = STATE0;
+ MSG1 = vsha256su0q_u32(MSG1, MSG2);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
+
+ // Rounds 25-28
+ TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[24]));
+ TMP2 = STATE0;
+ MSG2 = vsha256su0q_u32(MSG2, MSG3);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
+
+ // Rounds 29-32
+ TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[28]));
+ TMP2 = STATE0;
+ MSG3 = vsha256su0q_u32(MSG3, MSG0);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
+
+ // Rounds 33-36
+ TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[32]));
+ TMP2 = STATE0;
+ MSG0 = vsha256su0q_u32(MSG0, MSG1);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
+
+ // Rounds 37-40
+ TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[36]));
+ TMP2 = STATE0;
+ MSG1 = vsha256su0q_u32(MSG1, MSG2);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
+
+ // Rounds 41-44
+ TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[40]));
+ TMP2 = STATE0;
+ MSG2 = vsha256su0q_u32(MSG2, MSG3);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
+
+ // Rounds 45-48
+ TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[44]));
+ TMP2 = STATE0;
+ MSG3 = vsha256su0q_u32(MSG3, MSG0);
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+ MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
+
+ // Rounds 49-52
+ TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[48]));
+ TMP2 = STATE0;
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+
+ // Rounds 53-56
+ TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[52]));
+ TMP2 = STATE0;
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+
+ // Rounds 57-60
+ TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[56]));
+ TMP2 = STATE0;
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+
+ // Rounds 61-64
+ TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[60]));
+ TMP2 = STATE0;
+ STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
+ STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
+
+ // Update state
+ STATE0 = vaddq_u32(STATE0, ABEF_SAVE);
+ STATE1 = vaddq_u32(STATE1, CDGH_SAVE);
+ }
+
+ // Save final state
+ vst1q_u32(&s[0], STATE0);
+ vst1q_u32(&s[4], STATE1);
+}
+}
+
+namespace sha256d64_arm_shani {
+void Transform_2way(unsigned char* output, const unsigned char* input)
+{
+ /* Initial state. */
+ alignas(uint32x4_t) static constexpr std::array<uint32_t, 8> INIT = {
+ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
+ 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
+ };
+
+ /* Precomputed message schedule for the 2nd transform. */
+ alignas(uint32x4_t) static constexpr std::array<uint32_t, 64> MIDS = {
+ 0xc28a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
+ 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
+ 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
+ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf374,
+ 0x649b69c1, 0xf0fe4786, 0x0fe1edc6, 0x240cf254,
+ 0x4fe9346f, 0x6cc984be, 0x61b9411e, 0x16f988fa,
+ 0xf2c65152, 0xa88e5a6d, 0xb019fc65, 0xb9d99ec7,
+ 0x9a1231c3, 0xe70eeaa0, 0xfdb1232b, 0xc7353eb0,
+ 0x3069bad5, 0xcb976d5f, 0x5a0f118f, 0xdc1eeefd,
+ 0x0a35b689, 0xde0b7a04, 0x58f4ca9d, 0xe15d5b16,
+ 0x007f3e86, 0x37088980, 0xa507ea32, 0x6fab9537,
+ 0x17406110, 0x0d8cd6f1, 0xcdaa3b6d, 0xc0bbbe37,
+ 0x83613bda, 0xdb48a363, 0x0b02e931, 0x6fd15ca7,
+ 0x521afaca, 0x31338431, 0x6ed41a95, 0x6d437890,
+ 0xc39c91f2, 0x9eccabbd, 0xb5c9a0e6, 0x532fb63c,
+ 0xd2c741c6, 0x07237ea3, 0xa4954b68, 0x4c191d76
+ };
+
+ /* A few precomputed message schedule values for the 3rd transform. */
+ alignas(uint32x4_t) static constexpr std::array<uint32_t, 12> FINS = {
+ 0x5807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
+ 0x80000000, 0x00000000, 0x00000000, 0x00000000,
+ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf274
+ };
+
+ /* Padding processed in the 3rd transform (byteswapped). */
+ alignas(uint32x4_t) static constexpr std::array<uint32_t, 8> FINAL = {0x80000000, 0, 0, 0, 0, 0, 0, 0x100};
+
+ uint32x4_t STATE0A, STATE0B, STATE1A, STATE1B, ABEF_SAVEA, ABEF_SAVEB, CDGH_SAVEA, CDGH_SAVEB;
+ uint32x4_t MSG0A, MSG0B, MSG1A, MSG1B, MSG2A, MSG2B, MSG3A, MSG3B;
+ uint32x4_t TMP0A, TMP0B, TMP2A, TMP2B, TMP;
+
+ // Transform 1: Load state
+ STATE0A = vld1q_u32(&INIT[0]);
+ STATE0B = STATE0A;
+ STATE1A = vld1q_u32(&INIT[4]);
+ STATE1B = STATE1A;
+
+ // Transform 1: Load and convert input chunk to Big Endian
+ MSG0A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 0)));
+ MSG1A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 16)));
+ MSG2A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 32)));
+ MSG3A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 48)));
+ MSG0B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 64)));
+ MSG1B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 80)));
+ MSG2B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 96)));
+ MSG3B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 112)));
+
+ // Transform 1: Rounds 1-4
+ TMP = vld1q_u32(&K[0]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
+ MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
+ MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
+
+ // Transform 1: Rounds 5-8
