aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--Makefile.am4
-rwxr-xr-x[-rw-r--r--]contrib/zmq/zmq_sub.py0
-rw-r--r--doc/zmq.md7
-rw-r--r--src/Makefile.am2
-rw-r--r--src/bench/crypto_hash.cpp11
-rw-r--r--src/crypto/sha3.cpp161
-rw-r--r--src/crypto/sha3.h41
-rw-r--r--src/secp256k1/.gitignore4
-rw-r--r--src/secp256k1/.travis.yml26
-rw-r--r--src/secp256k1/Makefile.am12
-rw-r--r--src/secp256k1/TODO3
-rw-r--r--src/secp256k1/build-aux/m4/bitcoin_secp.m45
-rw-r--r--src/secp256k1/configure.ac135
-rw-r--r--src/secp256k1/contrib/lax_der_parsing.c1
-rwxr-xr-xsrc/secp256k1/contrib/travis.sh10
-rw-r--r--src/secp256k1/include/secp256k1.h2
-rw-r--r--src/secp256k1/include/secp256k1_extrakeys.h236
-rw-r--r--src/secp256k1/include/secp256k1_schnorrsig.h111
-rw-r--r--src/secp256k1/src/assumptions.h74
-rw-r--r--src/secp256k1/src/basic-config.h9
-rw-r--r--src/secp256k1/src/bench_internal.c174
-rw-r--r--src/secp256k1/src/bench_schnorrsig.c102
-rw-r--r--src/secp256k1/src/ecmult_const_impl.h16
-rw-r--r--src/secp256k1/src/field.h12
-rw-r--r--src/secp256k1/src/field_5x52.h6
-rw-r--r--src/secp256k1/src/field_impl.h8
-rw-r--r--src/secp256k1/src/gen_context.c1
-rw-r--r--src/secp256k1/src/group.h4
-rw-r--r--src/secp256k1/src/group_impl.h13
-rw-r--r--src/secp256k1/src/hash_impl.h18
-rw-r--r--src/secp256k1/src/modules/extrakeys/Makefile.am.include3
-rw-r--r--src/secp256k1/src/modules/extrakeys/main_impl.h248
-rw-r--r--src/secp256k1/src/modules/extrakeys/tests_impl.h524
-rw-r--r--src/secp256k1/src/modules/schnorrsig/Makefile.am.include8
-rw-r--r--src/secp256k1/src/modules/schnorrsig/main_impl.h238
-rw-r--r--src/secp256k1/src/modules/schnorrsig/tests_impl.h806
-rw-r--r--src/secp256k1/src/scalar.h7
-rw-r--r--src/secp256k1/src/scalar_4x64_impl.h20
-rw-r--r--src/secp256k1/src/scalar_8x32_impl.h20
-rw-r--r--src/secp256k1/src/scalar_impl.h6
-rw-r--r--src/secp256k1/src/scratch_impl.h15
-rw-r--r--src/secp256k1/src/secp256k1.c78
-rw-r--r--src/secp256k1/src/selftest.h32
-rw-r--r--src/secp256k1/src/testrand.h3
-rw-r--r--src/secp256k1/src/testrand_impl.h4
-rw-r--r--src/secp256k1/src/tests.c113
-rw-r--r--src/secp256k1/src/tests_exhaustive.c7
-rw-r--r--src/secp256k1/src/util.h58
-rw-r--r--src/secp256k1/src/valgrind_ctime_test.c40
-rw-r--r--src/test/crypto_tests.cpp107
-rw-r--r--src/wallet/db.h1
-rw-r--r--src/wallet/wallet.cpp3
-rwxr-xr-xtest/functional/rpc_txoutproof.py86
-rw-r--r--test/functional/test_framework/wallet.py18
55 files changed, 3313 insertions, 341 deletions
diff --git a/.gitignore b/.gitignore
index 1173edfaa7..5726b18928 100644
--- a/.gitignore
+++ b/.gitignore
@@ -122,6 +122,7 @@ total.coverage/
fuzz.coverage/
coverage_percent.txt
/cov_tool_wrapper.sh
+qa-assets/
#build tests
linux-coverage-build
diff --git a/Makefile.am b/Makefile.am
index 8cdd3ff647..c8af4228f3 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -193,6 +193,8 @@ LCOV_FILTER_PATTERN = \
-p "src/secp256k1" \
-p "depends"
+DIR_FUZZ_SEED_CORPUS ?= qa-assets/fuzz_seed_corpus
+
$(COV_TOOL_WRAPPER):
@echo 'exec $(COV_TOOL) "$$@"' > $(COV_TOOL_WRAPPER)
@chmod +x $(COV_TOOL_WRAPPER)
@@ -205,7 +207,7 @@ baseline_filtered.info: baseline.info
$(LCOV) -a $@ $(LCOV_OPTS) -o $@
fuzz.info: baseline_filtered.info
- @TIMEOUT=15 test/fuzz/test_runner.py qa-assets/fuzz_seed_corpus -l DEBUG
+ @TIMEOUT=15 test/fuzz/test_runner.py $(DIR_FUZZ_SEED_CORPUS) -l DEBUG
$(LCOV) -c $(LCOV_OPTS) -d $(abs_builddir)/src --t fuzz-tests -o $@
$(LCOV) -z $(LCOV_OPTS) -d $(abs_builddir)/src
diff --git a/contrib/zmq/zmq_sub.py b/contrib/zmq/zmq_sub.py
index 06893407f5..06893407f5 100644..100755
--- a/contrib/zmq/zmq_sub.py
+++ b/contrib/zmq/zmq_sub.py
diff --git a/doc/zmq.md b/doc/zmq.md
index ac26fc0a48..835dea23f2 100644
--- a/doc/zmq.md
+++ b/doc/zmq.md
@@ -1,6 +1,6 @@
# Block and Transaction Broadcasting with ZeroMQ
-[ZeroMQ](http://zeromq.org/) is a lightweight wrapper around TCP
+[ZeroMQ](https://zeromq.org/) is a lightweight wrapper around TCP
connections, inter-process communication, and shared-memory,
providing various message-oriented semantics such as publish/subscribe,
request/reply, and push/pull.
@@ -39,8 +39,9 @@ For version information, see [dependencies.md](dependencies.md).
Typically, it is packaged by distributions as something like
*libzmq3-dev*. The C++ wrapper for ZeroMQ is *not* needed.
-In order to run the example Python client scripts in contrib/ one must
-also install *python3-zmq*, though this is not necessary for daemon
+In order to run the example Python client scripts in the `contrib/zmq/`
+directory, one must also install [PyZMQ](https://github.com/zeromq/pyzmq)
+(generally with `pip install pyzmq`), though this is not necessary for daemon
operation.
## Enabling
diff --git a/src/Makefile.am b/src/Makefile.am
index 175501d4a6..efbbc104a3 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -403,6 +403,8 @@ crypto_libbitcoin_crypto_base_a_SOURCES = \
crypto/sha1.h \
crypto/sha256.cpp \
crypto/sha256.h \
+ crypto/sha3.cpp \
+ crypto/sha3.h \
crypto/sha512.cpp \
crypto/sha512.h \
crypto/siphash.cpp \
diff --git a/src/bench/crypto_hash.cpp b/src/bench/crypto_hash.cpp
index 36be86bcc8..65d16d47d8 100644
--- a/src/bench/crypto_hash.cpp
+++ b/src/bench/crypto_hash.cpp
@@ -7,6 +7,7 @@
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
+#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <crypto/siphash.h>
#include <hash.h>
@@ -43,6 +44,15 @@ static void SHA256(benchmark::Bench& bench)
});
}
+static void SHA3_256_1M(benchmark::Bench& bench)
+{
+ uint8_t hash[SHA3_256::OUTPUT_SIZE];
+ std::vector<uint8_t> in(BUFFER_SIZE,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ SHA3_256().Write(in).Finalize(hash);
+ });
+}
+
static void SHA256_32b(benchmark::Bench& bench)
{
std::vector<uint8_t> in(32,0);
@@ -99,6 +109,7 @@ BENCHMARK(RIPEMD160);
BENCHMARK(SHA1);
BENCHMARK(SHA256);
BENCHMARK(SHA512);
+BENCHMARK(SHA3_256_1M);
BENCHMARK(SHA256_32b);
BENCHMARK(SipHash_32b);
diff --git a/src/crypto/sha3.cpp b/src/crypto/sha3.cpp
new file mode 100644
index 0000000000..9c0c42fa77
--- /dev/null
+++ b/src/crypto/sha3.cpp
@@ -0,0 +1,161 @@
+// Copyright (c) 2020 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+// Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c
+// by Markku-Juhani O. Saarinen <mjos@iki.fi>
+
+#include <crypto/sha3.h>
+#include <crypto/common.h>
+#include <span.h>
+
+#include <algorithm>
+#include <array> // For std::begin and std::end.
+
+#include <stdint.h>
+
+// Internal implementation code.
+namespace
+{
+uint64_t Rotl(uint64_t x, int n) { return (x << n) | (x >> (64 - n)); }
+} // namespace
+
+void KeccakF(uint64_t (&st)[25])
+{
+ static constexpr uint64_t RNDC[24] = {
+ 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
+ 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
+ 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
+ 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
+ 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
+ 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
+ };
+ static constexpr int ROUNDS = 24;
+
+ for (int round = 0; round < ROUNDS; ++round) {
+ uint64_t bc0, bc1, bc2, bc3, bc4, t;
+
+ // Theta
+ bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
+ bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
+ bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
+ bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
+ bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
+ t = bc4 ^ Rotl(bc1, 1); st[0] ^= t; st[5] ^= t; st[10] ^= t; st[15] ^= t; st[20] ^= t;
+ t = bc0 ^ Rotl(bc2, 1); st[1] ^= t; st[6] ^= t; st[11] ^= t; st[16] ^= t; st[21] ^= t;
+ t = bc1 ^ Rotl(bc3, 1); st[2] ^= t; st[7] ^= t; st[12] ^= t; st[17] ^= t; st[22] ^= t;
+ t = bc2 ^ Rotl(bc4, 1); st[3] ^= t; st[8] ^= t; st[13] ^= t; st[18] ^= t; st[23] ^= t;
+ t = bc3 ^ Rotl(bc0, 1); st[4] ^= t; st[9] ^= t; st[14] ^= t; st[19] ^= t; st[24] ^= t;
+
+ // Rho Pi
+ t = st[1];
+ bc0 = st[10]; st[10] = Rotl(t, 1); t = bc0;
+ bc0 = st[7]; st[7] = Rotl(t, 3); t = bc0;
+ bc0 = st[11]; st[11] = Rotl(t, 6); t = bc0;
+ bc0 = st[17]; st[17] = Rotl(t, 10); t = bc0;
+ bc0 = st[18]; st[18] = Rotl(t, 15); t = bc0;
+ bc0 = st[3]; st[3] = Rotl(t, 21); t = bc0;
+ bc0 = st[5]; st[5] = Rotl(t, 28); t = bc0;
+ bc0 = st[16]; st[16] = Rotl(t, 36); t = bc0;
+ bc0 = st[8]; st[8] = Rotl(t, 45); t = bc0;
+ bc0 = st[21]; st[21] = Rotl(t, 55); t = bc0;
+ bc0 = st[24]; st[24] = Rotl(t, 2); t = bc0;
+ bc0 = st[4]; st[4] = Rotl(t, 14); t = bc0;
+ bc0 = st[15]; st[15] = Rotl(t, 27); t = bc0;
+ bc0 = st[23]; st[23] = Rotl(t, 41); t = bc0;
+ bc0 = st[19]; st[19] = Rotl(t, 56); t = bc0;
+ bc0 = st[13]; st[13] = Rotl(t, 8); t = bc0;
+ bc0 = st[12]; st[12] = Rotl(t, 25); t = bc0;
+ bc0 = st[2]; st[2] = Rotl(t, 43); t = bc0;
+ bc0 = st[20]; st[20] = Rotl(t, 62); t = bc0;
+ bc0 = st[14]; st[14] = Rotl(t, 18); t = bc0;
+ bc0 = st[22]; st[22] = Rotl(t, 39); t = bc0;
+ bc0 = st[9]; st[9] = Rotl(t, 61); t = bc0;
+ bc0 = st[6]; st[6] = Rotl(t, 20); t = bc0;
+ st[1] = Rotl(t, 44);
+
+ // Chi Iota
+ bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4];
+ st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round];
+ st[1] = bc1 ^ (~bc2 & bc3);
+ st[2] = bc2 ^ (~bc3 & bc4);
+ st[3] = bc3 ^ (~bc4 & bc0);
+ st[4] = bc4 ^ (~bc0 & bc1);
+ bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9];
+ st[5] = bc0 ^ (~bc1 & bc2);
+ st[6] = bc1 ^ (~bc2 & bc3);
+ st[7] = bc2 ^ (~bc3 & bc4);
+ st[8] = bc3 ^ (~bc4 & bc0);
+ st[9] = bc4 ^ (~bc0 & bc1);
+ bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14];
+ st[10] = bc0 ^ (~bc1 & bc2);
+ st[11] = bc1 ^ (~bc2 & bc3);
+ st[12] = bc2 ^ (~bc3 & bc4);
+ st[13] = bc3 ^ (~bc4 & bc0);
+ st[14] = bc4 ^ (~bc0 & bc1);
+ bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19];
+ st[15] = bc0 ^ (~bc1 & bc2);
+ st[16] = bc1 ^ (~bc2 & bc3);
+ st[17] = bc2 ^ (~bc3 & bc4);
+ st[18] = bc3 ^ (~bc4 & bc0);
+ st[19] = bc4 ^ (~bc0 & bc1);
+ bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24];
+ st[20] = bc0 ^ (~bc1 & bc2);
+ st[21] = bc1 ^ (~bc2 & bc3);
+ st[22] = bc2 ^ (~bc3 & bc4);
+ st[23] = bc3 ^ (~bc4 & bc0);
+ st[24] = bc4 ^ (~bc0 & bc1);
+ }
+}
+
+SHA3_256& SHA3_256::Write(Span<const unsigned char> data)
+{
+ if (m_bufsize && m_bufsize + data.size() >= sizeof(m_buffer)) {
+ // Fill the buffer and process it.
+ std::copy(data.begin(), data.begin() + sizeof(m_buffer) - m_bufsize, m_buffer + m_bufsize);
+ data = data.subspan(sizeof(m_buffer) - m_bufsize);
+ m_state[m_pos++] ^= ReadLE64(m_buffer);
+ m_bufsize = 0;
+ if (m_pos == RATE_BUFFERS) {
+ KeccakF(m_state);
+ m_pos = 0;
+ }
+ }
+ while (data.size() >= sizeof(m_buffer)) {
+ // Process chunks directly from the buffer.
+ m_state[m_pos++] ^= ReadLE64(data.data());
+ data = data.subspan(8);
+ if (m_pos == RATE_BUFFERS) {
+ KeccakF(m_state);
+ m_pos = 0;
+ }
+ }
+ if (data.size()) {
+ // Keep the remainder in the buffer.
+ std::copy(data.begin(), data.end(), m_buffer + m_bufsize);
+ m_bufsize += data.size();
+ }
+ return *this;
+}
+
+SHA3_256& SHA3_256::Finalize(Span<unsigned char> output)
+{
+ assert(output.size() == OUTPUT_SIZE);
+ std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0);
+ m_buffer[m_bufsize] ^= 0x06;
+ m_state[m_pos] ^= ReadLE64(m_buffer);
+ m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000;
+ KeccakF(m_state);
+ for (unsigned i = 0; i < 4; ++i) {
+ WriteLE64(output.data() + 8 * i, m_state[i]);
+ }
+ return *this;
+}
+
+SHA3_256& SHA3_256::Reset()
+{
+ m_bufsize = 0;
+ m_pos = 0;
+ std::fill(std::begin(m_state), std::end(m_state), 0);
+ return *this;
+}
diff --git a/src/crypto/sha3.h b/src/crypto/sha3.h
new file mode 100644
index 0000000000..88d8c1204d
--- /dev/null
+++ b/src/crypto/sha3.h
@@ -0,0 +1,41 @@
+// Copyright (c) 2020 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#ifndef BITCOIN_CRYPTO_SHA3_H
+#define BITCOIN_CRYPTO_SHA3_H
+
+#include <span.h>
+
+#include <stdint.h>
+#include <stdlib.h>
+
+//! The Keccak-f[1600] transform.
+void KeccakF(uint64_t (&st)[25]);
+
+class SHA3_256
+{
+private:
+ uint64_t m_state[25] = {0};
+ unsigned char m_buffer[8];
+ unsigned m_bufsize = 0;
+ unsigned m_pos = 0;
+
+ //! Sponge rate in bits.
+ static constexpr unsigned RATE_BITS = 1088;
+
+ //! Sponge rate expressed as a multiple of the buffer size.
+ static constexpr unsigned RATE_BUFFERS = RATE_BITS / (8 * sizeof(m_buffer));
+
+ static_assert(RATE_BITS % (8 * sizeof(m_buffer)) == 0, "Rate must be a multiple of 8 bytes");
+
+public:
+ static constexpr size_t OUTPUT_SIZE = 32;
+
+ SHA3_256() {}
+ SHA3_256& Write(Span<const unsigned char> data);
+ SHA3_256& Finalize(Span<unsigned char> output);
+ SHA3_256& Reset();
+};
+
+#endif // BITCOIN_CRYPTO_SHA3_H
diff --git a/src/secp256k1/.gitignore b/src/secp256k1/.gitignore
index cb4331aa90..ccdef02b29 100644
--- a/src/secp256k1/.gitignore
+++ b/src/secp256k1/.gitignore
@@ -1,9 +1,9 @@
bench_inv
bench_ecdh
bench_ecmult
+bench_schnorrsig
bench_sign
bench_verify
-bench_schnorr_verify
bench_recover
bench_internal
tests
@@ -31,6 +31,8 @@ libtool
*.lo
*.o
*~
+*.log
+*.trs
src/libsecp256k1-config.h
src/libsecp256k1-config.h.in
src/ecmult_static_context.h
diff --git a/src/secp256k1/.travis.yml b/src/secp256k1/.travis.yml
index a6ad6fb27e..e1a88c4051 100644
--- a/src/secp256k1/.travis.yml
+++ b/src/secp256k1/.travis.yml
@@ -17,19 +17,19 @@ compiler:
- gcc
env:
global:
- - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ECMULTGENPRECISION=auto ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no CTIMETEST=yes BENCH=yes ITERS=2
+ - WIDEMUL=auto BIGNUM=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ECMULTGENPRECISION=auto ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no SCHNORRSIG=no EXPERIMENTAL=no CTIMETEST=yes BENCH=yes ITERS=2
matrix:
- - SCALAR=32bit RECOVERY=yes
- - SCALAR=32bit FIELD=32bit ECDH=yes EXPERIMENTAL=yes
- - SCALAR=64bit
- - FIELD=64bit RECOVERY=yes
- - FIELD=64bit ENDOMORPHISM=yes
- - FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
- - FIELD=64bit ASM=x86_64
- - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
- - FIELD=32bit ENDOMORPHISM=yes
+ - WIDEMUL=int64 RECOVERY=yes
+ - WIDEMUL=int64 ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
+ - WIDEMUL=int64 ENDOMORPHISM=yes
+ - WIDEMUL=int128
+ - WIDEMUL=int128 RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
+ - WIDEMUL=int128 ENDOMORPHISM=yes
+ - WIDEMUL=int128 ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
+ - WIDEMUL=int128 ASM=x86_64
+ - WIDEMUL=int128 ENDOMORPHISM=yes ASM=x86_64
- BIGNUM=no
- - BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes
+ - BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
- BIGNUM=no STATICPRECOMPUTATION=no
- BUILD=distcheck CTIMETEST= BENCH=
- CPPFLAGS=-DDETERMINISTIC
@@ -83,6 +83,10 @@ matrix:
- valgrind
- libtool-bin
- libc6-dbg:i386
+ # S390x build (big endian system)
+ - compiler: gcc
+ env: HOST=s390x-unknown-linux-gnu ECDH=yes RECOVERY=yes EXPERIMENTAL=yes CTIMETEST=
+ arch: s390x
# We use this to install macOS dependencies instead of the built in `homebrew` plugin,
# because in xcode earlier than 11 they have a bug requiring updating the system which overall takes ~8 minutes.
diff --git a/src/secp256k1/Makefile.am b/src/secp256k1/Makefile.am
index d8c1c79e8c..023fa6067f 100644
--- a/src/secp256k1/Makefile.am
+++ b/src/secp256k1/Makefile.am
@@ -34,9 +34,11 @@ noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
+noinst_HEADERS += src/assumptions.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/scratch.h
noinst_HEADERS += src/scratch_impl.h
+noinst_HEADERS += src/selftest.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
noinst_HEADERS += src/hash.h
@@ -99,7 +101,7 @@ if VALGRIND_ENABLED
tests_CPPFLAGS += -DVALGRIND
noinst_PROGRAMS += valgrind_ctime_test
valgrind_ctime_test_SOURCES = src/valgrind_ctime_test.c
-valgrind_ctime_test_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
+valgrind_ctime_test_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_LIBS) $(COMMON_LIB)
endif
if !ENABLE_COVERAGE
tests_CPPFLAGS += -DVERIFY
@@ -152,3 +154,11 @@ endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
+
+if ENABLE_MODULE_EXTRAKEYS
+include src/modules/extrakeys/Makefile.am.include
+endif
+
+if ENABLE_MODULE_SCHNORRSIG
+include src/modules/schnorrsig/Makefile.am.include
+endif
diff --git a/src/secp256k1/TODO b/src/secp256k1/TODO
deleted file mode 100644
index a300e1c5eb..0000000000
--- a/src/secp256k1/TODO
+++ /dev/null
@@ -1,3 +0,0 @@
-* Unit tests for fieldelem/groupelem, including ones intended to
- trigger fieldelem's boundary cases.