+ TMP = vld1q_u32(&K[4]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
+ MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
+ MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
+
+ // Transform 1: Rounds 9-12
+ TMP = vld1q_u32(&K[8]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
+ MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
+ MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
+
+ // Transform 1: Rounds 13-16
+ TMP = vld1q_u32(&K[12]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
+ MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
+ MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
+
+ // Transform 1: Rounds 17-20
+ TMP = vld1q_u32(&K[16]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
+ MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
+ MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
+
+ // Transform 1: Rounds 21-24
+ TMP = vld1q_u32(&K[20]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
+ MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
+ MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
+
+ // Transform 1: Rounds 25-28
+ TMP = vld1q_u32(&K[24]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
+ MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
+ MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
+
+ // Transform 1: Rounds 29-32
+ TMP = vld1q_u32(&K[28]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
+ MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
+ MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
+
+ // Transform 1: Rounds 33-36
+ TMP = vld1q_u32(&K[32]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
+ MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
+ MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
+
+ // Transform 1: Rounds 37-40
+ TMP = vld1q_u32(&K[36]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
+ MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
+ MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
+
+ // Transform 1: Rounds 41-44
+ TMP = vld1q_u32(&K[40]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
+ MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
+ MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
+
+ // Transform 1: Rounds 45-48
+ TMP = vld1q_u32(&K[44]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
+ MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
+ MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
+
+ // Transform 1: Rounds 49-52
+ TMP = vld1q_u32(&K[48]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 1: Rounds 53-56
+ TMP = vld1q_u32(&K[52]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 1: Rounds 57-60
+ TMP = vld1q_u32(&K[56]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 1: Rounds 61-64
+ TMP = vld1q_u32(&K[60]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 1: Update state
+ TMP = vld1q_u32(&INIT[0]);
+ STATE0A = vaddq_u32(STATE0A, TMP);
+ STATE0B = vaddq_u32(STATE0B, TMP);
+ TMP = vld1q_u32(&INIT[4]);
+ STATE1A = vaddq_u32(STATE1A, TMP);
+ STATE1B = vaddq_u32(STATE1B, TMP);
+
+ // Transform 2: Save state
+ ABEF_SAVEA = STATE0A;
+ ABEF_SAVEB = STATE0B;
+ CDGH_SAVEA = STATE1A;
+ CDGH_SAVEB = STATE1B;
+
+ // Transform 2: Rounds 1-4
+ TMP = vld1q_u32(&MIDS[0]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 5-8
+ TMP = vld1q_u32(&MIDS[4]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 9-12
+ TMP = vld1q_u32(&MIDS[8]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 13-16
+ TMP = vld1q_u32(&MIDS[12]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 17-20
+ TMP = vld1q_u32(&MIDS[16]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 21-24
+ TMP = vld1q_u32(&MIDS[20]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 25-28
+ TMP = vld1q_u32(&MIDS[24]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 29-32
+ TMP = vld1q_u32(&MIDS[28]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 33-36
+ TMP = vld1q_u32(&MIDS[32]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 37-40
+ TMP = vld1q_u32(&MIDS[36]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 41-44
+ TMP = vld1q_u32(&MIDS[40]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 45-48
+ TMP = vld1q_u32(&MIDS[44]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 49-52
+ TMP = vld1q_u32(&MIDS[48]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 53-56
+ TMP = vld1q_u32(&MIDS[52]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 57-60
+ TMP = vld1q_u32(&MIDS[56]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Rounds 61-64
+ TMP = vld1q_u32(&MIDS[60]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+
+ // Transform 2: Update state
+ STATE0A = vaddq_u32(STATE0A, ABEF_SAVEA);
+ STATE0B = vaddq_u32(STATE0B, ABEF_SAVEB);
+ STATE1A = vaddq_u32(STATE1A, CDGH_SAVEA);
+ STATE1B = vaddq_u32(STATE1B, CDGH_SAVEB);
+
+ // Transform 3: Pad previous output
+ MSG0A = STATE0A;
+ MSG0B = STATE0B;
+ MSG1A = STATE1A;
+ MSG1B = STATE1B;
+ MSG2A = vld1q_u32(&FINAL[0]);
+ MSG2B = MSG2A;
+ MSG3A = vld1q_u32(&FINAL[4]);
+ MSG3B = MSG3A;
+
+ // Transform 3: Load state
+ STATE0A = vld1q_u32(&INIT[0]);
+ STATE0B = STATE0A;
+ STATE1A = vld1q_u32(&INIT[4]);
+ STATE1B = STATE1A;
+
+ // Transform 3: Rounds 1-4
+ TMP = vld1q_u32(&K[0]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
+ MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
+ MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
+
+ // Transform 3: Rounds 5-8
+ TMP = vld1q_u32(&K[4]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
+ MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
+ MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
+
+ // Transform 3: Rounds 9-12
+ TMP = vld1q_u32(&FINS[0]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG2A = vld1q_u32(&FINS[4]);
+ MSG2B = MSG2A;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+ MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
+ MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
+
+ // Transform 3: Rounds 13-16
+ TMP = vld1q_u32(&FINS[8]);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
+ MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
+ MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
+ MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
+
+ // Transform 3: Rounds 17-20
+ TMP = vld1q_u32(&K[16]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
+ MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
+ MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
+
+ // Transform 3: Rounds 21-24
+ TMP = vld1q_u32(&K[20]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
+ MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
+ MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
+
+ // Transform 3: Rounds 25-28
+ TMP = vld1q_u32(&K[24]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
+ MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
+ MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
+
+ // Transform 3: Rounds 29-32
+ TMP = vld1q_u32(&K[28]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
+ MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
+ MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
+
+ // Transform 3: Rounds 33-36
+ TMP = vld1q_u32(&K[32]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
+ MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
+ MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
+
+ // Transform 3: Rounds 37-40
+ TMP = vld1q_u32(&K[36]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
+ MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
+ MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
+
+ // Transform 3: Rounds 41-44
+ TMP = vld1q_u32(&K[40]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
+ MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
+ MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
+
+ // Transform 3: Rounds 45-48
+ TMP = vld1q_u32(&K[44]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
+ MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+ MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
+ MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
+
+ // Transform 3: Rounds 49-52
+ TMP = vld1q_u32(&K[48]);
+ TMP0A = vaddq_u32(MSG0A, TMP);
+ TMP0B = vaddq_u32(MSG0B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 3: Rounds 53-56
+ TMP = vld1q_u32(&K[52]);
+ TMP0A = vaddq_u32(MSG1A, TMP);
+ TMP0B = vaddq_u32(MSG1B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 3: Rounds 57-60
+ TMP = vld1q_u32(&K[56]);
+ TMP0A = vaddq_u32(MSG2A, TMP);
+ TMP0B = vaddq_u32(MSG2B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 3: Rounds 61-64
+ TMP = vld1q_u32(&K[60]);
+ TMP0A = vaddq_u32(MSG3A, TMP);
+ TMP0B = vaddq_u32(MSG3B, TMP);
+ TMP2A = STATE0A;
+ TMP2B = STATE0B;
+ STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
+ STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
+ STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
+ STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
+
+ // Transform 3: Update state
+ TMP = vld1q_u32(&INIT[0]);
+ STATE0A = vaddq_u32(STATE0A, TMP);
+ STATE0B = vaddq_u32(STATE0B, TMP);
+ TMP = vld1q_u32(&INIT[4]);
+ STATE1A = vaddq_u32(STATE1A, TMP);
+ STATE1B = vaddq_u32(STATE1B, TMP);
+
+ // Store result
+ vst1q_u8(output, vrev32q_u8(vreinterpretq_u8_u32(STATE0A)));
+ vst1q_u8(output + 16, vrev32q_u8(vreinterpretq_u8_u32(STATE1A)));
+ vst1q_u8(output + 32, vrev32q_u8(vreinterpretq_u8_u32(STATE0B)));
+ vst1q_u8(output + 48, vrev32q_u8(vreinterpretq_u8_u32(STATE1B)));
+}
+}
+
+#endif
diff --git a/src/crypto/sha256_shani.cpp b/src/crypto/sha256_x86_shani.cpp
index 4f4d5b5837..a82802199f 100644
--- a/src/crypto/sha256_shani.cpp
+++ b/src/crypto/sha256_x86_shani.cpp
@@ -6,7 +6,7 @@
// Written and placed in public domain by Jeffrey Walton.
// Based on code from Intel, and by Sean Gulley for the miTLS project.
-#ifdef ENABLE_SHANI
+#ifdef ENABLE_X86_SHANI
#include <stdint.h>
#include <immintrin.h>
@@ -74,7 +74,7 @@ void inline __attribute__((always_inline)) Save(unsigned char* out, __m128i s)
}
}
-namespace sha256_shani {
+namespace sha256_x86_shani {
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
{
__m128i m0, m1, m2, m3, s0, s1, so0, so1;
@@ -139,7 +139,7 @@ void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
}
}
-namespace sha256d64_shani {
+namespace sha256d64_x86_shani {
void Transform_2way(unsigned char* out, const unsigned char* in)
{