-* Complete constant-time operations for signing/keygen
diff --git a/src/secp256k1/build-aux/m4/bitcoin_secp.m4 b/src/secp256k1/build-aux/m4/bitcoin_secp.m4
index 1b2b71e6ab..57595f4499 100644
--- a/src/secp256k1/build-aux/m4/bitcoin_secp.m4
+++ b/src/secp256k1/build-aux/m4/bitcoin_secp.m4
@@ -1,8 +1,3 @@
-dnl libsecp25k1 helper checks
-AC_DEFUN([SECP_INT128_CHECK],[
-has_int128=$ac_cv_type___int128
-])
-
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_64BIT_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
diff --git a/src/secp256k1/configure.ac b/src/secp256k1/configure.ac
index 6021b760b5..6fe8984f4d 100644
--- a/src/secp256k1/configure.ac
+++ b/src/secp256k1/configure.ac
@@ -136,20 +136,28 @@ AC_ARG_ENABLE(module_recovery,
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
+AC_ARG_ENABLE(module_extrakeys,
+ AS_HELP_STRING([--enable-module-extrakeys],[enable extrakeys module (experimental)]),
+ [enable_module_extrakeys=$enableval],
+ [enable_module_extrakeys=no])
+
+AC_ARG_ENABLE(module_schnorrsig,
+ AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module (experimental)]),
+ [enable_module_schnorrsig=$enableval],
+ [enable_module_schnorrsig=no])
+
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]),
[use_external_default_callbacks=$enableval],
[use_external_default_callbacks=no])
-AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
-[finite field implementation to use [default=auto]])],[req_field=$withval], [req_field=auto])
+dnl Test-only override of the (autodetected by the C code) "widemul" setting.
+dnl Legal values are int64 (for [u]int64_t), int128 (for [unsigned] __int128), and auto (the default).
+AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto])
AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
[bignum implementation to use [default=auto]])],[req_bignum=$withval], [req_bignum=auto])
-AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
-[scalar implementation to use [default=auto]])],[req_scalar=$withval], [req_scalar=auto])
-
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto],
[assembly optimizations to useĀ (experimental: arm) [default=auto]])],[req_asm=$withval], [req_asm=auto])
@@ -170,8 +178,6 @@ AC_ARG_WITH([ecmult-gen-precision], [AS_HELP_STRING([--with-ecmult-gen-precision
)],
[req_ecmult_gen_precision=$withval], [req_ecmult_gen_precision=auto])
-AC_CHECK_TYPES([__int128])
-
AC_CHECK_HEADER([valgrind/memcheck.h], [enable_valgrind=yes], [enable_valgrind=no], [])
AM_CONDITIONAL([VALGRIND_ENABLED],[test "$enable_valgrind" = "yes"])
@@ -265,63 +271,6 @@ else
esac
fi
-if test x"$req_field" = x"auto"; then
- if test x"set_asm" = x"x86_64"; then
- set_field=64bit
- fi
- if test x"$set_field" = x; then
- SECP_INT128_CHECK
- if test x"$has_int128" = x"yes"; then
- set_field=64bit
- fi
- fi
- if test x"$set_field" = x; then
- set_field=32bit
- fi
-else
- set_field=$req_field
- case $set_field in
- 64bit)
- if test x"$set_asm" != x"x86_64"; then
- SECP_INT128_CHECK
- if test x"$has_int128" != x"yes"; then
- AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available])
- fi
- fi
- ;;
- 32bit)
- ;;
- *)
- AC_MSG_ERROR([invalid field implementation selection])
- ;;
- esac
-fi
-
-if test x"$req_scalar" = x"auto"; then
- SECP_INT128_CHECK
- if test x"$has_int128" = x"yes"; then
- set_scalar=64bit
- fi
- if test x"$set_scalar" = x; then
- set_scalar=32bit
- fi
-else
- set_scalar=$req_scalar
- case $set_scalar in
- 64bit)
- SECP_INT128_CHECK
- if test x"$has_int128" != x"yes"; then
- AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available])
- fi
- ;;
- 32bit)
- ;;
- *)
- AC_MSG_ERROR([invalid scalar implementation selected])
- ;;
- esac
-fi
-
if test x"$req_bignum" = x"auto"; then
SECP_GMP_CHECK
if test x"$has_gmp" = x"yes"; then
@@ -365,16 +314,18 @@ no)
;;
esac
-# select field implementation
-case $set_field in
-64bit)
- AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation])
+# select wide multiplication implementation
+case $set_widemul in
+int128)
+ AC_DEFINE(USE_FORCE_WIDEMUL_INT128, 1, [Define this symbol to force the use of the (unsigned) __int128 based wide multiplication implementation])
+ ;;
+int64)
+ AC_DEFINE(USE_FORCE_WIDEMUL_INT64, 1, [Define this symbol to force the use of the (u)int64_t based wide multiplication implementation])
;;
-32bit)
- AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation])
+auto)
;;
*)
- AC_MSG_ERROR([invalid field implementation])
+ AC_MSG_ERROR([invalid wide multiplication implementation])
;;
esac
@@ -396,19 +347,6 @@ no)
;;
esac
-#select scalar implementation
-case $set_scalar in
-64bit)
- AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation])
- ;;
-32bit)
- AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation])
- ;;
-*)
- AC_MSG_ERROR([invalid scalar implementation])
- ;;
-esac
-
#set ecmult window size
if test x"$req_ecmult_window" = x"auto"; then
set_ecmult_window=15
@@ -493,7 +431,16 @@ if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
-AC_C_BIGENDIAN()
+if test x"$enable_module_schnorrsig" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_SCHNORRSIG, 1, [Define this symbol to enable the schnorrsig module])
+ enable_module_extrakeys=yes
+fi
+
+# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
+# module to set enable_module_extrakeys=yes
+if test x"$enable_module_extrakeys" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_EXTRAKEYS, 1, [Define this symbol to enable the extrakeys module])
+fi
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
@@ -508,11 +455,19 @@ if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
+ AC_MSG_NOTICE([Building extrakeys module: $enable_module_extrakeys])
+ AC_MSG_NOTICE([Building schnorrsig module: $enable_module_schnorrsig])
AC_MSG_NOTICE([******])
else
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
+ if test x"$enable_module_extrakeys" = x"yes"; then
+ AC_MSG_ERROR([extrakeys module is experimental. Use --enable-experimental to allow.])
+ fi
+ if test x"$enable_module_schnorrsig" = x"yes"; then
+ AC_MSG_ERROR([schnorrsig module is experimental. Use --enable-experimental to allow.])
+ fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
@@ -531,6 +486,8 @@ AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
@@ -550,13 +507,17 @@ echo " with benchmarks = $use_benchmark"
echo " with coverage = $enable_coverage"
echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
+echo " module extrakeys = $enable_module_extrakeys"
+echo " module schnorrsig = $enable_module_schnorrsig"
echo
echo " asm = $set_asm"
echo " bignum = $set_bignum"
-echo " field = $set_field"
-echo " scalar = $set_scalar"
echo " ecmult window size = $set_ecmult_window"
echo " ecmult gen prec. bits = $set_ecmult_gen_precision"
+dnl Hide test-only options unless they're used.
+if test x"$set_widemul" != xauto; then
+echo " wide multiplication = $set_widemul"
+fi
echo
echo " valgrind = $enable_valgrind"
echo " CC = $CC"
diff --git a/src/secp256k1/contrib/lax_der_parsing.c b/src/secp256k1/contrib/lax_der_parsing.c
index e177a0562d..f71db4b535 100644
--- a/src/secp256k1/contrib/lax_der_parsing.c
+++ b/src/secp256k1/contrib/lax_der_parsing.c
@@ -112,7 +112,6 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_
return 0;
}
spos = pos;
- pos += slen;
/* Ignore leading zeroes in R */
while (rlen > 0 && input[rpos] == 0) {
diff --git a/src/secp256k1/contrib/travis.sh b/src/secp256k1/contrib/travis.sh
index 3909d16a27..b0b55b44b8 100755
--- a/src/secp256k1/contrib/travis.sh
+++ b/src/secp256k1/contrib/travis.sh
@@ -3,10 +3,6 @@
set -e
set -x
-if [ -n "$HOST" ]
-then
- export USE_HOST="--host=$HOST"
-fi
if [ "$HOST" = "i686-linux-gnu" ]
then
export CC="$CC -m32"
@@ -18,9 +14,11 @@ fi
./configure \
--enable-experimental="$EXPERIMENTAL" --enable-endomorphism="$ENDOMORPHISM" \
- --with-field="$FIELD" --with-bignum="$BIGNUM" --with-asm="$ASM" --with-scalar="$SCALAR" \
+ --with-test-override-wide-multiply="$WIDEMUL" --with-bignum="$BIGNUM" --with-asm="$ASM" \
--enable-ecmult-static-precomputation="$STATICPRECOMPUTATION" --with-ecmult-gen-precision="$ECMULTGENPRECISION" \
- --enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" "$EXTRAFLAGS" "$USE_HOST"
+ --enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
+ --enable-module-schnorrsig="$SCHNORRSIG" \
+ --host="$HOST" $EXTRAFLAGS
if [ -n "$BUILD" ]
then
diff --git a/src/secp256k1/include/secp256k1.h b/src/secp256k1/include/secp256k1.h
index 2ba2dca388..2178c8e2d6 100644
--- a/src/secp256k1/include/secp256k1.h
+++ b/src/secp256k1/include/secp256k1.h
@@ -134,7 +134,7 @@ typedef int (*secp256k1_nonce_function)(
# else
# define SECP256K1_API
# endif
-# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
+# elif defined(__GNUC__) && (__GNUC__ >= 4) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
diff --git a/src/secp256k1/include/secp256k1_extrakeys.h b/src/secp256k1/include/secp256k1_extrakeys.h
new file mode 100644
index 0000000000..0c5dff2c94
--- /dev/null
+++ b/src/secp256k1/include/secp256k1_extrakeys.h
@@ -0,0 +1,236 @@
+#ifndef SECP256K1_EXTRAKEYS_H
+#define SECP256K1_EXTRAKEYS_H
+
+#include "secp256k1.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** Opaque data structure that holds a parsed and valid "x-only" public key.
+ * An x-only pubkey encodes a point whose Y coordinate is even. It is
+ * serialized using only its X coordinate (32 bytes). See BIP-340 for more
+ * information about x-only pubkeys.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage, transmission, or
+ * comparison, use secp256k1_xonly_pubkey_serialize and
+ * secp256k1_xonly_pubkey_parse.
+ */
+typedef struct {
+ unsigned char data[64];
+} secp256k1_xonly_pubkey;
+
+/** Opaque data structure that holds a keypair consisting of a secret and a
+ * public key.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 96 bytes in size, and can be safely copied/moved.
+ */
+typedef struct {
+ unsigned char data[96];
+} secp256k1_keypair;
+
+/** Parse a 32-byte sequence into a xonly_pubkey object.
+ *
+ * Returns: 1 if the public key was fully valid.
+ * 0 if the public key could not be parsed or is invalid.
+ *
+ * Args: ctx: a secp256k1 context object (cannot be NULL).
+ * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
+ * parsed version of input. If not, it's set to an invalid value.
+ * (cannot be NULL).
+ * In: input32: pointer to a serialized xonly_pubkey (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse(
+ const secp256k1_context* ctx,
+ secp256k1_xonly_pubkey* pubkey,
+ const unsigned char *input32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize an xonly_pubkey object into a 32-byte sequence.
+ *
+ * Returns: 1 always.
+ *
+ * Args: ctx: a secp256k1 context object (cannot be NULL).
+ * Out: output32: a pointer to a 32-byte array to place the serialized key in
+ * (cannot be NULL).
+ * In: pubkey: a pointer to a secp256k1_xonly_pubkey containing an
+ * initialized public key (cannot be NULL).
+ */
+SECP256K1_API int secp256k1_xonly_pubkey_serialize(
+ const secp256k1_context* ctx,
+ unsigned char *output32,
+ const secp256k1_xonly_pubkey* pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Converts a secp256k1_pubkey into a secp256k1_xonly_pubkey.
+ *
+ * Returns: 1 if the public key was successfully converted
+ * 0 otherwise
+ *
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * Out: xonly_pubkey: pointer to an x-only public key object for placing the
+ * converted public key (cannot be NULL)
+ * pk_parity: pointer to an integer that will be set to 1 if the point
+ * encoded by xonly_pubkey is the negation of the pubkey and
+ * set to 0 otherwise. (can be NULL)
+ * In: pubkey: pointer to a public key that is converted (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_from_pubkey(
+ const secp256k1_context* ctx,
+ secp256k1_xonly_pubkey *xonly_pubkey,
+ int *pk_parity,
+ const secp256k1_pubkey *pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
+
+/** Tweak an x-only public key by adding the generator multiplied with tweak32
+ * to it.
+ *
+ * Note that the resulting point can not in general be represented by an x-only
+ * pubkey because it may have an odd Y coordinate. Instead, the output_pubkey
+ * is a normal secp256k1_pubkey.
+ *
+ * Returns: 0 if the arguments are invalid or the resulting public key would be
+ * invalid (only when the tweak is the negation of the corresponding
+ * secret key). 1 otherwise.
+ *
+ * Args: ctx: pointer to a context object initialized for verification
+ * (cannot be NULL)
+ * Out: output_pubkey: pointer to a public key to store the result. Will be set
+ * to an invalid value if this function returns 0 (cannot
+ * be NULL)
+ * In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to.
+ * (cannot be NULL).
+ * tweak32: pointer to a 32-byte tweak. If the tweak is invalid
+ * according to secp256k1_ec_seckey_verify, this function
+ * returns 0. For uniformly random 32-byte arrays the
+ * chance of being invalid is negligible (around 1 in
+ * 2^128) (cannot be NULL).
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *output_pubkey,
+ const secp256k1_xonly_pubkey *internal_pubkey,
+ const unsigned char *tweak32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Checks that a tweaked pubkey is the result of calling
+ * secp256k1_xonly_pubkey_tweak_add with internal_pubkey and tweak32.
+ *
+ * The tweaked pubkey is represented by its 32-byte x-only serialization and
+ * its pk_parity, which can both be obtained by converting the result of
+ * tweak_add to a secp256k1_xonly_pubkey.
+ *
+ * Note that this alone does _not_ verify that the tweaked pubkey is a
+ * commitment. If the tweak is not chosen in a specific way, the tweaked pubkey
+ * can easily be the result of a different internal_pubkey and tweak.
+ *
+ * Returns: 0 if the arguments are invalid or the tweaked pubkey is not the
+ * result of tweaking the internal_pubkey with tweak32. 1 otherwise.
+ * Args: ctx: pointer to a context object initialized for verification
+ * (cannot be NULL)
+ * In: tweaked_pubkey32: pointer to a serialized xonly_pubkey (cannot be NULL)
+ * tweaked_pk_parity: the parity of the tweaked pubkey (whose serialization
+ * is passed in as tweaked_pubkey32). This must match the
+ * pk_parity value that is returned when calling
+ * secp256k1_xonly_pubkey with the tweaked pubkey, or
+ * this function will fail.
+ * internal_pubkey: pointer to an x-only public key object to apply the
+ * tweak to (cannot be NULL)
+ * tweak32: pointer to a 32-byte tweak (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add_check(
+ const secp256k1_context* ctx,
+ const unsigned char *tweaked_pubkey32,
+ int tweaked_pk_parity,
+ const secp256k1_xonly_pubkey *internal_pubkey,
+ const unsigned char *tweak32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
+
+/** Compute the keypair for a secret key.
+ *
+ * Returns: 1: secret was valid, keypair is ready to use
+ * 0: secret was invalid, try again with a different secret
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: keypair: pointer to the created keypair (cannot be NULL)
+ * In: seckey: pointer to a 32-byte secret key (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(
+ const secp256k1_context* ctx,
+ secp256k1_keypair *keypair,
+ const unsigned char *seckey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Get the public key from a keypair.
+ *
+ * Returns: 0 if the arguments are invalid. 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to
+ * the keypair public key. If not, it's set to an invalid value.
+ * (cannot be NULL)
+ * In: keypair: pointer to a keypair (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const secp256k1_keypair *keypair
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Get the x-only public key from a keypair.
+ *
+ * This is the same as calling secp256k1_keypair_pub and then
+ * secp256k1_xonly_pubkey_from_pubkey.
+ *
+ * Returns: 0 if the arguments are invalid. 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set
+ * to the keypair public key after converting it to an
+ * xonly_pubkey. If not, it's set to an invalid value (cannot be
+ * NULL).
+ * pk_parity: pointer to an integer that will be set to the pk_parity
+ * argument of secp256k1_xonly_pubkey_from_pubkey (can be NULL).
+ * In: keypair: pointer to a keypair (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(
+ const secp256k1_context* ctx,
+ secp256k1_xonly_pubkey *pubkey,
+ int *pk_parity,
+ const secp256k1_keypair *keypair
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
+
+/** Tweak a keypair by adding tweak32 to the secret key and updating the public
+ * key accordingly.
+ *
+ * Calling this function and then secp256k1_keypair_pub results in the same
+ * public key as calling secp256k1_keypair_xonly_pub and then
+ * secp256k1_xonly_pubkey_tweak_add.
+ *
+ * Returns: 0 if the arguments are invalid or the resulting keypair would be
+ * invalid (only when the tweak is the negation of the keypair's
+ * secret key). 1 otherwise.
+ *
+ * Args: ctx: pointer to a context object initialized for verification
+ * (cannot be NULL)
+ * In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to
+ * an invalid value if this function returns 0 (cannot be
+ * NULL).
+ * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according
+ * to secp256k1_ec_seckey_verify, this function returns 0. For
+ * uniformly random 32-byte arrays the chance of being invalid
+ * is negligible (around 1 in 2^128) (cannot be NULL).
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(
+ const secp256k1_context* ctx,
+ secp256k1_keypair *keypair,
+ const unsigned char *tweak32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* SECP256K1_EXTRAKEYS_H */
diff --git a/src/secp256k1/include/secp256k1_schnorrsig.h b/src/secp256k1/include/secp256k1_schnorrsig.h
new file mode 100644
index 0000000000..0150cd3395
--- /dev/null
+++ b/src/secp256k1/include/secp256k1_schnorrsig.h
@@ -0,0 +1,111 @@
+#ifndef SECP256K1_SCHNORRSIG_H
+#define SECP256K1_SCHNORRSIG_H
+
+#include "secp256k1.h"
+#include "secp256k1_extrakeys.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** This module implements a variant of Schnorr signatures compliant with
+ * Bitcoin Improvement Proposal 340 "Schnorr Signatures for secp256k1"
+ * (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
+ */
+
+/** A pointer to a function to deterministically generate a nonce.
+ *
+ * Same as secp256k1_nonce function with the exception of accepting an
+ * additional pubkey argument and not requiring an attempt argument. The pubkey
+ * argument can protect signature schemes with key-prefixed challenge hash
+ * inputs against reusing the nonce when signing with the wrong precomputed
+ * pubkey.
+ *
+ * Returns: 1 if a nonce was successfully generated. 0 will cause signing to
+ * return an error.
+ * Out: nonce32: pointer to a 32-byte array to be filled by the function.
+ * In: msg32: the 32-byte message hash being verified (will not be NULL)
+ * key32: pointer to a 32-byte secret key (will not be NULL)
+ * xonly_pk32: the 32-byte serialized xonly pubkey corresponding to key32
+ * (will not be NULL)
+ * algo16: pointer to a 16-byte array describing the signature
+ * algorithm (will not be NULL).
+ * data: Arbitrary data pointer that is passed through.
+ *
+ * Except for test cases, this function should compute some cryptographic hash of
+ * the message, the key, the pubkey, the algorithm description, and data.
+ */
+typedef int (*secp256k1_nonce_function_hardened)(
+ unsigned char *nonce32,
+ const unsigned char *msg32,
+ const unsigned char *key32,
+ const unsigned char *xonly_pk32,
+ const unsigned char *algo16,
+ void *data
+);
+
+/** An implementation of the nonce generation function as defined in Bitcoin
+ * Improvement Proposal 340 "Schnorr Signatures for secp256k1"
+ * (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
+ *
+ * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
+ * auxiliary random data as defined in BIP-340. If the data pointer is NULL,
+ * schnorrsig_sign does not produce BIP-340 compliant signatures. The algo16
+ * argument must be non-NULL, otherwise the function will fail and return 0.
+ * The hash will be tagged with algo16 after removing all terminating null
+ * bytes. Therefore, to create BIP-340 compliant signatures, algo16 must be set
+ * to "BIP0340/nonce\0\0\0"
+ */
+SECP256K1_API extern const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340;
+
+/** Create a Schnorr signature.
+ *
+ * Does _not_ strictly follow BIP-340 because it does not verify the resulting
+ * signature. Instead, you can manually use secp256k1_schnorrsig_verify and
+ * abort if it fails.
+ *
+ * Otherwise BIP-340 compliant if the noncefp argument is NULL or
+ * secp256k1_nonce_function_bip340 and the ndata argument is 32-byte auxiliary
+ * randomness.
+ *
+ * Returns 1 on success, 0 on failure.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: sig64: pointer to a 64-byte array to store the serialized signature (cannot be NULL)
+ * In: msg32: the 32-byte message being signed (cannot be NULL)
+ * keypair: pointer to an initialized keypair (cannot be NULL)
+ * noncefp: pointer to a nonce generation function. If NULL, secp256k1_nonce_function_bip340 is used
+ * ndata: pointer to arbitrary data used by the nonce generation
+ * function (can be NULL). If it is non-NULL and
+ * secp256k1_nonce_function_bip340 is used, then ndata must be a
+ * pointer to 32-byte auxiliary randomness as per BIP-340.
+ */
+SECP256K1_API int secp256k1_schnorrsig_sign(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char *msg32,
+ const secp256k1_keypair *keypair,
+ secp256k1_nonce_function_hardened noncefp,
+ void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify a Schnorr signature.
+ *
+ * Returns: 1: correct signature
+ * 0: incorrect signature
+ * Args: ctx: a secp256k1 context object, initialized for verification.
+ * In: sig64: pointer to the 64-byte signature to verify (cannot be NULL)
+ * msg32: the 32-byte message being verified (cannot be NULL)
+ * pubkey: pointer to an x-only public key to verify with (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(
+ const secp256k1_context* ctx,
+ const unsigned char *sig64,
+ const unsigned char *msg32,
+ const secp256k1_xonly_pubkey *pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* SECP256K1_SCHNORRSIG_H */
diff --git a/src/secp256k1/src/assumptions.h b/src/secp256k1/src/assumptions.h
new file mode 100644
index 0000000000..f9d4e8e793
--- /dev/null
+++ b/src/secp256k1/src/assumptions.h
@@ -0,0 +1,74 @@
+/**********************************************************************
+ * Copyright (c) 2020 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef SECP256K1_ASSUMPTIONS_H
+#define SECP256K1_ASSUMPTIONS_H
+
+#include "util.h"
+
+/* This library, like most software, relies on a number of compiler implementation defined (but not undefined)
+ behaviours. Although the behaviours we require are essentially universal we test them specifically here to
+ reduce the odds of experiencing an unwelcome surprise.
+*/
+
+struct secp256k1_assumption_checker {
+ /* This uses a trick to implement a static assertion in C89: a type with an array of negative size is not
+ allowed. */
+ int dummy_array[(
+ /* Bytes are 8 bits. */
+ CHAR_BIT == 8 &&
+
+ /* Conversions from unsigned to signed outside of the bounds of the signed type are
+ implementation-defined. Verify that they function as reinterpreting the lower
+ bits of the input in two's complement notation. Do this for conversions:
+ - from uint(N)_t to int(N)_t with negative result
+ - from uint(2N)_t to int(N)_t with negative result
+ - from int(2N)_t to int(N)_t with negative result
+ - from int(2N)_t to int(N)_t with positive result */
+
+ /* To int8_t. */
+ ((int8_t)(uint8_t)0xAB == (int8_t)-(int8_t)0x55) &&
+ ((int8_t)(uint16_t)0xABCD == (int8_t)-(int8_t)0x33) &&
+ ((int8_t)(int16_t)(uint16_t)0xCDEF == (int8_t)(uint8_t)0xEF) &&
+ ((int8_t)(int16_t)(uint16_t)0x9234 == (int8_t)(uint8_t)0x34) &&
+
+ /* To int16_t. */
+ ((int16_t)(uint16_t)0xBCDE == (int16_t)-(int16_t)0x4322) &&
+ ((int16_t)(uint32_t)0xA1B2C3D4 == (int16_t)-(int16_t)0x3C2C) &&
+ ((int16_t)(int32_t)(uint32_t)0xC1D2E3F4 == (int16_t)(uint16_t)0xE3F4) &&
+ ((int16_t)(int32_t)(uint32_t)0x92345678 == (int16_t)(uint16_t)0x5678) &&
+
+ /* To int32_t. */
+ ((int32_t)(uint32_t)0xB2C3D4E5 == (int32_t)-(int32_t)0x4D3C2B1B) &&
+ ((int32_t)(uint64_t)0xA123B456C789D012ULL == (int32_t)-(int32_t)0x38762FEE) &&
+ ((int32_t)(int64_t)(uint64_t)0xC1D2E3F4A5B6C7D8ULL == (int32_t)(uint32_t)0xA5B6C7D8) &&
+ ((int32_t)(int64_t)(uint64_t)0xABCDEF0123456789ULL == (int32_t)(uint32_t)0x23456789) &&
+
+ /* To int64_t. */
+ ((int64_t)(uint64_t)0xB123C456D789E012ULL == (int64_t)-(int64_t)0x4EDC3BA928761FEEULL) &&
+#if defined(SECP256K1_WIDEMUL_INT128)
+ ((int64_t)(((uint128_t)0xA1234567B8901234ULL << 64) + 0xC5678901D2345678ULL) == (int64_t)-(int64_t)0x3A9876FE2DCBA988ULL) &&
+ (((int64_t)(int128_t)(((uint128_t)0xB1C2D3E4F5A6B7C8ULL << 64) + 0xD9E0F1A2B3C4D5E6ULL)) == (int64_t)(uint64_t)0xD9E0F1A2B3C4D5E6ULL) &&
+ (((int64_t)(int128_t)(((uint128_t)0xABCDEF0123456789ULL << 64) + 0x0123456789ABCDEFULL)) == (int64_t)(uint64_t)0x0123456789ABCDEFULL) &&
+
+ /* To int128_t. */
+ ((int128_t)(((uint128_t)0xB1234567C8901234ULL << 64) + 0xD5678901E2345678ULL) == (int128_t)(-(int128_t)0x8E1648B3F50E80DCULL * 0x8E1648B3F50E80DDULL + 0x5EA688D5482F9464ULL)) &&
+#endif
+
+ /* Right shift on negative signed values is implementation defined. Verify that it
+ acts as a right shift in two's complement with sign extension (i.e duplicating
+ the top bit into newly added bits). */
+ ((((int8_t)0xE8) >> 2) == (int8_t)(uint8_t)0xFA) &&
+ ((((int16_t)0xE9AC) >> 4) == (int16_t)(uint16_t)0xFE9A) &&
+ ((((int32_t)0x937C918A) >> 9) == (int32_t)(uint32_t)0xFFC9BE48) &&
+ ((((int64_t)0xA8B72231DF9CF4B9ULL) >> 19) == (int64_t)(uint64_t)0xFFFFF516E4463BF3ULL) &&
+#if defined(SECP256K1_WIDEMUL_INT128)
+ ((((int128_t)(((uint128_t)0xCD833A65684A0DBCULL << 64) + 0xB349312F71EA7637ULL)) >> 39) == (int128_t)(((uint128_t)0xFFFFFFFFFF9B0674ULL << 64) + 0xCAD0941B79669262ULL)) &&
+#endif
+ 1) * 2 - 1];
+};
+
+#endif /* SECP256K1_ASSUMPTIONS_H */
diff --git a/src/secp256k1/src/basic-config.h b/src/secp256k1/src/basic-config.h
index e9be39d4ca..83dbe6f25b 100644
--- a/src/secp256k1/src/basic-config.h
+++ b/src/secp256k1/src/basic-config.h
@@ -14,23 +14,20 @@
#undef USE_ENDOMORPHISM
#undef USE_EXTERNAL_ASM
#undef USE_EXTERNAL_DEFAULT_CALLBACKS
-#undef USE_FIELD_10X26
-#undef USE_FIELD_5X52
#undef USE_FIELD_INV_BUILTIN
#undef USE_FIELD_INV_NUM
#undef USE_NUM_GMP
#undef USE_NUM_NONE
-#undef USE_SCALAR_4X64
-#undef USE_SCALAR_8X32
#undef USE_SCALAR_INV_BUILTIN
#undef USE_SCALAR_INV_NUM
+#undef USE_FORCE_WIDEMUL_INT64
+#undef USE_FORCE_WIDEMUL_INT128
#undef ECMULT_WINDOW_SIZE
#define USE_NUM_NONE 1
#define USE_FIELD_INV_BUILTIN 1
#define USE_SCALAR_INV_BUILTIN 1
-#define USE_FIELD_10X26 1
-#define USE_SCALAR_8X32 1
+#define USE_WIDEMUL_64 1
#define ECMULT_WINDOW_SIZE 15
#endif /* USE_BASIC_CONFIG */
diff --git a/src/secp256k1/src/bench_internal.c b/src/secp256k1/src/bench_internal.c
index 20759127d3..9687fe4482 100644
--- a/src/secp256k1/src/bench_internal.c
+++ b/src/secp256k1/src/bench_internal.c
@@ -7,6 +7,7 @@
#include "include/secp256k1.h"
+#include "assumptions.h"
#include "util.h"
#include "hash_impl.h"
#include "num_impl.h"
@@ -19,10 +20,10 @@
#include "secp256k1.c"
typedef struct {
- secp256k1_scalar scalar_x, scalar_y;
- secp256k1_fe fe_x, fe_y;
- secp256k1_ge ge_x, ge_y;
- secp256k1_gej gej_x, gej_y;
+ secp256k1_scalar scalar[2];
+ secp256k1_fe fe[4];
+ secp256k1_ge ge[2];
+ secp256k1_gej gej[2];
unsigned char data[64];
int wnaf[256];
} bench_inv;
@@ -30,30 +31,53 @@ typedef struct {
void bench_setup(void* arg) {
bench_inv *data = (bench_inv*)arg;
- static const unsigned char init_x[32] = {
- 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
- 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
- 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
- 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
+ static const unsigned char init[4][32] = {
+ /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
+ and the (implied affine) X coordinate of gej[0]. */
+ {
+ 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
+ 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
+ 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
+ 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
+ },
+ /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
+ and the (implied affine) X coordinate of gej[1]. */
+ {
+ 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
+ 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
+ 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
+ 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
+ },
+ /* Initializer for fe[2] and the Z coordinate of gej[0]. */
+ {
+ 0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
+ 0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
+ 0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
+ 0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
+ },
+ /* Initializer for fe[3] and the Z coordinate of gej[1]. */
+ {
+ 0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
+ 0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
+ 0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
+ 0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
+ }
};
- static const unsigned char init_y[32] = {
- 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
- 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
- 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
- 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
- };
-
- secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL);
- secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL);
- secp256k1_fe_set_b32(&data->fe_x, init_x);
- secp256k1_fe_set_b32(&data->fe_y, init_y);
- CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0));
- CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1));
- secp256k1_gej_set_ge(&data->gej_x, &data->ge_x);
- secp256k1_gej_set_ge(&data->gej_y, &data->ge_y);
- memcpy(data->data, init_x, 32);
- memcpy(data->data + 32, init_y, 32);
+ secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
+ secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
+ secp256k1_fe_set_b32(&data->fe[0], init[0]);
+ secp256k1_fe_set_b32(&data->fe[1], init[1]);
+ secp256k1_fe_set_b32(&data->fe[2], init[2]);
+ secp256k1_fe_set_b32(&data->fe[3], init[3]);
+ CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
+ CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
+ secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
+ secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
+ secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
+ secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
+ memcpy(data->data, init[0], 32);
+ memcpy(data->data + 32, init[1], 32);
}
void bench_scalar_add(void* arg, int iters) {
@@ -61,7 +85,7 @@ void bench_scalar_add(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- j += secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
@@ -71,7 +95,7 @@ void bench_scalar_negate(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x);
+ secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
}
}
@@ -80,7 +104,7 @@ void bench_scalar_sqr(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x);
+ secp256k1_scalar_sqr(&data->scalar[0], &data->scalar[0]);
}
}
@@ -89,7 +113,7 @@ void bench_scalar_mul(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
}
@@ -99,8 +123,8 @@ void bench_scalar_split(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_scalar_split_lambda(&data->scalar_x, &data->scalar_y, &data->scalar_x);
- j += secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ secp256k1_scalar_split_lambda(&data->scalar[0], &data->scalar[1], &data->scalar[0]);
+ j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
@@ -111,8 +135,8 @@ void bench_scalar_inverse(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x);
- j += secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
+ j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
@@ -122,8 +146,8 @@ void bench_scalar_inverse_var(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x);
- j += secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
+ j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
@@ -133,7 +157,7 @@ void bench_field_normalize(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_fe_normalize(&data->fe_x);
+ secp256k1_fe_normalize(&data->fe[0]);
}
}
@@ -142,7 +166,7 @@ void bench_field_normalize_weak(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_fe_normalize_weak(&data->fe_x);
+ secp256k1_fe_normalize_weak(&data->fe[0]);
}
}
@@ -151,7 +175,7 @@ void bench_field_mul(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y);
+ secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
}
}
@@ -160,7 +184,7 @@ void bench_field_sqr(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_fe_sqr(&data->fe_x, &data->fe_x);
+ secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
}
}
@@ -169,8 +193,8 @@ void bench_field_inverse(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_fe_inv(&data->fe_x, &data->fe_x);
- secp256k1_fe_add(&data->fe_x, &data->fe_y);
+ secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
+ secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
}
@@ -179,8 +203,8 @@ void bench_field_inverse_var(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_fe_inv_var(&data->fe_x, &data->fe_x);
- secp256k1_fe_add(&data->fe_x, &data->fe_y);
+ secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
+ secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
}
@@ -190,9 +214,9 @@ void bench_field_sqrt(void* arg, int iters) {
secp256k1_fe t;
for (i = 0; i < iters; i++) {
- t = data->fe_x;
- j += secp256k1_fe_sqrt(&data->fe_x, &t);
- secp256k1_fe_add(&data->fe_x, &data->fe_y);
+ t = data->fe[0];
+ j += secp256k1_fe_sqrt(&data->fe[0], &t);
+ secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
CHECK(j <= iters);
}
@@ -202,7 +226,7 @@ void bench_group_double_var(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL);
+ secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
}
}
@@ -211,7 +235,7 @@ void bench_group_add_var(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL);
+ secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
}
}
@@ -220,7 +244,7 @@ void bench_group_add_affine(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y);
+ secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
}
}
@@ -229,7 +253,7 @@ void bench_group_add_affine_var(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL);
+ secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
}
}
@@ -238,9 +262,37 @@ void bench_group_jacobi_var(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- j += secp256k1_gej_has_quad_y_var(&data->gej_x);
+ j += secp256k1_gej_has_quad_y_var(&data->gej[0]);
+ /* Vary the Y and Z coordinates of the input (the X coordinate doesn't matter to
+ secp256k1_gej_has_quad_y_var). Note that the resulting coordinates will
+ generally not correspond to a point on the curve, but this is not a problem
+ for the code being benchmarked here. Adding and normalizing have less
+ overhead than EC operations (which could guarantee the point remains on the
+ curve). */
+ secp256k1_fe_add(&data->gej[0].y, &data->fe[1]);
+ secp256k1_fe_add(&data->gej[0].z, &data->fe[2]);
+ secp256k1_fe_normalize_var(&data->gej[0].y);
+ secp256k1_fe_normalize_var(&data->gej[0].z);
+ }
+ CHECK(j <= iters);
+}
+
+void bench_group_to_affine_var(void* arg, int iters) {
+ int i;
+ bench_inv *data = (bench_inv*)arg;
+
+ for (i = 0; i < iters; ++i) {
+ secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
+ /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
+ Similar to bench_group_jacobi_var, this approach does not result in
+ coordinates of points on the curve. */
+ secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
+ secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
+ secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
+ secp256k1_fe_normalize_var(&data->gej[0].x);
+ secp256k1_fe_normalize_var(&data->gej[0].y);
+ secp256k1_fe_normalize_var(&data->gej[0].z);
}
- CHECK(j == iters);
}
void bench_ecmult_wnaf(void* arg, int iters) {
@@ -248,8 +300,8 @@ void bench_ecmult_wnaf(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A);
- overflow += secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
+ overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(overflow >= 0);
CHECK(bits <= 256*iters);
@@ -260,8 +312,8 @@ void bench_wnaf_const(void* arg, int iters) {
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
- bits += secp256k1_wnaf_const(data->wnaf, &data->scalar_x, WINDOW_A, 256);
- overflow += secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
+ overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(overflow >= 0);
CHECK(bits <= 256*iters);
@@ -323,14 +375,15 @@ void bench_context_sign(void* arg, int iters) {
void bench_num_jacobi(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
- secp256k1_num nx, norder;
+ secp256k1_num nx, na, norder;
- secp256k1_scalar_get_num(&nx, &data->scalar_x);
+ secp256k1_scalar_get_num(&nx, &data->scalar[0]);
secp256k1_scalar_order_get_num(&norder);
- secp256k1_scalar_get_num(&norder, &data->scalar_y);
+ secp256k1_scalar_get_num(&na, &data->scalar[1]);
for (i = 0; i < iters; i++) {
j += secp256k1_num_jacobi(&nx, &norder);
+ secp256k1_num_add(&nx, &nx, &na);
}
CHECK(j <= iters);
}
@@ -363,6 +416,7 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, iters);
+ if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
diff --git a/src/secp256k1/src/bench_schnorrsig.c b/src/secp256k1/src/bench_schnorrsig.c
new file mode 100644
index 0000000000..315f5af28e
--- /dev/null
+++ b/src/secp256k1/src/bench_schnorrsig.c
@@ -0,0 +1,102 @@
+/**********************************************************************
+ * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include <string.h>
+#include <stdlib.h>
+
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_schnorrsig.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ int n;
+
+ const secp256k1_keypair **keypairs;
+ const unsigned char **pk;
+ const unsigned char **sigs;
+ const unsigned char **msgs;
+} bench_schnorrsig_data;
+
+void bench_schnorrsig_sign(void* arg, int iters) {
+ bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg;
+ int i;
+ unsigned char msg[32] = "benchmarkexamplemessagetemplate";
+ unsigned char sig[64];
+
+ for (i = 0; i < iters; i++) {
+ msg[0] = i;
+ msg[1] = i >> 8;
+ CHECK(secp256k1_schnorrsig_sign(data->ctx, sig, msg, data->keypairs[i], NULL, NULL));
+ }
+}
+
+void bench_schnorrsig_verify(void* arg, int iters) {
+ bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg;
+ int i;
+
+ for (i = 0; i < iters; i++) {
+ secp256k1_xonly_pubkey pk;
+ CHECK(secp256k1_xonly_pubkey_parse(data->ctx, &pk, data->pk[i]) == 1);
+ CHECK(secp256k1_schnorrsig_verify(data->ctx, data->sigs[i], data->msgs[i], &pk));
+ }
+}
+
+int main(void) {
+ int i;
+ bench_schnorrsig_data data;
+ int iters = get_iters(10000);
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN);
+ data.keypairs = (const secp256k1_keypair **)malloc(iters * sizeof(secp256k1_keypair *));
+ data.pk = (const unsigned char **)malloc(iters * sizeof(unsigned char *));
+ data.msgs = (const unsigned char **)malloc(iters * sizeof(unsigned char *));
+ data.sigs = (const unsigned char **)malloc(iters * sizeof(unsigned char *));
+
+ for (i = 0; i < iters; i++) {
+ unsigned char sk[32];
+ unsigned char *msg = (unsigned char *)malloc(32);
+ unsigned char *sig = (unsigned char *)malloc(64);
+ secp256k1_keypair *keypair = (secp256k1_keypair *)malloc(sizeof(*keypair));
+ unsigned char *pk_char = (unsigned char *)malloc(32);
+ secp256k1_xonly_pubkey pk;
+ msg[0] = sk[0] = i;
+ msg[1] = sk[1] = i >> 8;
+ msg[2] = sk[2] = i >> 16;
+ msg[3] = sk[3] = i >> 24;
+ memset(&msg[4], 'm', 28);
+ memset(&sk[4], 's', 28);
+
+ data.keypairs[i] = keypair;
+ data.pk[i] = pk_char;
+ data.msgs[i] = msg;
+ data.sigs[i] = sig;
+
+ CHECK(secp256k1_keypair_create(data.ctx, keypair, sk));
+ CHECK(secp256k1_schnorrsig_sign(data.ctx, sig, msg, keypair, NULL, NULL));
+ CHECK(secp256k1_keypair_xonly_pub(data.ctx, &pk, NULL, keypair));
+ CHECK(secp256k1_xonly_pubkey_serialize(data.ctx, pk_char, &pk) == 1);
+ }
+
+ run_benchmark("schnorrsig_sign", bench_schnorrsig_sign, NULL, NULL, (void *) &data, 10, iters);
+ run_benchmark("schnorrsig_verify", bench_schnorrsig_verify, NULL, NULL, (void *) &data, 10, iters);
+
+ for (i = 0; i < iters; i++) {
+ free((void *)data.keypairs[i]);
+ free((void *)data.pk[i]);
+ free((void *)data.msgs[i]);
+ free((void *)data.sigs[i]);
+ }
+ free(data.keypairs);
+ free(data.pk);
+ free(data.msgs);
+ free(data.sigs);
+
+ secp256k1_context_destroy(data.ctx);
+ return 0;
+}
diff --git a/src/secp256k1/src/ecmult_const_impl.h b/src/secp256k1/src/ecmult_const_impl.h
index 6d6d354aa4..55b61e4937 100644
--- a/src/secp256k1/src/ecmult_const_impl.h
+++ b/src/secp256k1/src/ecmult_const_impl.h
@@ -105,16 +105,22 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
do {
- int sign;
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
- sign = 2 * (u_last > 0) - 1;
- u += sign * even;
- u_last -= sign * even * (1 << w);
+ /* In contrast to the original algorithm, u_last is always > 0 and
+ * therefore we do not need to check its sign. In particular, it's easy
+ * to see that u_last is never < 0 because u is never < 0. Moreover,
+ * u_last is never = 0 because u is never even after a loop
+ * iteration. The same holds analogously for the initial value of
+ * u_last (in the first loop iteration). */
+ VERIFY_CHECK(u_last > 0);
+ VERIFY_CHECK((u_last & 1) == 1);
+ u += even;
+ u_last -= even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
@@ -202,7 +208,7 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
int n;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
- secp256k1_gej_double_nonzero(r, r);
+ secp256k1_gej_double(r, r);
}
n = wnaf_1[i];
diff --git a/src/secp256k1/src/field.h b/src/secp256k1/src/field.h
index 7993a1f11e..aca1fb72c5 100644
--- a/src/secp256k1/src/field.h
+++ b/src/secp256k1/src/field.h
@@ -22,16 +22,16 @@
#include "libsecp256k1-config.h"
#endif
-#if defined(USE_FIELD_10X26)
-#include "field_10x26.h"
-#elif defined(USE_FIELD_5X52)
+#include "util.h"
+
+#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52.h"
+#elif defined(SECP256K1_WIDEMUL_INT64)
+#include "field_10x26.h"
#else
-#error "Please select field implementation"
+#error "Please select wide multiplication implementation"
#endif
-#include "util.h"
-
/** Normalize a field element. This brings the field element to a canonical representation, reduces
* its magnitude to 1, and reduces it modulo field size `p`.
*/
diff --git a/src/secp256k1/src/field_5x52.h b/src/secp256k1/src/field_5x52.h
index fc5bfe357e..6a068484c2 100644
--- a/src/secp256k1/src/field_5x52.h
+++ b/src/secp256k1/src/field_5x52.h
@@ -46,4 +46,10 @@ typedef struct {
(d6) | (((uint64_t)(d7)) << 32) \
}}
+#define SECP256K1_FE_STORAGE_CONST_GET(d) \
+ (uint32_t)(d.n[3] >> 32), (uint32_t)d.n[3], \
+ (uint32_t)(d.n[2] >> 32), (uint32_t)d.n[2], \
+ (uint32_t)(d.n[1] >> 32), (uint32_t)d.n[1], \
+ (uint32_t)(d.n[0] >> 32), (uint32_t)d.n[0]
+
#endif /* SECP256K1_FIELD_REPR_H */
diff --git a/src/secp256k1/src/field_impl.h b/src/secp256k1/src/field_impl.h
index 485921a60e..18e4d2f30e 100644
--- a/src/secp256k1/src/field_impl.h
+++ b/src/secp256k1/src/field_impl.h
@@ -14,12 +14,12 @@
#include "util.h"
#include "num.h"
-#if defined(USE_FIELD_10X26)
-#include "field_10x26_impl.h"
-#elif defined(USE_FIELD_5X52)
+#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
+#elif defined(SECP256K1_WIDEMUL_INT64)
+#include "field_10x26_impl.h"
#else
-#error "Please select field implementation"
+#error "Please select wide multiplication implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
diff --git a/src/secp256k1/src/gen_context.c b/src/secp256k1/src/gen_context.c
index 539f574bfd..8b7729aee4 100644
--- a/src/secp256k1/src/gen_context.c
+++ b/src/secp256k1/src/gen_context.c
@@ -13,6 +13,7 @@
#include "basic-config.h"
#include "include/secp256k1.h"
+#include "assumptions.h"
#include "util.h"
#include "field_impl.h"
#include "scalar_impl.h"
diff --git a/src/secp256k1/src/group.h b/src/secp256k1/src/group.h
index 863644f0f0..6185be052d 100644
--- a/src/secp256k1/src/group.h
+++ b/src/secp256k1/src/group.h
@@ -95,8 +95,8 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Check whether a group element's y coordinate is a quadratic residue. */
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
-/** Set r equal to the double of a, a cannot be infinity. Constant time. */
-static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a);
+/** Set r equal to the double of a. Constant time. */
+static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
diff --git a/src/secp256k1/src/group_impl.h b/src/secp256k1/src/group_impl.h
index 43b039becf..ccd93d3483 100644
--- a/src/secp256k1/src/group_impl.h
+++ b/src/secp256k1/src/group_impl.h
@@ -303,7 +303,7 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
return secp256k1_fe_equal_var(&y2, &x3);
}
-static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a) {
+static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) {
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
*
* Note that there is an implementation described at
@@ -313,8 +313,7 @@ static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, cons
*/
secp256k1_fe t1,t2,t3,t4;
- VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
- r->infinity = 0;
+ r->infinity = a->infinity;
secp256k1_fe_mul(&r->z, &a->z, &a->y);
secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
@@ -363,7 +362,7 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
secp256k1_fe_mul_int(rzr, 2);
}
- secp256k1_gej_double_nonzero(r, a);
+ secp256k1_gej_double(r, a);
}
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
@@ -400,7 +399,7 @@ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, cons
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
- r->infinity = 1;
+ secp256k1_gej_set_infinity(r);
}
return;
}
@@ -450,7 +449,7 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
- r->infinity = 1;
+ secp256k1_gej_set_infinity(r);
}
return;
}
@@ -509,7 +508,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, NULL);
} else {
- r->infinity = 1;
+ secp256k1_gej_set_infinity(r);
}
return;
}
diff --git a/src/secp256k1/src/hash_impl.h b/src/secp256k1/src/hash_impl.h
index 782f97216c..409772587b 100644
--- a/src/secp256k1/src/hash_impl.h
+++ b/src/secp256k1/src/hash_impl.h
@@ -8,6 +8,7 @@
#define SECP256K1_HASH_IMPL_H
#include "hash.h"
+#include "util.h"
#include <stdlib.h>
#include <stdint.h>
@@ -27,9 +28,9 @@
(h) = t1 + t2; \
} while(0)
-#ifdef WORDS_BIGENDIAN
+#if defined(SECP256K1_BIG_ENDIAN)
#define BE32(x) (x)
-#else
+#elif defined(SECP256K1_LITTLE_ENDIAN)
#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#endif
@@ -163,6 +164,19 @@ static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out
memcpy(out32, (const unsigned char*)out, 32);
}
+/* Initializes a sha256 struct and writes the 64 byte string
+ * SHA256(tag)||SHA256(tag) into it. */
+static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen) {
+ unsigned char buf[32];
+ secp256k1_sha256_initialize(hash);
+ secp256k1_sha256_write(hash, tag, taglen);
+ secp256k1_sha256_finalize(hash, buf);
+
+ secp256k1_sha256_initialize(hash);
+ secp256k1_sha256_write(hash, buf, 32);
+ secp256k1_sha256_write(hash, buf, 32);
+}
+
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) {
size_t n;
unsigned char rkey[64];
diff --git a/src/secp256k1/src/modules/extrakeys/Makefile.am.include b/src/secp256k1/src/modules/extrakeys/Makefile.am.include
new file mode 100644
index 0000000000..8515f92e7a
--- /dev/null
+++ b/src/secp256k1/src/modules/extrakeys/Makefile.am.include
@@ -0,0 +1,3 @@
+include_HEADERS += include/secp256k1_extrakeys.h
+noinst_HEADERS += src/modules/extrakeys/tests_impl.h
+noinst_HEADERS += src/modules/extrakeys/main_impl.h
diff --git a/src/secp256k1/src/modules/extrakeys/main_impl.h b/src/secp256k1/src/modules/extrakeys/main_impl.h
new file mode 100644
index 0000000000..d319215355
--- /dev/null
+++ b/src/secp256k1/src/modules/extrakeys/main_impl.h
@@ -0,0 +1,248 @@
+/**********************************************************************
+ * Copyright (c) 2020 Jonas Nick *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_EXTRAKEYS_MAIN_
+#define _SECP256K1_MODULE_EXTRAKEYS_MAIN_
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_extrakeys.h"
+
+static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context* ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey) {
+ return secp256k1_pubkey_load(ctx, ge, (const secp256k1_pubkey *) pubkey);
+}
+
+static SECP256K1_INLINE void secp256k1_xonly_pubkey_save(secp256k1_xonly_pubkey *pubkey, secp256k1_ge *ge) {
+ secp256k1_pubkey_save((secp256k1_pubkey *) pubkey, ge);
+}
+
+int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, const unsigned char *input32) {
+ secp256k1_ge pk;
+ secp256k1_fe x;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(pubkey != NULL);
+ memset(pubkey, 0, sizeof(*pubkey));
+ ARG_CHECK(input32 != NULL);
+
+ if (!secp256k1_fe_set_b32(&x, input32)) {
+ return 0;
+ }
+ if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
+ return 0;
+ }
+ secp256k1_xonly_pubkey_save(pubkey, &pk);
+ return 1;
+}
+
+int secp256k1_xonly_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) {
+ secp256k1_ge pk;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(output32 != NULL);
+ memset(output32, 0, 32);
+ ARG_CHECK(pubkey != NULL);
+
+ if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
+ return 0;
+ }
+ secp256k1_fe_get_b32(output32, &pk.x);
+ return 1;
+}
+
+/** Keeps a group element as is if it has an even Y and otherwise negates it.
+ * y_parity is set to 0 in the former case and to 1 in the latter case.
+ * Requires that the coordinates of r are normalized. */
+static int secp256k1_extrakeys_ge_even_y(secp256k1_ge *r) {
+ int y_parity = 0;
+ VERIFY_CHECK(!secp256k1_ge_is_infinity(r));
+
+ if (secp256k1_fe_is_odd(&r->y)) {
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+ y_parity = 1;
+ }
+ return y_parity;
+}
+
+int secp256k1_xonly_pubkey_from_pubkey(const secp256k1_context* ctx, secp256k1_xonly_pubkey *xonly_pubkey, int *pk_parity, const secp256k1_pubkey *pubkey) {
+ secp256k1_ge pk;
+ int tmp;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(xonly_pubkey != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ if (!secp256k1_pubkey_load(ctx, &pk, pubkey)) {
+ return 0;
+ }
+ tmp = secp256k1_extrakeys_ge_even_y(&pk);
+ if (pk_parity != NULL) {
+ *pk_parity = tmp;
+ }
+ secp256k1_xonly_pubkey_save(xonly_pubkey, &pk);
+ return 1;
+}
+
+int secp256k1_xonly_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *output_pubkey, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
+ secp256k1_ge pk;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(output_pubkey != NULL);
+ memset(output_pubkey, 0, sizeof(*output_pubkey));
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(internal_pubkey != NULL);
+ ARG_CHECK(tweak32 != NULL);
+
+ if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
+ || !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) {
+ return 0;
+ }
+ secp256k1_pubkey_save(output_pubkey, &pk);
+ return 1;
+}
+
+int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const unsigned char *tweaked_pubkey32, int tweaked_pk_parity, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
+ secp256k1_ge pk;
+ unsigned char pk_expected32[32];
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(internal_pubkey != NULL);
+ ARG_CHECK(tweaked_pubkey32 != NULL);
+ ARG_CHECK(tweak32 != NULL);
+
+ if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
+ || !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) {
+ return 0;
+ }
+ secp256k1_fe_normalize_var(&pk.x);
+ secp256k1_fe_normalize_var(&pk.y);
+ secp256k1_fe_get_b32(pk_expected32, &pk.x);
+
+ return memcmp(&pk_expected32, tweaked_pubkey32, 32) == 0
+ && secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity;
+}
+
+static void secp256k1_keypair_save(secp256k1_keypair *keypair, const secp256k1_scalar *sk, secp256k1_ge *pk) {
+ secp256k1_scalar_get_b32(&keypair->data[0], sk);
+ secp256k1_pubkey_save((secp256k1_pubkey *)&keypair->data[32], pk);
+}
+
+
+static int secp256k1_keypair_seckey_load(const secp256k1_context* ctx, secp256k1_scalar *sk, const secp256k1_keypair *keypair) {
+ int ret;
+
+ ret = secp256k1_scalar_set_b32_seckey(sk, &keypair->data[0]);
+ /* We can declassify ret here because sk is only zero if a keypair function
+ * failed (which zeroes the keypair) and its return value is ignored. */
+ secp256k1_declassify(ctx, &ret, sizeof(ret));
+ ARG_CHECK(ret);
+ return ret;
+}
+
+/* Load a keypair into pk and sk (if non-NULL). This function declassifies pk
+ * and ARG_CHECKs that the keypair is not invalid. It always initializes sk and
+ * pk with dummy values. */
+static int secp256k1_keypair_load(const secp256k1_context* ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair) {
+ int ret;
+ const secp256k1_pubkey *pubkey = (const secp256k1_pubkey *)&keypair->data[32];
+
+ /* Need to declassify the pubkey because pubkey_load ARG_CHECKs if it's
+ * invalid. */
+ secp256k1_declassify(ctx, pubkey, sizeof(*pubkey));
+ ret = secp256k1_pubkey_load(ctx, pk, pubkey);
+ if (sk != NULL) {
+ ret = ret && secp256k1_keypair_seckey_load(ctx, sk, keypair);
+ }
+ if (!ret) {
+ *pk = secp256k1_ge_const_g;
+ if (sk != NULL) {
+ *sk = secp256k1_scalar_one;
+ }
+ }
+ return ret;
+}
+
+int secp256k1_keypair_create(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *seckey32) {
+ secp256k1_scalar sk;
+ secp256k1_ge pk;
+ int ret = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(keypair != NULL);
+ memset(keypair, 0, sizeof(*keypair));
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(seckey32 != NULL);
+
+ ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &sk, &pk, seckey32);
+ secp256k1_keypair_save(keypair, &sk, &pk);
+ memczero(keypair, sizeof(*keypair), !ret);
+
+ secp256k1_scalar_clear(&sk);
+ return ret;
+}
+
+int secp256k1_keypair_pub(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_keypair *keypair) {
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(pubkey != NULL);
+ memset(pubkey, 0, sizeof(*pubkey));
+ ARG_CHECK(keypair != NULL);
+
+ memcpy(pubkey->data, &keypair->data[32], sizeof(*pubkey));
+ return 1;
+}
+
+int secp256k1_keypair_xonly_pub(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) {
+ secp256k1_ge pk;
+ int tmp;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(pubkey != NULL);
+ memset(pubkey, 0, sizeof(*pubkey));
+ ARG_CHECK(keypair != NULL);
+
+ if (!secp256k1_keypair_load(ctx, NULL, &pk, keypair)) {
+ return 0;
+ }
+ tmp = secp256k1_extrakeys_ge_even_y(&pk);
+ if (pk_parity != NULL) {
+ *pk_parity = tmp;
+ }
+ secp256k1_xonly_pubkey_save(pubkey, &pk);
+
+ return 1;
+}
+
+int secp256k1_keypair_xonly_tweak_add(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) {
+ secp256k1_ge pk;
+ secp256k1_scalar sk;
+ int y_parity;
+ int ret;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(keypair != NULL);
+ ARG_CHECK(tweak32 != NULL);
+
+ ret = secp256k1_keypair_load(ctx, &sk, &pk, keypair);
+ memset(keypair, 0, sizeof(*keypair));
+
+ y_parity = secp256k1_extrakeys_ge_even_y(&pk);
+ if (y_parity == 1) {
+ secp256k1_scalar_negate(&sk, &sk);
+ }
+
+ ret &= secp256k1_ec_seckey_tweak_add_helper(&sk, tweak32);
+ ret &= secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32);
+
+ secp256k1_declassify(ctx, &ret, sizeof(ret));
+ if (ret) {
+ secp256k1_keypair_save(keypair, &sk, &pk);
+ }
+
+ secp256k1_scalar_clear(&sk);
+ return ret;
+}
+
+#endif
diff --git a/src/secp256k1/src/modules/extrakeys/tests_impl.h b/src/secp256k1/src/modules/extrakeys/tests_impl.h
new file mode 100644
index 0000000000..fc9d40eda1
--- /dev/null
+++ b/src/secp256k1/src/modules/extrakeys/tests_impl.h
@@ -0,0 +1,524 @@
+/**********************************************************************
+ * Copyright (c) 2020 Jonas Nick *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_
+#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_
+
+#include "secp256k1_extrakeys.h"
+
+static secp256k1_context* api_test_context(int flags, int *ecount) {
+ secp256k1_context *ctx0 = secp256k1_context_create(flags);
+ secp256k1_context_set_error_callback(ctx0, counting_illegal_callback_fn, ecount);
+ secp256k1_context_set_illegal_callback(ctx0, counting_illegal_callback_fn, ecount);
+ return ctx0;
+}
+
+void test_xonly_pubkey(void) {
+ secp256k1_pubkey pk;
+ secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
+ secp256k1_ge pk1;
+ secp256k1_ge pk2;
+ secp256k1_fe y;
+ unsigned char sk[32];
+ unsigned char xy_sk[32];
+ unsigned char buf32[32];
+ unsigned char ones32[32];
+ unsigned char zeros64[64] = { 0 };
+ int pk_parity;
+ int i;
+
+ int ecount;
+ secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
+ secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
+ secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
+
+ secp256k1_rand256(sk);
+ memset(ones32, 0xFF, 32);
+ secp256k1_rand256(xy_sk);
+ CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
+
+ /* Test xonly_pubkey_from_pubkey */
+ ecount = 0;
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(sign, &xonly_pk, &pk_parity, &pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &xonly_pk, &pk_parity, &pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, NULL, &pk_parity, &pk) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, NULL) == 0);
+ CHECK(ecount == 2);
+ memset(&pk, 0, sizeof(pk));
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 0);
+ CHECK(ecount == 3);
+
+ /* Choose a secret key such that the resulting pubkey and xonly_pubkey match. */
+ memset(sk, 0, sizeof(sk));
+ sk[0] = 1;
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
+ CHECK(memcmp(&pk, &xonly_pk, sizeof(pk)) == 0);
+ CHECK(pk_parity == 0);
+
+ /* Choose a secret key such that pubkey and xonly_pubkey are each others
+ * negation. */
+ sk[0] = 2;
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
+ CHECK(memcmp(&xonly_pk, &pk, sizeof(xonly_pk)) != 0);
+ CHECK(pk_parity == 1);
+ secp256k1_pubkey_load(ctx, &pk1, &pk);
+ secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk);
+ CHECK(secp256k1_fe_equal(&pk1.x, &pk2.x) == 1);
+ secp256k1_fe_negate(&y, &pk2.y, 1);
+ CHECK(secp256k1_fe_equal(&pk1.y, &y) == 1);
+
+ /* Test xonly_pubkey_serialize and xonly_pubkey_parse */
+ ecount = 0;
+ CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0);
+ CHECK(memcmp(buf32, zeros64, 32) == 0);
+ CHECK(ecount == 2);
+ {
+ /* A pubkey filled with 0s will fail to serialize due to pubkey_load
+ * special casing. */
+ secp256k1_xonly_pubkey pk_tmp;
+ memset(&pk_tmp, 0, sizeof(pk_tmp));
+ CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &pk_tmp) == 0);
+ }
+ /* pubkey_load called illegal callback */
+ CHECK(ecount == 3);
+
+ CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &xonly_pk) == 1);
+ ecount = 0;
+ CHECK(secp256k1_xonly_pubkey_parse(none, NULL, buf32) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, NULL) == 0);
+ CHECK(ecount == 2);
+
+ /* Serialization and parse roundtrip */
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1);
+ CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0);
+
+ /* Test parsing invalid field elements */
+ memset(&xonly_pk, 1, sizeof(xonly_pk));
+ /* Overflowing field element */
+ CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0);
+ CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
+ memset(&xonly_pk, 1, sizeof(xonly_pk));
+ /* There's no point with x-coordinate 0 on secp256k1 */
+ CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0);
+ CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
+ /* If a random 32-byte string can not be parsed with ec_pubkey_parse
+ * (because interpreted as X coordinate it does not correspond to a point on
+ * the curve) then xonly_pubkey_parse should fail as well. */
+ for (i = 0; i < count; i++) {
+ unsigned char rand33[33];
+ secp256k1_rand256(&rand33[1]);
+ rand33[0] = SECP256K1_TAG_PUBKEY_EVEN;
+ if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) {
+ memset(&xonly_pk, 1, sizeof(xonly_pk));
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0);
+ CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
+ } else {
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1);
+ }
+ }
+ CHECK(ecount == 2);
+
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(verify);
+}
+
+void test_xonly_pubkey_tweak(void) {
+ unsigned char zeros64[64] = { 0 };
+ unsigned char overflows[32];
+ unsigned char sk[32];
+ secp256k1_pubkey internal_pk;
+ secp256k1_xonly_pubkey internal_xonly_pk;
+ secp256k1_pubkey output_pk;
+ int pk_parity;
+ unsigned char tweak[32];
+ int i;
+
+ int ecount;
+ secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
+ secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
+ secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
+
+ memset(overflows, 0xff, sizeof(overflows));
+ secp256k1_rand256(tweak);
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
+
+ ecount = 0;
+ CHECK(secp256k1_xonly_pubkey_tweak_add(none, &output_pk, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(sign, &output_pk, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, NULL, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0);
+ CHECK(ecount == 4);
+ /* NULL internal_xonly_pk zeroes the output_pk */
+ CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0);
+ CHECK(ecount == 5);
+ /* NULL tweak zeroes the output_pk */
+ CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
+
+ /* Invalid tweak zeroes the output_pk */
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0);
+ CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
+
+ /* A zero tweak is fine */
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1);
+
+ /* Fails if the resulting key was infinity */
+ for (i = 0; i < count; i++) {
+ secp256k1_scalar scalar_tweak;
+ /* Because sk may be negated before adding, we need to try with tweak =
+ * sk as well as tweak = -sk. */
+ secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
+ secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
+ secp256k1_scalar_get_b32(tweak, &scalar_tweak);
+ CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0)
+ || (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0));
+ CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
+ }
+
+ /* Invalid pk with a valid tweak */
+ memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk));
+ secp256k1_rand256(tweak);
+ ecount = 0;
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 1);
+ CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
+
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(verify);
+}
+
+void test_xonly_pubkey_tweak_check(void) {
+ unsigned char zeros64[64] = { 0 };
+ unsigned char overflows[32];
+ unsigned char sk[32];
+ secp256k1_pubkey internal_pk;
+ secp256k1_xonly_pubkey internal_xonly_pk;
+ secp256k1_pubkey output_pk;
+ secp256k1_xonly_pubkey output_xonly_pk;
+ unsigned char output_pk32[32];
+ unsigned char buf32[32];
+ int pk_parity;
+ unsigned char tweak[32];
+
+ int ecount;
+ secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
+ secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
+ secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
+
+ memset(overflows, 0xff, sizeof(overflows));
+ secp256k1_rand256(tweak);
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
+
+ ecount = 0;
+ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &output_xonly_pk, &pk_parity, &output_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &output_xonly_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(none, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(sign, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, NULL, pk_parity, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 3);
+ /* invalid pk_parity value */
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, 2, &internal_xonly_pk, tweak) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, NULL, tweak) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, NULL) == 0);
+ CHECK(ecount == 5);
+
+ memset(tweak, 1, sizeof(tweak));
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &internal_xonly_pk, NULL, &internal_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, tweak) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &output_xonly_pk, &pk_parity, &output_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk32, &output_xonly_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, tweak) == 1);
+
+ /* Wrong pk_parity */
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, !pk_parity, &internal_xonly_pk, tweak) == 0);
+ /* Wrong public key */
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &internal_xonly_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
+
+ /* Overflowing tweak not allowed */
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0);
+ CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
+ CHECK(ecount == 5);
+
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(verify);
+}
+
+/* Starts with an initial pubkey and recursively creates N_PUBKEYS - 1
+ * additional pubkeys by calling tweak_add. Then verifies every tweak starting
+ * from the last pubkey. */
+#define N_PUBKEYS 32
+void test_xonly_pubkey_tweak_recursive(void) {
+ unsigned char sk[32];
+ secp256k1_pubkey pk[N_PUBKEYS];
+ unsigned char pk_serialized[32];
+ unsigned char tweak[N_PUBKEYS - 1][32];
+ int i;
+
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1);
+ /* Add tweaks */
+ for (i = 0; i < N_PUBKEYS - 1; i++) {
+ secp256k1_xonly_pubkey xonly_pk;
+ memset(tweak[i], i + 1, sizeof(tweak[i]));
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i]) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &pk[i + 1], &xonly_pk, tweak[i]) == 1);
+ }
+
+ /* Verify tweaks */
+ for (i = N_PUBKEYS - 1; i > 0; i--) {
+ secp256k1_xonly_pubkey xonly_pk;
+ int pk_parity;
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk[i]) == 1);
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk_serialized, &xonly_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i - 1]) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk_serialized, pk_parity, &xonly_pk, tweak[i - 1]) == 1);
+ }
+}
+#undef N_PUBKEYS
+
+void test_keypair(void) {
+ unsigned char sk[32];
+ unsigned char zeros96[96] = { 0 };
+ unsigned char overflows[32];
+ secp256k1_keypair keypair;
+ secp256k1_pubkey pk, pk_tmp;
+ secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
+ int pk_parity, pk_parity_tmp;
+ int ecount;
+ secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
+ secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
+ secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
+
+ CHECK(sizeof(zeros96) == sizeof(keypair));
+ memset(overflows, 0xFF, sizeof(overflows));
+
+ /* Test keypair_create */
+ ecount = 0;
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(none, &keypair, sk) == 0);
+ CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 0);
+ CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0);
+ CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
+ CHECK(ecount == 4);
+
+ /* Invalid secret key */
+ CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0);
+ CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
+ CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0);
+ CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
+
+ /* Test keypair_pub */
+ ecount = 0;
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
+ CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0);
+
+ /* Using an invalid keypair is fine for keypair_pub */
+ memset(&keypair, 0, sizeof(keypair));
+ CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
+ CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0);
+
+ /* keypair holds the same pubkey as pubkey_create */
+ CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
+ CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1);
+ CHECK(memcmp(&pk, &pk_tmp, sizeof(pk)) == 0);
+
+ /** Test keypair_xonly_pub **/
+ ecount = 0;
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
+ /* Using an invalid keypair will set the xonly_pk to 0 (first reset
+ * xonly_pk). */
+ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
+ memset(&keypair, 0, sizeof(keypair));
+ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0);
+ CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
+ CHECK(ecount == 3);
+
+ /** keypair holds the same xonly pubkey as pubkey_create **/
+ CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
+ CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
+ CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1);
+ CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0);
+ CHECK(pk_parity == pk_parity_tmp);
+
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(verify);
+}
+
+void test_keypair_add(void) {
+ unsigned char sk[32];
+ secp256k1_keypair keypair;
+ unsigned char overflows[32];
+ unsigned char zeros96[96] = { 0 };
+ unsigned char tweak[32];
+ int i;
+ int ecount = 0;
+ secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
+ secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
+ secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
+
+ CHECK(sizeof(zeros96) == sizeof(keypair));
+ secp256k1_rand256(sk);
+ secp256k1_rand256(tweak);
+ memset(overflows, 0xFF, 32);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+
+ CHECK(secp256k1_keypair_xonly_tweak_add(none, &keypair, tweak) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_keypair_xonly_tweak_add(sign, &keypair, tweak) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 1);
+ CHECK(secp256k1_keypair_xonly_tweak_add(verify, NULL, tweak) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0);
+ CHECK(ecount == 4);
+ /* This does not set the keypair to zeroes */
+ CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) != 0);
+
+ /* Invalid tweak zeroes the keypair */
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0);
+ CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0);
+
+ /* A zero tweak is fine */
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, zeros96) == 1);
+
+ /* Fails if the resulting keypair was (sk=0, pk=infinity) */
+ for (i = 0; i < count; i++) {
+ secp256k1_scalar scalar_tweak;
+ secp256k1_keypair keypair_tmp;
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ memcpy(&keypair_tmp, &keypair, sizeof(keypair));
+ /* Because sk may be negated before adding, we need to try with tweak =
+ * sk as well as tweak = -sk. */
+ secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
+ secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
+ secp256k1_scalar_get_b32(tweak, &scalar_tweak);
+ CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0)
+ || (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0));
+ CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0
+ || memcmp(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0);
+ }
+
+ /* Invalid keypair with a valid tweak */
+ memset(&keypair, 0, sizeof(keypair));
+ secp256k1_rand256(tweak);
+ ecount = 0;
+ CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
+ CHECK(ecount == 1);
+ CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0);
+ /* Only seckey part of keypair invalid */
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ memset(&keypair, 0, 32);
+ CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
+ CHECK(ecount == 2);
+ /* Only pubkey part of keypair invalid */
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ memset(&keypair.data[32], 0, 64);
+ CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
+ CHECK(ecount == 3);
+
+ /* Check that the keypair_tweak_add implementation is correct */
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ for (i = 0; i < count; i++) {
+ secp256k1_xonly_pubkey internal_pk;
+ secp256k1_xonly_pubkey output_pk;
+ secp256k1_pubkey output_pk_xy;
+ secp256k1_pubkey output_pk_expected;
+ unsigned char pk32[32];
+ int pk_parity;
+
+ secp256k1_rand256(tweak);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
+ CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
+
+ /* Check that it passes xonly_pubkey_tweak_add_check */
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk32, &output_pk) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk32, pk_parity, &internal_pk, tweak) == 1);
+
+ /* Check that the resulting pubkey matches xonly_pubkey_tweak_add */
+ CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1);
+ CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
+
+ /* Check that the secret key in the keypair is tweaked correctly */
+ CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, &keypair.data[0]) == 1);
+ CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
+ }
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(verify);
+}
+
+void run_extrakeys_tests(void) {
+ /* xonly key test cases */
+ test_xonly_pubkey();
+ test_xonly_pubkey_tweak();
+ test_xonly_pubkey_tweak_check();
+ test_xonly_pubkey_tweak_recursive();
+
+ /* keypair tests */
+ test_keypair();
+ test_keypair_add();
+}
+
+#endif
diff --git a/src/secp256k1/src/modules/schnorrsig/Makefile.am.include b/src/secp256k1/src/modules/schnorrsig/Makefile.am.include
new file mode 100644
index 0000000000..a82bafe43f
--- /dev/null
+++ b/src/secp256k1/src/modules/schnorrsig/Makefile.am.include
@@ -0,0 +1,8 @@
+include_HEADERS += include/secp256k1_schnorrsig.h
+noinst_HEADERS += src/modules/schnorrsig/main_impl.h
+noinst_HEADERS += src/modules/schnorrsig/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_schnorrsig
+bench_schnorrsig_SOURCES = src/bench_schnorrsig.c
+bench_schnorrsig_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
+endif
diff --git a/src/secp256k1/src/modules/schnorrsig/main_impl.h b/src/secp256k1/src/modules/schnorrsig/main_impl.h
new file mode 100644
index 0000000000..a0218f881a
--- /dev/null
+++ b/src/secp256k1/src/modules/schnorrsig/main_impl.h
@@ -0,0 +1,238 @@
+/**********************************************************************
+ * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_SCHNORRSIG_MAIN_
+#define _SECP256K1_MODULE_SCHNORRSIG_MAIN_
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_schnorrsig.h"
+#include "hash.h"
+
+/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
+ * SHA256 to SHA256("BIP0340/nonce")||SHA256("BIP0340/nonce"). */
+static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha) {
+ secp256k1_sha256_initialize(sha);
+ sha->s[0] = 0x46615b35ul;
+ sha->s[1] = 0xf4bfbff7ul;
+ sha->s[2] = 0x9f8dc671ul;
+ sha->s[3] = 0x83627ab3ul;
+ sha->s[4] = 0x60217180ul;
+ sha->s[5] = 0x57358661ul;
+ sha->s[6] = 0x21a29e54ul;
+ sha->s[7] = 0x68b07b4cul;
+
+ sha->bytes = 64;
+}
+
+/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
+ * SHA256 to SHA256("BIP0340/aux")||SHA256("BIP0340/aux"). */
+static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha) {
+ secp256k1_sha256_initialize(sha);
+ sha->s[0] = 0x24dd3219ul;
+ sha->s[1] = 0x4eba7e70ul;
+ sha->s[2] = 0xca0fabb9ul;
+ sha->s[3] = 0x0fa3166dul;
+ sha->s[4] = 0x3afbe4b1ul;
+ sha->s[5] = 0x4c44df97ul;
+ sha->s[6] = 0x4aac2739ul;
+ sha->s[7] = 0x249e850aul;
+
+ sha->bytes = 64;
+}
+
+/* algo16 argument for nonce_function_bip340 to derive the nonce exactly as stated in BIP-340
+ * by using the correct tagged hash function. */
+static const unsigned char bip340_algo16[16] = "BIP0340/nonce\0\0\0";
+
+static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
+ secp256k1_sha256 sha;
+ unsigned char masked_key[32];
+ int i;
+
+ if (algo16 == NULL) {
+ return 0;
+ }
+
+ if (data != NULL) {
+ secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha);
+ secp256k1_sha256_write(&sha, data, 32);
+ secp256k1_sha256_finalize(&sha, masked_key);
+ for (i = 0; i < 32; i++) {
+ masked_key[i] ^= key32[i];
+ }
+ }
+
+ /* Tag the hash with algo16 which is important to avoid nonce reuse across
+ * algorithms. If this nonce function is used in BIP-340 signing as defined
+ * in the spec, an optimized tagging implementation is used. */
+ if (memcmp(algo16, bip340_algo16, 16) == 0) {
+ secp256k1_nonce_function_bip340_sha256_tagged(&sha);
+ } else {
+ int algo16_len = 16;
+ /* Remove terminating null bytes */
+ while (algo16_len > 0 && !algo16[algo16_len - 1]) {
+ algo16_len--;
+ }
+ secp256k1_sha256_initialize_tagged(&sha, algo16, algo16_len);
+ }
+
+ /* Hash (masked-)key||pk||msg using the tagged hash as per the spec */
+ if (data != NULL) {
+ secp256k1_sha256_write(&sha, masked_key, 32);
+ } else {
+ secp256k1_sha256_write(&sha, key32, 32);
+ }
+ secp256k1_sha256_write(&sha, xonly_pk32, 32);
+ secp256k1_sha256_write(&sha, msg32, 32);
+ secp256k1_sha256_finalize(&sha, nonce32);
+ return 1;
+}
+
+const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340 = nonce_function_bip340;
+
+/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
+ * SHA256 to SHA256("BIP0340/challenge")||SHA256("BIP0340/challenge"). */
+static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha) {
+ secp256k1_sha256_initialize(sha);
+ sha->s[0] = 0x9cecba11ul;
+ sha->s[1] = 0x23925381ul;
+ sha->s[2] = 0x11679112ul;
+ sha->s[3] = 0xd1627e0ful;
+ sha->s[4] = 0x97c87550ul;
+ sha->s[5] = 0x003cc765ul;
+ sha->s[6] = 0x90f61164ul;
+ sha->s[7] = 0x33e9b66aul;
+ sha->bytes = 64;
+}
+
+int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) {
+ secp256k1_scalar sk;
+ secp256k1_scalar e;
+ secp256k1_scalar k;
+ secp256k1_gej rj;
+ secp256k1_ge pk;
+ secp256k1_ge r;
+ secp256k1_sha256 sha;
+ unsigned char buf[32] = { 0 };
+ unsigned char pk_buf[32];
+ unsigned char seckey[32];
+ int ret = 1;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(keypair != NULL);
+
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_bip340;
+ }
+
+ ret &= secp256k1_keypair_load(ctx, &sk, &pk, keypair);
+ /* Because we are signing for a x-only pubkey, the secret key is negated
+ * before signing if the point corresponding to the secret key does not
+ * have an even Y. */
+ if (secp256k1_fe_is_odd(&pk.y)) {
+ secp256k1_scalar_negate(&sk, &sk);
+ }
+
+ secp256k1_scalar_get_b32(seckey, &sk);
+ secp256k1_fe_get_b32(pk_buf, &pk.x);
+ ret &= !!noncefp(buf, msg32, seckey, pk_buf, bip340_algo16, ndata);
+ secp256k1_scalar_set_b32(&k, buf, NULL);
+ ret &= !secp256k1_scalar_is_zero(&k);
+ secp256k1_scalar_cmov(&k, &secp256k1_scalar_one, !ret);
+
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &k);
+ secp256k1_ge_set_gej(&r, &rj);
+
+ /* We declassify r to allow using it as a branch point. This is fine
+ * because r is not a secret. */
+ secp256k1_declassify(ctx, &r, sizeof(r));
+ secp256k1_fe_normalize_var(&r.y);
+ if (secp256k1_fe_is_odd(&r.y)) {
+ secp256k1_scalar_negate(&k, &k);
+ }
+ secp256k1_fe_normalize_var(&r.x);
+ secp256k1_fe_get_b32(&sig64[0], &r.x);
+
+ /* tagged hash(r.x, pk.x, msg32) */
+ secp256k1_schnorrsig_sha256_tagged(&sha);
+ secp256k1_sha256_write(&sha, &sig64[0], 32);
+ secp256k1_sha256_write(&sha, pk_buf, sizeof(pk_buf));
+ secp256k1_sha256_write(&sha, msg32, 32);
+ secp256k1_sha256_finalize(&sha, buf);
+
+ /* Set scalar e to the challenge hash modulo the curve order as per
+ * BIP340. */
+ secp256k1_scalar_set_b32(&e, buf, NULL);
+ secp256k1_scalar_mul(&e, &e, &sk);
+ secp256k1_scalar_add(&e, &e, &k);
+ secp256k1_scalar_get_b32(&sig64[32], &e);
+
+ memczero(sig64, 64, !ret);
+ secp256k1_scalar_clear(&k);
+ secp256k1_scalar_clear(&sk);
+ memset(seckey, 0, sizeof(seckey));
+
+ return ret;
+}
+
+int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_xonly_pubkey *pubkey) {
+ secp256k1_scalar s;
+ secp256k1_scalar e;
+ secp256k1_gej rj;
+ secp256k1_ge pk;
+ secp256k1_gej pkj;
+ secp256k1_fe rx;
+ secp256k1_ge r;
+ secp256k1_sha256 sha;
+ unsigned char buf[32];
+ int overflow;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ if (!secp256k1_fe_set_b32(&rx, &sig64[0])) {
+ return 0;
+ }
+
+ secp256k1_scalar_set_b32(&s, &sig64[32], &overflow);
+ if (overflow) {
+ return 0;
+ }
+
+ if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
+ return 0;
+ }
+
+ secp256k1_schnorrsig_sha256_tagged(&sha);
+ secp256k1_sha256_write(&sha, &sig64[0], 32);
+ secp256k1_fe_get_b32(buf, &pk.x);
+ secp256k1_sha256_write(&sha, buf, sizeof(buf));
+ secp256k1_sha256_write(&sha, msg32, 32);
+ secp256k1_sha256_finalize(&sha, buf);
+ secp256k1_scalar_set_b32(&e, buf, NULL);
+
+ /* Compute rj = s*G + (-e)*pkj */
+ secp256k1_scalar_negate(&e, &e);
+ secp256k1_gej_set_ge(&pkj, &pk);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &rj, &pkj, &e, &s);
+
+ secp256k1_ge_set_gej_var(&r, &rj);
+ if (secp256k1_ge_is_infinity(&r)) {
+ return 0;
+ }
+
+ secp256k1_fe_normalize_var(&r.y);
+ return !secp256k1_fe_is_odd(&r.y) &&
+ secp256k1_fe_equal_var(&rx, &r.x);
+}
+
+#endif
diff --git a/src/secp256k1/src/modules/schnorrsig/tests_impl.h b/src/secp256k1/src/modules/schnorrsig/tests_impl.h
new file mode 100644
index 0000000000..88d8f56404
--- /dev/null
+++ b/src/secp256k1/src/modules/schnorrsig/tests_impl.h
@@ -0,0 +1,806 @@
+/**********************************************************************
+ * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_
+#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_
+
+#include "secp256k1_schnorrsig.h"
+
+/* Checks that a bit flip in the n_flip-th argument (that has n_bytes many
+ * bytes) changes the hash function
+ */
+void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, size_t n_bytes) {
+ unsigned char nonces[2][32];
+ CHECK(nonce_function_bip340(nonces[0], args[0], args[1], args[2], args[3], args[4]) == 1);
+ secp256k1_rand_flip(args[n_flip], n_bytes);
+ CHECK(nonce_function_bip340(nonces[1], args[0], args[1], args[2], args[3], args[4]) == 1);
+ CHECK(memcmp(nonces[0], nonces[1], 32) != 0);
+}
+
+/* Tests for the equality of two sha256 structs. This function only produces a
+ * correct result if an integer multiple of 64 many bytes have been written
+ * into the hash functions. */
+void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
+ /* Is buffer fully consumed? */
+ CHECK((sha1->bytes & 0x3F) == 0);
+
+ CHECK(sha1->bytes == sha2->bytes);
+ CHECK(memcmp(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
+}
+
+void run_nonce_function_bip340_tests(void) {
+ unsigned char tag[13] = "BIP0340/nonce";
+ unsigned char aux_tag[11] = "BIP0340/aux";
+ unsigned char algo16[16] = "BIP0340/nonce\0\0\0";
+ secp256k1_sha256 sha;
+ secp256k1_sha256 sha_optimized;
+ unsigned char nonce[32];
+ unsigned char msg[32];
+ unsigned char key[32];
+ unsigned char pk[32];
+ unsigned char aux_rand[32];
+ unsigned char *args[5];
+ int i;
+
+ /* Check that hash initialized by
+ * secp256k1_nonce_function_bip340_sha256_tagged has the expected
+ * state. */
+ secp256k1_sha256_initialize_tagged(&sha, tag, sizeof(tag));
+ secp256k1_nonce_function_bip340_sha256_tagged(&sha_optimized);
+ test_sha256_eq(&sha, &sha_optimized);
+
+ /* Check that hash initialized by
+ * secp256k1_nonce_function_bip340_sha256_tagged_aux has the expected
+ * state. */
+ secp256k1_sha256_initialize_tagged(&sha, aux_tag, sizeof(aux_tag));
+ secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha_optimized);
+ test_sha256_eq(&sha, &sha_optimized);
+
+ secp256k1_rand256(msg);
+ secp256k1_rand256(key);
+ secp256k1_rand256(pk);
+ secp256k1_rand256(aux_rand);
+
+ /* Check that a bitflip in an argument results in different nonces. */
+ args[0] = msg;
+ args[1] = key;
+ args[2] = pk;
+ args[3] = algo16;
+ args[4] = aux_rand;
+ for (i = 0; i < count; i++) {
+ nonce_function_bip340_bitflip(args, 0, 32);
+ nonce_function_bip340_bitflip(args, 1, 32);
+ nonce_function_bip340_bitflip(args, 2, 32);
+ /* Flip algo16 special case "BIP0340/nonce" */
+ nonce_function_bip340_bitflip(args, 3, 16);
+ /* Flip algo16 again */
+ nonce_function_bip340_bitflip(args, 3, 16);
+ nonce_function_bip340_bitflip(args, 4, 32);
+ }
+
+ /* NULL algo16 is disallowed */
+ CHECK(nonce_function_bip340(nonce, msg, key, pk, NULL, NULL) == 0);
+ /* Empty algo16 is fine */
+ memset(algo16, 0x00, 16);
+ CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
+ /* algo16 with terminating null bytes is fine */
+ algo16[1] = 65;
+ CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
+ /* Other algo16 is fine */
+ memset(algo16, 0xFF, 16);
+ CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
+
+ /* NULL aux_rand argument is allowed. */
+ CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
+}
+
+void test_schnorrsig_api(void) {
+ unsigned char sk1[32];
+ unsigned char sk2[32];
+ unsigned char sk3[32];
+ unsigned char msg[32];
+ secp256k1_keypair keypairs[3];
+ secp256k1_keypair invalid_keypair = { 0 };
+ secp256k1_xonly_pubkey pk[3];
+ secp256k1_xonly_pubkey zero_pk;
+ unsigned char sig[64];
+
+ /** setup **/
+ secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
+ secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
+ secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+ int ecount;
+
+ secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
+
+ secp256k1_rand256(sk1);
+ secp256k1_rand256(sk2);
+ secp256k1_rand256(sk3);
+ secp256k1_rand256(msg);
+ CHECK(secp256k1_keypair_create(ctx, &keypairs[0], sk1) == 1);
+ CHECK(secp256k1_keypair_create(ctx, &keypairs[1], sk2) == 1);
+ CHECK(secp256k1_keypair_create(ctx, &keypairs[2], sk3) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[0], NULL, &keypairs[0]) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[1], NULL, &keypairs[1]) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[2], NULL, &keypairs[2]) == 1);
+ memset(&zero_pk, 0, sizeof(zero_pk));
+
+ /** main test body **/
+ ecount = 0;
+ CHECK(secp256k1_schnorrsig_sign(none, sig, msg, &keypairs[0], NULL, NULL) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_schnorrsig_sign(vrfy, sig, msg, &keypairs[0], NULL, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &keypairs[0], NULL, NULL) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_schnorrsig_sign(sign, NULL, msg, &keypairs[0], NULL, NULL) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_schnorrsig_sign(sign, sig, NULL, &keypairs[0], NULL, NULL) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, NULL, NULL, NULL) == 0);
+ CHECK(ecount == 5);
+ CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &invalid_keypair, NULL, NULL) == 0);
+ CHECK(ecount == 6);
+
+ ecount = 0;
+ CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &keypairs[0], NULL, NULL) == 1);
+ CHECK(secp256k1_schnorrsig_verify(none, sig, msg, &pk[0]) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_schnorrsig_verify(sign, sig, msg, &pk[0]) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, &pk[0]) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_schnorrsig_verify(vrfy, NULL, msg, &pk[0]) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_schnorrsig_verify(vrfy, sig, NULL, &pk[0]) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, NULL) == 0);
+ CHECK(ecount == 5);
+ CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, &zero_pk) == 0);
+ CHECK(ecount == 6);
+
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(vrfy);
+ secp256k1_context_destroy(both);
+}
+
+/* Checks that hash initialized by secp256k1_schnorrsig_sha256_tagged has the
+ * expected state. */
+void test_schnorrsig_sha256_tagged(void) {
+ char tag[17] = "BIP0340/challenge";
+ secp256k1_sha256 sha;
+ secp256k1_sha256 sha_optimized;
+
+ secp256k1_sha256_initialize_tagged(&sha, (unsigned char *) tag, sizeof(tag));
+ secp256k1_schnorrsig_sha256_tagged(&sha_optimized);
+ test_sha256_eq(&sha, &sha_optimized);
+}
+
+/* Helper function for schnorrsig_bip_vectors
+ * Signs the message and checks that it's the same as expected_sig. */
+void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, unsigned char *aux_rand, const unsigned char *msg, const unsigned char *expected_sig) {
+ unsigned char sig[64];
+ secp256k1_keypair keypair;
+ secp256k1_xonly_pubkey pk, pk_expected;
+
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, aux_rand));
+ CHECK(memcmp(sig, expected_sig, 64) == 0);
+
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk_expected, pk_serialized));
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair));
+ CHECK(memcmp(&pk, &pk_expected, sizeof(pk)) == 0);
+ CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, &pk));
+}
+
+/* Helper function for schnorrsig_bip_vectors
+ * Checks that both verify and verify_batch (TODO) return the same value as expected. */
+void test_schnorrsig_bip_vectors_check_verify(const unsigned char *pk_serialized, const unsigned char *msg32, const unsigned char *sig, int expected) {
+ secp256k1_xonly_pubkey pk;
+
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk, pk_serialized));
+ CHECK(expected == secp256k1_schnorrsig_verify(ctx, sig, msg32, &pk));
+}
+
+/* Test vectors according to BIP-340 ("Schnorr Signatures for secp256k1"). See
+ * https://github.com/bitcoin/bips/blob/master/bip-0340/test-vectors.csv. */
+void test_schnorrsig_bip_vectors(void) {
+ {
+ /* Test vector 0 */
+ const unsigned char sk[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
+ };
+ const unsigned char pk[32] = {
+ 0xF9, 0x30, 0x8A, 0x01, 0x92, 0x58, 0xC3, 0x10,
+ 0x49, 0x34, 0x4F, 0x85, 0xF8, 0x9D, 0x52, 0x29,
+ 0xB5, 0x31, 0xC8, 0x45, 0x83, 0x6F, 0x99, 0xB0,
+ 0x86, 0x01, 0xF1, 0x13, 0xBC, 0xE0, 0x36, 0xF9
+ };
+ unsigned char aux_rand[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ };
+ const unsigned char msg[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ };
+ const unsigned char sig[64] = {
+ 0xE9, 0x07, 0x83, 0x1F, 0x80, 0x84, 0x8D, 0x10,
+ 0x69, 0xA5, 0x37, 0x1B, 0x40, 0x24, 0x10, 0x36,
+ 0x4B, 0xDF, 0x1C, 0x5F, 0x83, 0x07, 0xB0, 0x08,
+ 0x4C, 0x55, 0xF1, 0xCE, 0x2D, 0xCA, 0x82, 0x15,
+ 0x25, 0xF6, 0x6A, 0x4A, 0x85, 0xEA, 0x8B, 0x71,
+ 0xE4, 0x82, 0xA7, 0x4F, 0x38, 0x2D, 0x2C, 0xE5,
+ 0xEB, 0xEE, 0xE8, 0xFD, 0xB2, 0x17, 0x2F, 0x47,
+ 0x7D, 0xF4, 0x90, 0x0D, 0x31, 0x05, 0x36, 0xC0
+ };
+ test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
+ }
+ {
+ /* Test vector 1 */
+ const unsigned char sk[32] = {
+ 0xB7, 0xE1, 0x51, 0x62, 0x8A, 0xED, 0x2A, 0x6A,
+ 0xBF, 0x71, 0x58, 0x80, 0x9C, 0xF4, 0xF3, 0xC7,
+ 0x62, 0xE7, 0x16, 0x0F, 0x38, 0xB4, 0xDA, 0x56,
+ 0xA7, 0x84, 0xD9, 0x04, 0x51, 0x90, 0xCF, 0xEF
+ };
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ unsigned char aux_rand[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x68, 0x96, 0xBD, 0x60, 0xEE, 0xAE, 0x29, 0x6D,
+ 0xB4, 0x8A, 0x22, 0x9F, 0xF7, 0x1D, 0xFE, 0x07,
+ 0x1B, 0xDE, 0x41, 0x3E, 0x6D, 0x43, 0xF9, 0x17,
+ 0xDC, 0x8D, 0xCF, 0x8C, 0x78, 0xDE, 0x33, 0x41,
+ 0x89, 0x06, 0xD1, 0x1A, 0xC9, 0x76, 0xAB, 0xCC,
+ 0xB2, 0x0B, 0x09, 0x12, 0x92, 0xBF, 0xF4, 0xEA,
+ 0x89, 0x7E, 0xFC, 0xB6, 0x39, 0xEA, 0x87, 0x1C,
+ 0xFA, 0x95, 0xF6, 0xDE, 0x33, 0x9E, 0x4B, 0x0A
+ };
+ test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
+ }
+ {
+ /* Test vector 2 */
+ const unsigned char sk[32] = {
+ 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
+ 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
+ 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
+ 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x14, 0xE5, 0xC9
+ };
+ const unsigned char pk[32] = {
+ 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13,
+ 0x12, 0x1F, 0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC,
+ 0x01, 0x39, 0x71, 0x53, 0x09, 0xB0, 0x86, 0xC9,
+ 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8
+ };
+ unsigned char aux_rand[32] = {
+ 0xC8, 0x7A, 0xA5, 0x38, 0x24, 0xB4, 0xD7, 0xAE,
+ 0x2E, 0xB0, 0x35, 0xA2, 0xB5, 0xBB, 0xBC, 0xCC,
+ 0x08, 0x0E, 0x76, 0xCD, 0xC6, 0xD1, 0x69, 0x2C,
+ 0x4B, 0x0B, 0x62, 0xD7, 0x98, 0xE6, 0xD9, 0x06
+ };
+ const unsigned char msg[32] = {
+ 0x7E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A,
+ 0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D,
+ 0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33,
+ 0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C
+ };
+ const unsigned char sig[64] = {
+ 0x58, 0x31, 0xAA, 0xEE, 0xD7, 0xB4, 0x4B, 0xB7,
+ 0x4E, 0x5E, 0xAB, 0x94, 0xBA, 0x9D, 0x42, 0x94,
+ 0xC4, 0x9B, 0xCF, 0x2A, 0x60, 0x72, 0x8D, 0x8B,
+ 0x4C, 0x20, 0x0F, 0x50, 0xDD, 0x31, 0x3C, 0x1B,
+ 0xAB, 0x74, 0x58, 0x79, 0xA5, 0xAD, 0x95, 0x4A,
+ 0x72, 0xC4, 0x5A, 0x91, 0xC3, 0xA5, 0x1D, 0x3C,
+ 0x7A, 0xDE, 0xA9, 0x8D, 0x82, 0xF8, 0x48, 0x1E,
+ 0x0E, 0x1E, 0x03, 0x67, 0x4A, 0x6F, 0x3F, 0xB7
+ };
+ test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
+ }
+ {
+ /* Test vector 3 */
+ const unsigned char sk[32] = {
+ 0x0B, 0x43, 0x2B, 0x26, 0x77, 0x93, 0x73, 0x81,
+ 0xAE, 0xF0, 0x5B, 0xB0, 0x2A, 0x66, 0xEC, 0xD0,
+ 0x12, 0x77, 0x30, 0x62, 0xCF, 0x3F, 0xA2, 0x54,
+ 0x9E, 0x44, 0xF5, 0x8E, 0xD2, 0x40, 0x17, 0x10
+ };
+ const unsigned char pk[32] = {
+ 0x25, 0xD1, 0xDF, 0xF9, 0x51, 0x05, 0xF5, 0x25,
+ 0x3C, 0x40, 0x22, 0xF6, 0x28, 0xA9, 0x96, 0xAD,
+ 0x3A, 0x0D, 0x95, 0xFB, 0xF2, 0x1D, 0x46, 0x8A,
+ 0x1B, 0x33, 0xF8, 0xC1, 0x60, 0xD8, 0xF5, 0x17
+ };
+ unsigned char aux_rand[32] = {
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+ };
+ const unsigned char msg[32] = {
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+ };
+ const unsigned char sig[64] = {
+ 0x7E, 0xB0, 0x50, 0x97, 0x57, 0xE2, 0x46, 0xF1,
+ 0x94, 0x49, 0x88, 0x56, 0x51, 0x61, 0x1C, 0xB9,
+ 0x65, 0xEC, 0xC1, 0xA1, 0x87, 0xDD, 0x51, 0xB6,
+ 0x4F, 0xDA, 0x1E, 0xDC, 0x96, 0x37, 0xD5, 0xEC,
+ 0x97, 0x58, 0x2B, 0x9C, 0xB1, 0x3D, 0xB3, 0x93,
+ 0x37, 0x05, 0xB3, 0x2B, 0xA9, 0x82, 0xAF, 0x5A,
+ 0xF2, 0x5F, 0xD7, 0x88, 0x81, 0xEB, 0xB3, 0x27,
+ 0x71, 0xFC, 0x59, 0x22, 0xEF, 0xC6, 0x6E, 0xA3
+ };
+ test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
+ }
+ {
+ /* Test vector 4 */
+ const unsigned char pk[32] = {
+ 0xD6, 0x9C, 0x35, 0x09, 0xBB, 0x99, 0xE4, 0x12,
+ 0xE6, 0x8B, 0x0F, 0xE8, 0x54, 0x4E, 0x72, 0x83,
+ 0x7D, 0xFA, 0x30, 0x74, 0x6D, 0x8B, 0xE2, 0xAA,
+ 0x65, 0x97, 0x5F, 0x29, 0xD2, 0x2D, 0xC7, 0xB9
+ };
+ const unsigned char msg[32] = {
+ 0x4D, 0xF3, 0xC3, 0xF6, 0x8F, 0xCC, 0x83, 0xB2,
+ 0x7E, 0x9D, 0x42, 0xC9, 0x04, 0x31, 0xA7, 0x24,
+ 0x99, 0xF1, 0x78, 0x75, 0xC8, 0x1A, 0x59, 0x9B,
+ 0x56, 0x6C, 0x98, 0x89, 0xB9, 0x69, 0x67, 0x03
+ };
+ const unsigned char sig[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x3B, 0x78, 0xCE, 0x56, 0x3F,
+ 0x89, 0xA0, 0xED, 0x94, 0x14, 0xF5, 0xAA, 0x28,
+ 0xAD, 0x0D, 0x96, 0xD6, 0x79, 0x5F, 0x9C, 0x63,
+ 0x76, 0xAF, 0xB1, 0x54, 0x8A, 0xF6, 0x03, 0xB3,
+ 0xEB, 0x45, 0xC9, 0xF8, 0x20, 0x7D, 0xEE, 0x10,
+ 0x60, 0xCB, 0x71, 0xC0, 0x4E, 0x80, 0xF5, 0x93,
+ 0x06, 0x0B, 0x07, 0xD2, 0x83, 0x08, 0xD7, 0xF4
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
+ }
+ {
+ /* Test vector 5 */
+ const unsigned char pk[32] = {
+ 0xEE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77, 0x50,
+ 0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF, 0x21,
+ 0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76, 0x87,
+ 0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A, 0x34
+ };
+ secp256k1_xonly_pubkey pk_parsed;
+ /* No need to check the signature of the test vector as parsing the pubkey already fails */
+ CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk_parsed, pk));
+ }
+ {
+ /* Test vector 6 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0xFF, 0xF9, 0x7B, 0xD5, 0x75, 0x5E, 0xEE, 0xA4,
+ 0x20, 0x45, 0x3A, 0x14, 0x35, 0x52, 0x35, 0xD3,
+ 0x82, 0xF6, 0x47, 0x2F, 0x85, 0x68, 0xA1, 0x8B,
+ 0x2F, 0x05, 0x7A, 0x14, 0x60, 0x29, 0x75, 0x56,
+ 0x3C, 0xC2, 0x79, 0x44, 0x64, 0x0A, 0xC6, 0x07,
+ 0xCD, 0x10, 0x7A, 0xE1, 0x09, 0x23, 0xD9, 0xEF,
+ 0x7A, 0x73, 0xC6, 0x43, 0xE1, 0x66, 0xBE, 0x5E,
+ 0xBE, 0xAF, 0xA3, 0x4B, 0x1A, 0xC5, 0x53, 0xE2
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 7 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x1F, 0xA6, 0x2E, 0x33, 0x1E, 0xDB, 0xC2, 0x1C,
+ 0x39, 0x47, 0x92, 0xD2, 0xAB, 0x11, 0x00, 0xA7,
+ 0xB4, 0x32, 0xB0, 0x13, 0xDF, 0x3F, 0x6F, 0xF4,
+ 0xF9, 0x9F, 0xCB, 0x33, 0xE0, 0xE1, 0x51, 0x5F,
+ 0x28, 0x89, 0x0B, 0x3E, 0xDB, 0x6E, 0x71, 0x89,
+ 0xB6, 0x30, 0x44, 0x8B, 0x51, 0x5C, 0xE4, 0xF8,
+ 0x62, 0x2A, 0x95, 0x4C, 0xFE, 0x54, 0x57, 0x35,
+ 0xAA, 0xEA, 0x51, 0x34, 0xFC, 0xCD, 0xB2, 0xBD
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 8 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x6C, 0xFF, 0x5C, 0x3B, 0xA8, 0x6C, 0x69, 0xEA,
+ 0x4B, 0x73, 0x76, 0xF3, 0x1A, 0x9B, 0xCB, 0x4F,
+ 0x74, 0xC1, 0x97, 0x60, 0x89, 0xB2, 0xD9, 0x96,
+ 0x3D, 0xA2, 0xE5, 0x54, 0x3E, 0x17, 0x77, 0x69,
+ 0x96, 0x17, 0x64, 0xB3, 0xAA, 0x9B, 0x2F, 0xFC,
+ 0xB6, 0xEF, 0x94, 0x7B, 0x68, 0x87, 0xA2, 0x26,
+ 0xE8, 0xD7, 0xC9, 0x3E, 0x00, 0xC5, 0xED, 0x0C,
+ 0x18, 0x34, 0xFF, 0x0D, 0x0C, 0x2E, 0x6D, 0xA6
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 9 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x12, 0x3D, 0xDA, 0x83, 0x28, 0xAF, 0x9C, 0x23,
+ 0xA9, 0x4C, 0x1F, 0xEE, 0xCF, 0xD1, 0x23, 0xBA,
+ 0x4F, 0xB7, 0x34, 0x76, 0xF0, 0xD5, 0x94, 0xDC,
+ 0xB6, 0x5C, 0x64, 0x25, 0xBD, 0x18, 0x60, 0x51
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 10 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x76, 0x15, 0xFB, 0xAF, 0x5A, 0xE2, 0x88, 0x64,
+ 0x01, 0x3C, 0x09, 0x97, 0x42, 0xDE, 0xAD, 0xB4,
+ 0xDB, 0xA8, 0x7F, 0x11, 0xAC, 0x67, 0x54, 0xF9,
+ 0x37, 0x80, 0xD5, 0xA1, 0x83, 0x7C, 0xF1, 0x97
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 11 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x4A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
+ 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
+ 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
+ 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
+ 0x69, 0xE8, 0x9B, 0x4C, 0x55, 0x64, 0xD0, 0x03,
+ 0x49, 0x10, 0x6B, 0x84, 0x97, 0x78, 0x5D, 0xD7,
+ 0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F,
+ 0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 12 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F,
+ 0x69, 0xE8, 0x9B, 0x4C, 0x55, 0x64, 0xD0, 0x03,
+ 0x49, 0x10, 0x6B, 0x84, 0x97, 0x78, 0x5D, 0xD7,
+ 0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F,
+ 0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 13 */
+ const unsigned char pk[32] = {
+ 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
+ 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
+ 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
+ 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
+ };
+ const unsigned char msg[32] = {
+ 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
+ 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
+ 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
+ 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
+ };
+ const unsigned char sig[64] = {
+ 0x6C, 0xFF, 0x5C, 0x3B, 0xA8, 0x6C, 0x69, 0xEA,
+ 0x4B, 0x73, 0x76, 0xF3, 0x1A, 0x9B, 0xCB, 0x4F,
+ 0x74, 0xC1, 0x97, 0x60, 0x89, 0xB2, 0xD9, 0x96,
+ 0x3D, 0xA2, 0xE5, 0x54, 0x3E, 0x17, 0x77, 0x69,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
+ 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
+ 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41
+ };
+ test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
+ }
+ {
+ /* Test vector 14 */
+ const unsigned char pk[32] = {
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30
+ };
+ secp256k1_xonly_pubkey pk_parsed;
+ /* No need to check the signature of the test vector as parsing the pubkey already fails */
+ CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk_parsed, pk));
+ }
+}
+
+/* Nonce function that returns constant 0 */
+static int nonce_function_failing(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
+ (void) msg32;
+ (void) key32;
+ (void) xonly_pk32;
+ (void) algo16;
+ (void) data;
+ (void) nonce32;
+ return 0;
+}
+
+/* Nonce function that sets nonce to 0 */
+static int nonce_function_0(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
+ (void) msg32;
+ (void) key32;
+ (void) xonly_pk32;
+ (void) algo16;
+ (void) data;
+
+ memset(nonce32, 0, 32);
+ return 1;
+}
+
+/* Nonce function that sets nonce to 0xFF...0xFF */
+static int nonce_function_overflowing(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
+ (void) msg32;
+ (void) key32;
+ (void) xonly_pk32;
+ (void) algo16;
+ (void) data;
+
+ memset(nonce32, 0xFF, 32);
+ return 1;
+}
+
+void test_schnorrsig_sign(void) {
+ unsigned char sk[32];
+ secp256k1_keypair keypair;
+ const unsigned char msg[32] = "this is a msg for a schnorrsig..";
+ unsigned char sig[64];
+ unsigned char zeros64[64] = { 0 };
+
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1);
+
+ /* Test different nonce functions */
+ memset(sig, 1, sizeof(sig));
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_failing, NULL) == 0);
+ CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0);
+ memset(&sig, 1, sizeof(sig));
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_0, NULL) == 0);
+ CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0);
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_overflowing, NULL) == 1);
+ CHECK(memcmp(sig, zeros64, sizeof(sig)) != 0);
+}
+
+#define N_SIGS 3
+/* Creates N_SIGS valid signatures and verifies them with verify and
+ * verify_batch (TODO). Then flips some bits and checks that verification now
+ * fails. */
+void test_schnorrsig_sign_verify(void) {
+ unsigned char sk[32];
+ unsigned char msg[N_SIGS][32];
+ unsigned char sig[N_SIGS][64];
+ size_t i;
+ secp256k1_keypair keypair;
+ secp256k1_xonly_pubkey pk;
+ secp256k1_scalar s;
+
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair));
+
+ for (i = 0; i < N_SIGS; i++) {
+ secp256k1_rand256(msg[i]);
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig[i], msg[i], &keypair, NULL, NULL));
+ CHECK(secp256k1_schnorrsig_verify(ctx, sig[i], msg[i], &pk));
+ }
+
+ {
+ /* Flip a few bits in the signature and in the message and check that
+ * verify and verify_batch (TODO) fail */
+ size_t sig_idx = secp256k1_rand_int(N_SIGS);
+ size_t byte_idx = secp256k1_rand_int(32);
+ unsigned char xorbyte = secp256k1_rand_int(254)+1;
+ sig[sig_idx][byte_idx] ^= xorbyte;
+ CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
+ sig[sig_idx][byte_idx] ^= xorbyte;
+
+ byte_idx = secp256k1_rand_int(32);
+ sig[sig_idx][32+byte_idx] ^= xorbyte;
+ CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
+ sig[sig_idx][32+byte_idx] ^= xorbyte;
+
+ byte_idx = secp256k1_rand_int(32);
+ msg[sig_idx][byte_idx] ^= xorbyte;
+ CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
+ msg[sig_idx][byte_idx] ^= xorbyte;
+
+ /* Check that above bitflips have been reversed correctly */
+ CHECK(secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
+ }
+
+ /* Test overflowing s */
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig[0], msg[0], &keypair, NULL, NULL));
+ CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
+ memset(&sig[0][32], 0xFF, 32);
+ CHECK(!secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
+
+ /* Test negative s */
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig[0], msg[0], &keypair, NULL, NULL));
+ CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
+ secp256k1_scalar_set_b32(&s, &sig[0][32], NULL);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_scalar_get_b32(&sig[0][32], &s);
+ CHECK(!secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
+}
+#undef N_SIGS
+
+void test_schnorrsig_taproot(void) {
+ unsigned char sk[32];
+ secp256k1_keypair keypair;
+ secp256k1_xonly_pubkey internal_pk;
+ unsigned char internal_pk_bytes[32];
+ secp256k1_xonly_pubkey output_pk;
+ unsigned char output_pk_bytes[32];
+ unsigned char tweak[32];
+ int pk_parity;
+ unsigned char msg[32];
+ unsigned char sig[64];
+
+ /* Create output key */
+ secp256k1_rand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
+ /* In actual taproot the tweak would be hash of internal_pk */
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, tweak, &internal_pk) == 1);
+ CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
+ CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk_bytes, &output_pk) == 1);
+
+ /* Key spend */
+ secp256k1_rand256(msg);
+ CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1);
+ /* Verify key spend */
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &output_pk, output_pk_bytes) == 1);
+ CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, &output_pk) == 1);
+
+ /* Script spend */
+ CHECK(secp256k1_xonly_pubkey_serialize(ctx, internal_pk_bytes, &internal_pk) == 1);
+ /* Verify script spend */
+ CHECK(secp256k1_xonly_pubkey_parse(ctx, &internal_pk, internal_pk_bytes) == 1);
+ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk_bytes, pk_parity, &internal_pk, tweak) == 1);
+}
+
+void run_schnorrsig_tests(void) {
+ int i;
+ run_nonce_function_bip340_tests();
+
+ test_schnorrsig_api();
+ test_schnorrsig_sha256_tagged();
+ test_schnorrsig_bip_vectors();
+ for (i = 0; i < count; i++) {
+ test_schnorrsig_sign();
+ test_schnorrsig_sign_verify();
+ }
+ test_schnorrsig_taproot();
+}
+
+#endif
diff --git a/src/secp256k1/src/scalar.h b/src/secp256k1/src/scalar.h
index 2a74703523..95d3e326c9 100644
--- a/src/secp256k1/src/scalar.h
+++ b/src/secp256k1/src/scalar.h
@@ -8,6 +8,7 @@
#define SECP256K1_SCALAR_H
#include "num.h"
+#include "util.h"
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
@@ -15,12 +16,12 @@
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low.h"
-#elif defined(USE_SCALAR_4X64)
+#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64.h"
-#elif defined(USE_SCALAR_8X32)
+#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32.h"
#else
-#error "Please select scalar implementation"
+#error "Please select wide multiplication implementation"
#endif
/** Clear a scalar to prevent the leak of sensitive data. */
diff --git a/src/secp256k1/src/scalar_4x64_impl.h b/src/secp256k1/src/scalar_4x64_impl.h
index 8f539c4bc6..7f39927861 100644
--- a/src/secp256k1/src/scalar_4x64_impl.h
+++ b/src/secp256k1/src/scalar_4x64_impl.h
@@ -192,9 +192,9 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
- th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
+ th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
c1 += th; /* overflow is handled on the next line */ \
- c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
+ c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}
@@ -207,7 +207,7 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
- th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
+ th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
c1 += th; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK(c1 >= th); \
}
@@ -221,16 +221,16 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
tl = t; \
} \
th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
- c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ c2 += (th2 < th); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
- th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
+ th2 += (tl2 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
c0 += tl2; /* overflow is handled on the next line */ \
- th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
+ th2 += (c0 < tl2); /* second overflow is handled on the next line */ \
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
c1 += th2; /* overflow is handled on the next line */ \
- c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ c2 += (c1 < th2); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
}
@@ -238,15 +238,15 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
#define sumadd(a) { \
unsigned int over; \
c0 += (a); /* overflow is handled on the next line */ \
- over = (c0 < (a)) ? 1 : 0; \
+ over = (c0 < (a)); \
c1 += over; /* overflow is handled on the next line */ \
- c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
+ c2 += (c1 < over); /* never overflows by contract */ \
}
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
c0 += (a); /* overflow is handled on the next line */ \
- c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
VERIFY_CHECK(c2 == 0); \
}
diff --git a/src/secp256k1/src/scalar_8x32_impl.h b/src/secp256k1/src/scalar_8x32_impl.h
index 3c372f34fe..f8c7fa7efa 100644
--- a/src/secp256k1/src/scalar_8x32_impl.h
+++ b/src/secp256k1/src/scalar_8x32_impl.h
@@ -271,9 +271,9 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
- th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
+ th += (c0 < tl); /* at most 0xFFFFFFFF */ \
c1 += th; /* overflow is handled on the next line */ \
- c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
+ c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}
@@ -286,7 +286,7 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
- th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
+ th += (c0 < tl); /* at most 0xFFFFFFFF */ \
c1 += th; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK(c1 >= th); \
}
@@ -300,16 +300,16 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
tl = t; \
} \
th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
- c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ c2 += (th2 < th); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
- th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
+ th2 += (tl2 < tl); /* at most 0xFFFFFFFF */ \
c0 += tl2; /* overflow is handled on the next line */ \
- th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
+ th2 += (c0 < tl2); /* second overflow is handled on the next line */ \
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
c1 += th2; /* overflow is handled on the next line */ \
- c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ c2 += (c1 < th2); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
}
@@ -317,15 +317,15 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
#define sumadd(a) { \
unsigned int over; \
c0 += (a); /* overflow is handled on the next line */ \
- over = (c0 < (a)) ? 1 : 0; \
+ over = (c0 < (a)); \
c1 += over; /* overflow is handled on the next line */ \
- c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
+ c2 += (c1 < over); /* never overflows by contract */ \
}
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
c0 += (a); /* overflow is handled on the next line */ \
- c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
VERIFY_CHECK(c2 == 0); \
}
diff --git a/src/secp256k1/src/scalar_impl.h b/src/secp256k1/src/scalar_impl.h
index 70cd73db06..2ec04b1ae9 100644
--- a/src/secp256k1/src/scalar_impl.h
+++ b/src/secp256k1/src/scalar_impl.h
@@ -16,12 +16,12 @@
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low_impl.h"
-#elif defined(USE_SCALAR_4X64)
+#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64_impl.h"
-#elif defined(USE_SCALAR_8X32)
+#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32_impl.h"
#else
-#error "Please select scalar implementation"
+#error "Please select wide multiplication implementation"
#endif
static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
diff --git a/src/secp256k1/src/scratch_impl.h b/src/secp256k1/src/scratch_impl.h
index 4cee700001..b205620224 100644
--- a/src/secp256k1/src/scratch_impl.h
+++ b/src/secp256k1/src/scratch_impl.h
@@ -11,7 +11,7 @@
#include "scratch.h"
static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t size) {
- const size_t base_alloc = ((sizeof(secp256k1_scratch) + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT;
+ const size_t base_alloc = ROUND_TO_ALIGN(sizeof(secp256k1_scratch));
void *alloc = checked_malloc(error_callback, base_alloc + size);
secp256k1_scratch* ret = (secp256k1_scratch *)alloc;
if (ret != NULL) {
@@ -60,6 +60,10 @@ static size_t secp256k1_scratch_max_allocation(const secp256k1_callback* error_c
secp256k1_callback_call(error_callback, "invalid scratch space");
return 0;
}
+ /* Ensure that multiplication will not wrap around */
+ if (ALIGNMENT > 1 && objects > SIZE_MAX/(ALIGNMENT - 1)) {
+ return 0;
+ }
if (scratch->max_size - scratch->alloc_size <= objects * (ALIGNMENT - 1)) {
return 0;
}
@@ -68,7 +72,14 @@ static size_t secp256k1_scratch_max_allocation(const secp256k1_callback* error_c
static void *secp256k1_scratch_alloc(const secp256k1_callback* error_callback, secp256k1_scratch* scratch, size_t size) {
void *ret;
- size = ROUND_TO_ALIGN(size);
+ size_t rounded_size;
+
+ rounded_size = ROUND_TO_ALIGN(size);
+ /* Check that rounding did not wrap around */
+ if (rounded_size < size) {
+ return NULL;
+ }
+ size = rounded_size;
if (memcmp(scratch->magic, "scratch", 8) != 0) {
secp256k1_callback_call(error_callback, "invalid scratch space");
diff --git a/src/secp256k1/src/secp256k1.c b/src/secp256k1/src/secp256k1.c
index b03a6e6345..eaafb3a21d 100644
--- a/src/secp256k1/src/secp256k1.c
+++ b/src/secp256k1/src/secp256k1.c
@@ -7,6 +7,7 @@
#include "include/secp256k1.h"
#include "include/secp256k1_preallocated.h"
+#include "assumptions.h"
#include "util.h"
#include "num_impl.h"
#include "field_impl.h"
@@ -19,6 +20,7 @@
#include "eckey_impl.h"
#include "hash_impl.h"
#include "scratch_impl.h"
+#include "selftest.h"
#if defined(VALGRIND)
# include <valgrind/memcheck.h>
@@ -117,6 +119,9 @@ secp256k1_context* secp256k1_context_preallocated_create(void* prealloc, unsigne
size_t prealloc_size;
secp256k1_context* ret;
+ if (!secp256k1_selftest()) {
+ secp256k1_callback_call(&default_error_callback, "self test failed");
+ }
VERIFY_CHECK(prealloc != NULL);
prealloc_size = secp256k1_context_preallocated_size(flags);
ret = (secp256k1_context*)manual_alloc(&prealloc, sizeof(secp256k1_context), base, prealloc_size);
@@ -226,7 +231,7 @@ void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scr
* of the software. This is setup for use with valgrind but could be substituted with
* the appropriate instrumentation for other analysis tools.
*/
-static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context* ctx, void *p, size_t len) {
+static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context* ctx, const void *p, size_t len) {
#if defined(VALGRIND)
if (EXPECT(ctx->declassify,0)) VALGRIND_MAKE_MEM_DEFINED(p, len);
#else
@@ -291,7 +296,7 @@ int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *o
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(outputlen != NULL);
- ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
+ ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33u : 65u));
len = *outputlen;
*outputlen = 0;
ARG_CHECK(output != NULL);
@@ -548,10 +553,21 @@ int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char
return ret;
}
-int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
+static int secp256k1_ec_pubkey_create_helper(const secp256k1_ecmult_gen_context *ecmult_gen_ctx, secp256k1_scalar *seckey_scalar, secp256k1_ge *p, const unsigned char *seckey) {
secp256k1_gej pj;
+ int ret;
+
+ ret = secp256k1_scalar_set_b32_seckey(seckey_scalar, seckey);
+ secp256k1_scalar_cmov(seckey_scalar, &secp256k1_scalar_one, !ret);
+
+ secp256k1_ecmult_gen(ecmult_gen_ctx, &pj, seckey_scalar);
+ secp256k1_ge_set_gej(p, &pj);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
secp256k1_ge p;
- secp256k1_scalar sec;
+ secp256k1_scalar seckey_scalar;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
@@ -559,15 +575,11 @@ int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *p
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey != NULL);
- ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
- secp256k1_scalar_cmov(&sec, &secp256k1_scalar_one, !ret);
-
- secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
- secp256k1_ge_set_gej(&p, &pj);
+ ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey);
secp256k1_pubkey_save(pubkey, &p);
memczero(pubkey, sizeof(*pubkey), !ret);
- secp256k1_scalar_clear(&sec);
+ secp256k1_scalar_clear(&seckey_scalar);
return ret;
}
@@ -605,24 +617,31 @@ int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *p
return ret;
}
-int secp256k1_ec_seckey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
+
+static int secp256k1_ec_seckey_tweak_add_helper(secp256k1_scalar *sec, const unsigned char *tweak) {
secp256k1_scalar term;
+ int overflow = 0;
+ int ret = 0;
+
+ secp256k1_scalar_set_b32(&term, tweak, &overflow);
+ ret = (!overflow) & secp256k1_eckey_privkey_tweak_add(sec, &term);
+ secp256k1_scalar_clear(&term);
+ return ret;
+}
+
+int secp256k1_ec_seckey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
secp256k1_scalar sec;
int ret = 0;
- int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
- secp256k1_scalar_set_b32(&term, tweak, &overflow);
ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
-
- ret &= (!overflow) & secp256k1_eckey_privkey_tweak_add(&sec, &term);
+ ret &= secp256k1_ec_seckey_tweak_add_helper(&sec, tweak);
secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret);
secp256k1_scalar_get_b32(seckey, &sec);
secp256k1_scalar_clear(&sec);
- secp256k1_scalar_clear(&term);
return ret;
}
@@ -630,25 +649,26 @@ int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *
return secp256k1_ec_seckey_tweak_add(ctx, seckey, tweak);
}
+static int secp256k1_ec_pubkey_tweak_add_helper(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_ge *p, const unsigned char *tweak) {
+ secp256k1_scalar term;
+ int overflow = 0;
+ secp256k1_scalar_set_b32(&term, tweak, &overflow);
+ return !overflow && secp256k1_eckey_pubkey_tweak_add(ecmult_ctx, p, &term);
+}
+
int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
secp256k1_ge p;
- secp256k1_scalar term;
int ret = 0;
- int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkey != NULL);
ARG_CHECK(tweak != NULL);
- secp256k1_scalar_set_b32(&term, tweak, &overflow);
- ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
+ ret = secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
+ ret = ret && secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &p, tweak);
if (ret) {
- if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
- secp256k1_pubkey_save(pubkey, &p);
- } else {
- ret = 0;
- }
+ secp256k1_pubkey_save(pubkey, &p);
}
return ret;
@@ -741,3 +761,11 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *
#ifdef ENABLE_MODULE_RECOVERY
# include "modules/recovery/main_impl.h"
#endif
+
+#ifdef ENABLE_MODULE_EXTRAKEYS
+# include "modules/extrakeys/main_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORRSIG
+# include "modules/schnorrsig/main_impl.h"
+#endif
diff --git a/src/secp256k1/src/selftest.h b/src/secp256k1/src/selftest.h
new file mode 100644
index 0000000000..885983aa20
--- /dev/null
+++ b/src/secp256k1/src/selftest.h
@@ -0,0 +1,32 @@
+/**********************************************************************
+ * Copyright (c) 2020 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef SECP256K1_SELFTEST_H
+#define SECP256K1_SELFTEST_H
+
+#include "hash.h"
+
+#include <string.h>
+
+static int secp256k1_selftest_sha256(void) {
+ static const char *input63 = "For this sample, this 63-byte string will be used as input data";
+ static const unsigned char output32[32] = {
+ 0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e,
+ 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42,
+ };
+ unsigned char out[32];
+ secp256k1_sha256 hasher;
+ secp256k1_sha256_initialize(&hasher);
+ secp256k1_sha256_write(&hasher, (const unsigned char*)input63, 63);
+ secp256k1_sha256_finalize(&hasher, out);
+ return memcmp(out, output32, 32) == 0;
+}
+
+static int secp256k1_selftest(void) {
+ return secp256k1_selftest_sha256();
+}
+
+#endif /* SECP256K1_SELFTEST_H */
diff --git a/src/secp256k1/src/testrand.h b/src/secp256k1/src/testrand.h
index f1f9be077e..bcbe15a6f1 100644
--- a/src/secp256k1/src/testrand.h
+++ b/src/secp256k1/src/testrand.h
@@ -35,4 +35,7 @@ static void secp256k1_rand256_test(unsigned char *b32);
/** Generate pseudorandom bytes with long sequences of zero and one bits. */
static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len);
+/** Flip a single random bit in a byte array */
+static void secp256k1_rand_flip(unsigned char *b, size_t len);
+
#endif /* SECP256K1_TESTRAND_H */
diff --git a/src/secp256k1/src/testrand_impl.h b/src/secp256k1/src/testrand_impl.h
index 30a91e5296..dfb658d9c6 100644
--- a/src/secp256k1/src/testrand_impl.h
+++ b/src/secp256k1/src/testrand_impl.h
@@ -107,4 +107,8 @@ static void secp256k1_rand256_test(unsigned char *b32) {
secp256k1_rand_bytes_test(b32, 32);
}
+static void secp256k1_rand_flip(unsigned char *b, size_t len) {
+ b[secp256k1_rand_int(len)] ^= (1 << secp256k1_rand_int(8));
+}
+
#endif /* SECP256K1_TESTRAND_IMPL_H */
diff --git a/src/secp256k1/src/tests.c b/src/secp256k1/src/tests.c
index 374ed7dc12..4780e9319b 100644
--- a/src/secp256k1/src/tests.c
+++ b/src/secp256k1/src/tests.c
@@ -182,8 +182,10 @@ void run_context_tests(int use_prealloc) {
ecount2 = 10;
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount2);
- secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, NULL);
- CHECK(vrfy->error_callback.fn != sign->error_callback.fn);
+ /* set error callback (to a function that still aborts in case malloc() fails in secp256k1_context_clone() below) */
+ secp256k1_context_set_error_callback(sign, secp256k1_default_illegal_callback_fn, NULL);
+ CHECK(sign->error_callback.fn != vrfy->error_callback.fn);
+ CHECK(sign->error_callback.fn == secp256k1_default_illegal_callback_fn);
/* check if sizes for cloning are consistent */
CHECK(secp256k1_context_preallocated_clone_size(none) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE));
@@ -239,7 +241,8 @@ void run_context_tests(int use_prealloc) {
}
/* Verify that the error callback makes it across the clone. */
- CHECK(vrfy->error_callback.fn != sign->error_callback.fn);
+ CHECK(sign->error_callback.fn != vrfy->error_callback.fn);
+ CHECK(sign->error_callback.fn == secp256k1_default_illegal_callback_fn);
/* And that it resets back to default. */
secp256k1_context_set_error_callback(sign, NULL, NULL);
CHECK(vrfy->error_callback.fn == sign->error_callback.fn);
@@ -361,8 +364,8 @@ void run_scratch_tests(void) {
CHECK(scratch->alloc_size != 0);
CHECK(scratch->alloc_size % ALIGNMENT == 0);
- /* Allocating another 500 bytes fails */
- CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) == NULL);
+ /* Allocating another 501 bytes fails */
+ CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 501) == NULL);
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc);
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1));
CHECK(scratch->alloc_size != 0);
@@ -395,6 +398,18 @@ void run_scratch_tests(void) {
secp256k1_scratch_space_destroy(none, scratch);
CHECK(ecount == 5);
+ /* Test that large integers do not wrap around in a bad way */
+ scratch = secp256k1_scratch_space_create(none, 1000);
+ /* Try max allocation with a large number of objects. Only makes sense if
+ * ALIGNMENT is greater than 1 because otherwise the objects take no extra
+ * space. */
+ CHECK(ALIGNMENT <= 1 || !secp256k1_scratch_max_allocation(&none->error_callback, scratch, (SIZE_MAX / (ALIGNMENT - 1)) + 1));
+ /* Try allocating SIZE_MAX to test wrap around which only happens if
+ * ALIGNMENT > 1, otherwise it returns NULL anyway because the scratch
+ * space is too small. */
+ CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, SIZE_MAX) == NULL);
+ secp256k1_scratch_space_destroy(none, scratch);
+
/* cleanup */
secp256k1_scratch_space_destroy(none, NULL); /* no-op */
secp256k1_context_destroy(none);
@@ -2215,6 +2230,9 @@ void test_ge(void) {
/* Normal doubling. */
secp256k1_gej_double_var(&resj, &gej[i2], NULL);
ge_equals_gej(&ref, &resj);
+ /* Constant-time doubling. */
+ secp256k1_gej_double(&resj, &gej[i2]);
+ ge_equals_gej(&ref, &resj);
}
/* Test adding opposites. */
@@ -2300,6 +2318,39 @@ void test_ge(void) {
free(zinv);
}
+
+void test_intialized_inf(void) {
+ secp256k1_ge p;
+ secp256k1_gej pj, npj, infj1, infj2, infj3;
+ secp256k1_fe zinv;
+
+ /* Test that adding P+(-P) results in a fully initalized infinity*/
+ random_group_element_test(&p);
+ secp256k1_gej_set_ge(&pj, &p);
+ secp256k1_gej_neg(&npj, &pj);
+
+ secp256k1_gej_add_var(&infj1, &pj, &npj, NULL);
+ CHECK(secp256k1_gej_is_infinity(&infj1));
+ CHECK(secp256k1_fe_is_zero(&infj1.x));
+ CHECK(secp256k1_fe_is_zero(&infj1.y));
+ CHECK(secp256k1_fe_is_zero(&infj1.z));
+
+ secp256k1_gej_add_ge_var(&infj2, &npj, &p, NULL);
+ CHECK(secp256k1_gej_is_infinity(&infj2));
+ CHECK(secp256k1_fe_is_zero(&infj2.x));
+ CHECK(secp256k1_fe_is_zero(&infj2.y));
+ CHECK(secp256k1_fe_is_zero(&infj2.z));
+
+ secp256k1_fe_set_int(&zinv, 1);
+ secp256k1_gej_add_zinv_var(&infj3, &npj, &p, &zinv);
+ CHECK(secp256k1_gej_is_infinity(&infj3));
+ CHECK(secp256k1_fe_is_zero(&infj3.x));
+ CHECK(secp256k1_fe_is_zero(&infj3.y));
+ CHECK(secp256k1_fe_is_zero(&infj3.z));
+
+
+}
+
void test_add_neg_y_diff_x(void) {
/* The point of this test is to check that we can add two points
* whose y-coordinates are negatives of each other but whose x
@@ -2373,6 +2424,7 @@ void run_ge(void) {
test_ge();
}
test_add_neg_y_diff_x();
+ test_intialized_inf();
}
void test_ec_combine(void) {
@@ -2967,14 +3019,16 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e
void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_multi) {
secp256k1_scalar szero;
- secp256k1_scalar sc[32];
- secp256k1_ge pt[32];
+ secp256k1_scalar sc;
+ secp256k1_ge pt;
secp256k1_gej r;
ecmult_multi_data data;
secp256k1_scratch *scratch_empty;
- data.sc = sc;
- data.pt = pt;
+ random_group_element_test(&pt);
+ random_scalar_order(&sc);
+ data.sc = &sc;
+ data.pt = &pt;
secp256k1_scalar_set_int(&szero, 0);
/* Try to multiply 1 point, but scratch space is empty.*/
@@ -3232,6 +3286,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
int skew;
int bits = 256;
secp256k1_scalar num = *number;
+ secp256k1_scalar scalar_skew;
secp256k1_scalar_set_int(&x, 0);
secp256k1_scalar_set_int(&shift, 1 << w);
@@ -3262,7 +3317,8 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
secp256k1_scalar_add(&x, &x, &t);
}
/* Skew num because when encoding numbers as odd we use an offset */
- secp256k1_scalar_cadd_bit(&num, skew == 2, 1);
+ secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2));
+ secp256k1_scalar_add(&num, &num, &scalar_skew);
CHECK(secp256k1_scalar_eq(&x, &num));
}
@@ -3374,13 +3430,32 @@ void run_wnaf(void) {
int i;
secp256k1_scalar n = {{0}};
+ test_constant_wnaf(&n, 4);
/* Sanity check: 1 and 2 are the smallest odd and even numbers and should
* have easier-to-diagnose failure modes */
n.d[0] = 1;
test_constant_wnaf(&n, 4);
n.d[0] = 2;
test_constant_wnaf(&n, 4);
- /* Test 0 */
+ /* Test -1, because it's a special case in wnaf_const */
+ n = secp256k1_scalar_one;
+ secp256k1_scalar_negate(&n, &n);
+ test_constant_wnaf(&n, 4);
+
+ /* Test -2, which may not lead to overflows in wnaf_const */
+ secp256k1_scalar_add(&n, &secp256k1_scalar_one, &secp256k1_scalar_one);
+ secp256k1_scalar_negate(&n, &n);
+ test_constant_wnaf(&n, 4);
+
+ /* Test (1/2) - 1 = 1/-2 and 1/2 = (1/-2) + 1
+ as corner cases of negation handling in wnaf_const */
+ secp256k1_scalar_inverse(&n, &n);
+ test_constant_wnaf(&n, 4);
+
+ secp256k1_scalar_add(&n, &n, &secp256k1_scalar_one);
+ test_constant_wnaf(&n, 4);
+
+ /* Test 0 for fixed wnaf */
test_fixed_wnaf_small();
/* Random tests */
for (i = 0; i < count; i++) {
@@ -5277,6 +5352,14 @@ void run_ecdsa_openssl(void) {
# include "modules/recovery/tests_impl.h"
#endif
+#ifdef ENABLE_MODULE_EXTRAKEYS
+# include "modules/extrakeys/tests_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORRSIG
+# include "modules/schnorrsig/tests_impl.h"
+#endif
+
void run_memczero_test(void) {
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
unsigned char buf2[sizeof(buf1)];
@@ -5583,6 +5666,14 @@ int main(int argc, char **argv) {
run_recovery_tests();
#endif
+#ifdef ENABLE_MODULE_EXTRAKEYS
+ run_extrakeys_tests();
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORRSIG
+ run_schnorrsig_tests();
+#endif
+
/* util tests */
run_memczero_test();
diff --git a/src/secp256k1/src/tests_exhaustive.c b/src/secp256k1/src/tests_exhaustive.c
index 8cca1cef21..681ed80bd0 100644
--- a/src/secp256k1/src/tests_exhaustive.c
+++ b/src/secp256k1/src/tests_exhaustive.c
@@ -22,6 +22,7 @@
#endif
#include "include/secp256k1.h"
+#include "assumptions.h"
#include "group.h"
#include "secp256k1.c"
#include "testrand_impl.h"
@@ -141,10 +142,8 @@ void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *gr
/* Check doubling */
for (i = 0; i < order; i++) {
secp256k1_gej tmp;
- if (i > 0) {
- secp256k1_gej_double_nonzero(&tmp, &groupj[i]);
- ge_equals_gej(&group[(2 * i) % order], &tmp);
- }
+ secp256k1_gej_double(&tmp, &groupj[i]);
+ ge_equals_gej(&group[(2 * i) % order], &tmp);
secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
ge_equals_gej(&group[(2 * i) % order], &tmp);
}
diff --git a/src/secp256k1/src/util.h b/src/secp256k1/src/util.h
index 8289e23e0c..a5cbe03ef5 100644
--- a/src/secp256k1/src/util.h
+++ b/src/secp256k1/src/util.h
@@ -170,13 +170,35 @@ static SECP256K1_INLINE void *manual_alloc(void** prealloc_ptr, size_t alloc_siz
# define I64uFORMAT "llu"
#endif
-#if defined(HAVE___INT128)
-# if defined(__GNUC__)
-# define SECP256K1_GNUC_EXT __extension__
-# else
-# define SECP256K1_GNUC_EXT
+#if defined(__GNUC__)
+# define SECP256K1_GNUC_EXT __extension__
+#else
+# define SECP256K1_GNUC_EXT
+#endif
+
+/* If SECP256K1_{LITTLE,BIG}_ENDIAN is not explicitly provided, infer from various other system macros. */
+#if !defined(SECP256K1_LITTLE_ENDIAN) && !defined(SECP256K1_BIG_ENDIAN)
+/* Inspired by https://github.com/rofl0r/endianness.h/blob/9853923246b065a3b52d2c43835f3819a62c7199/endianness.h#L52L73 */
+# if (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || \
+ defined(_X86_) || defined(__x86_64__) || defined(__i386__) || \
+ defined(__i486__) || defined(__i586__) || defined(__i686__) || \
+ defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) || \
+ defined(__ARMEL__) || defined(__AARCH64EL__) || \
+ (defined(__LITTLE_ENDIAN__) && __LITTLE_ENDIAN__ == 1) || \
+ (defined(_LITTLE_ENDIAN) && _LITTLE_ENDIAN == 1) || \
+ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_ARM) /* MSVC */
+# define SECP256K1_LITTLE_ENDIAN
# endif
-SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t;
+# if (defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) || \
+ defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) || \
+ defined(__MICROBLAZEEB__) || defined(__ARMEB__) || defined(__AARCH64EB__) || \
+ (defined(__BIG_ENDIAN__) && __BIG_ENDIAN__ == 1) || \
+ (defined(_BIG_ENDIAN) && _BIG_ENDIAN == 1)
+# define SECP256K1_BIG_ENDIAN
+# endif
+#endif
+#if defined(SECP256K1_LITTLE_ENDIAN) == defined(SECP256K1_BIG_ENDIAN)
+# error Please make sure that either SECP256K1_LITTLE_ENDIAN or SECP256K1_BIG_ENDIAN is set, see src/util.h.
#endif
/* Zero memory if flag == 1. Flag must be 0 or 1. Constant time. */
@@ -197,10 +219,15 @@ static SECP256K1_INLINE void memczero(void *s, size_t len, int flag) {
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized and non-negative.*/
static SECP256K1_INLINE void secp256k1_int_cmov(int *r, const int *a, int flag) {
unsigned int mask0, mask1, r_masked, a_masked;
+ /* Access flag with a volatile-qualified lvalue.
+ This prevents clang from figuring out (after inlining) that flag can
+ take only be 0 or 1, which leads to variable time code. */
+ volatile int vflag = flag;
+
/* Casting a negative int to unsigned and back to int is implementation defined behavior */
VERIFY_CHECK(*r >= 0 && *a >= 0);
- mask0 = (unsigned int)flag + ~0u;
+ mask0 = (unsigned int)vflag + ~0u;
mask1 = ~mask0;
r_masked = ((unsigned int)*r & mask0);
a_masked = ((unsigned int)*a & mask1);
@@ -208,4 +235,21 @@ static SECP256K1_INLINE void secp256k1_int_cmov(int *r, const int *a, int flag)
*r = (int)(r_masked | a_masked);
}
+/* If USE_FORCE_WIDEMUL_{INT128,INT64} is set, use that wide multiplication implementation.
+ * Otherwise use the presence of __SIZEOF_INT128__ to decide.
+ */
+#if defined(USE_FORCE_WIDEMUL_INT128)
+# define SECP256K1_WIDEMUL_INT128 1
+#elif defined(USE_FORCE_WIDEMUL_INT64)
+# define SECP256K1_WIDEMUL_INT64 1
+#elif defined(__SIZEOF_INT128__)
+# define SECP256K1_WIDEMUL_INT128 1
+#else
+# define SECP256K1_WIDEMUL_INT64 1
+#endif
+#if defined(SECP256K1_WIDEMUL_INT128)
+SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t;
+SECP256K1_GNUC_EXT typedef __int128 int128_t;
+#endif
+
#endif /* SECP256K1_UTIL_H */
diff --git a/src/secp256k1/src/valgrind_ctime_test.c b/src/secp256k1/src/valgrind_ctime_test.c
index 60a82d599e..e676a8326c 100644
--- a/src/secp256k1/src/valgrind_ctime_test.c
+++ b/src/secp256k1/src/valgrind_ctime_test.c
@@ -6,6 +6,7 @@
#include <valgrind/memcheck.h>
#include "include/secp256k1.h"
+#include "assumptions.h"
#include "util.h"
#if ENABLE_MODULE_ECDH
@@ -16,6 +17,14 @@
# include "include/secp256k1_recovery.h"
#endif
+#if ENABLE_MODULE_EXTRAKEYS
+# include "include/secp256k1_extrakeys.h"
+#endif
+
+#if ENABLE_MODULE_SCHNORRSIG
+#include "include/secp256k1_schnorrsig.h"
+#endif
+
int main(void) {
secp256k1_context* ctx;
secp256k1_ecdsa_signature signature;
@@ -32,6 +41,9 @@ int main(void) {
secp256k1_ecdsa_recoverable_signature recoverable_signature;
int recid;
#endif
+#if ENABLE_MODULE_EXTRAKEYS
+ secp256k1_keypair keypair;
+#endif
if (!RUNNING_ON_VALGRIND) {
fprintf(stderr, "This test can only usefully be run inside valgrind.\n");
@@ -49,7 +61,9 @@ int main(void) {
msg[i] = i + 1;
}
- ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_DECLASSIFY);
+ ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN
+ | SECP256K1_CONTEXT_VERIFY
+ | SECP256K1_CONTEXT_DECLASSIFY);
/* Test keygen. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
@@ -114,6 +128,30 @@ int main(void) {
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
+ /* Test keypair_create and keypair_xonly_tweak_add. */
+#if ENABLE_MODULE_EXTRAKEYS
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ ret = secp256k1_keypair_create(ctx, &keypair, key);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+
+ /* The tweak is not treated as a secret in keypair_tweak_add */
+ VALGRIND_MAKE_MEM_DEFINED(msg, 32);
+ ret = secp256k1_keypair_xonly_tweak_add(ctx, &keypair, msg);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+#endif
+
+#if ENABLE_MODULE_SCHNORRSIG
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ ret = secp256k1_keypair_create(ctx, &keypair, key);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+ ret = secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+#endif
+
secp256k1_context_destroy(ctx);
return 0;
}
diff --git a/src/test/crypto_tests.cpp b/src/test/crypto_tests.cpp
index b3cc8cefd9..0ad5066603 100644
--- a/src/test/crypto_tests.cpp
+++ b/src/test/crypto_tests.cpp
@@ -12,6 +12,7 @@
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
+#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <random.h>
#include <test/util/setup_common.h>
@@ -750,4 +751,110 @@ BOOST_AUTO_TEST_CASE(sha256d64)
}
}
+static void TestSHA3_256(const std::string& input, const std::string& output)
+{
+ const auto in_bytes = ParseHex(input);
+ const auto out_bytes = ParseHex(output);
+
+ SHA3_256 sha;
+ // Hash the whole thing.
+ unsigned char out[SHA3_256::OUTPUT_SIZE];
+ sha.Write(in_bytes).Finalize(out);
+ assert(out_bytes.size() == sizeof(out));
+ BOOST_CHECK(std::equal(std::begin(out_bytes), std::end(out_bytes), out));
+
+ // Reset and split randomly in 3
+ sha.Reset();
+ int s1 = InsecureRandRange(in_bytes.size() + 1);
+ int s2 = InsecureRandRange(in_bytes.size() + 1 - s1);
+ int s3 = in_bytes.size() - s1 - s2;
+ sha.Write(MakeSpan(in_bytes).first(s1)).Write(MakeSpan(in_bytes).subspan(s1, s2));
+ sha.Write(MakeSpan(in_bytes).last(s3)).Finalize(out);
+ BOOST_CHECK(std::equal(std::begin(out_bytes), std::end(out_bytes), out));
+}
+
+BOOST_AUTO_TEST_CASE(keccak_tests)
+{
+ // Start with the zero state.
+ uint64_t state[25] = {0};
+ CSHA256 tester;
+ for (int i = 0; i < 262144; ++i) {
+ KeccakF(state);
+ for (int j = 0; j < 25; ++j) {
+ unsigned char buf[8];
+ WriteLE64(buf, state[j]);
+ tester.Write(buf, 8);
+ }
+ }
+ uint256 out;
+ tester.Finalize(out.begin());
+ // Expected hash of the concatenated serialized states after 1...262144 iterations of KeccakF.
+ // Verified against an independent implementation.
+ BOOST_CHECK_EQUAL(out.ToString(), "5f4a7f2eca7d57740ef9f1a077b4fc67328092ec62620447fe27ad8ed5f7e34f");
+}
+
+BOOST_AUTO_TEST_CASE(sha3_256_tests)
+{
+ // Test vectors from https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bytetestvectors.zip
+
+ // SHA3-256 Short test vectors (SHA3_256ShortMsg.rsp)
+ TestSHA3_256("", "a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a");
+ TestSHA3_256("e9", "f0d04dd1e6cfc29a4460d521796852f25d9ef8d28b44ee91ff5b759d72c1e6d6");
+ TestSHA3_256("d477", "94279e8f5ccdf6e17f292b59698ab4e614dfe696a46c46da78305fc6a3146ab7");
+ TestSHA3_256("b053fa", "9d0ff086cd0ec06a682c51c094dc73abdc492004292344bd41b82a60498ccfdb");
+ TestSHA3_256("e7372105", "3a42b68ab079f28c4ca3c752296f279006c4fe78b1eb79d989777f051e4046ae");
+ TestSHA3_256("0296f2c40a", "53a018937221081d09ed0497377e32a1fa724025dfdc1871fa503d545df4b40d");
+ TestSHA3_256("e6fd42037f80", "2294f8d3834f24aa9037c431f8c233a66a57b23fa3de10530bbb6911f6e1850f");
+ TestSHA3_256("37b442385e0538", "cfa55031e716bbd7a83f2157513099e229a88891bb899d9ccd317191819998f8");
+ TestSHA3_256("8bca931c8a132d2f", "dbb8be5dec1d715bd117b24566dc3f24f2cc0c799795d0638d9537481ef1e03e");
+ TestSHA3_256("fb8dfa3a132f9813ac", "fd09b3501888445ffc8c3bb95d106440ceee469415fce1474743273094306e2e");
+ TestSHA3_256("71fbacdbf8541779c24a", "cc4e5a216b01f987f24ab9cad5eb196e89d32ed4aac85acb727e18e40ceef00e");
+ TestSHA3_256("7e8f1fd1882e4a7c49e674", "79bef78c78aa71e11a3375394c2562037cd0f82a033b48a6cc932cc43358fd9e");
+ TestSHA3_256("5c56a6b18c39e66e1b7a993a", "b697556cb30d6df448ee38b973cb6942559de4c2567b1556240188c55ec0841c");
+ TestSHA3_256("9c76ca5b6f8d1212d8e6896ad8", "69dfc3a25865f3535f18b4a7bd9c0c69d78455f1fc1f4bf4e29fc82bf32818ec");
+ TestSHA3_256("687ff7485b7eb51fe208f6ff9a1b", "fe7e68ae3e1a91944e4d1d2146d9360e5333c099a256f3711edc372bc6eeb226");
+ TestSHA3_256("4149f41be1d265e668c536b85dde41", "229a7702448c640f55dafed08a52aa0b1139657ba9fc4c5eb8587e174ecd9b92");
+ TestSHA3_256("d83c721ee51b060c5a41438a8221e040", "b87d9e4722edd3918729ded9a6d03af8256998ee088a1ae662ef4bcaff142a96");
+ TestSHA3_256("266e8cbd3e73d80df2a49cfdaf0dc39cd1", "6c2de3c95900a1bcec6bd4ca780056af4acf3aa36ee640474b6e870187f59361");
+ TestSHA3_256("a1d7ce5104eb25d6131bb8f66e1fb13f3523", "ee9062f39720b821b88be5e64621d7e0ca026a9fe7248d78150b14bdbaa40bed");
+ TestSHA3_256("d751ccd2cd65f27db539176920a70057a08a6b", "7aaca80dbeb8dc3677d18b84795985463650d72f2543e0ec709c9e70b8cd7b79");
+ TestSHA3_256("b32dec58865ab74614ea982efb93c08d9acb1bb0", "6a12e535dbfddab6d374058d92338e760b1a211451a6c09be9b61ee22f3bb467");
+ TestSHA3_256("4e0cc4f5c6dcf0e2efca1f9f129372e2dcbca57ea6", "d2b7717864e9438dd02a4f8bb0203b77e2d3cd8f8ffcf9dc684e63de5ef39f0d");
+ TestSHA3_256("d16d978dfbaecf2c8a04090f6eebdb421a5a711137a6", "7f497913318defdc60c924b3704b65ada7ca3ba203f23fb918c6fb03d4b0c0da");
+ TestSHA3_256("47249c7cb85d8f0242ab240efd164b9c8b0bd3104bba3b", "435e276f06ae73aa5d5d6018f58e0f009be351eada47b677c2f7c06455f384e7");
+ TestSHA3_256("cf549a383c0ac31eae870c40867eeb94fa1b6f3cac4473f2", "cdfd1afa793e48fd0ee5b34dfc53fbcee43e9d2ac21515e4746475453ab3831f");
+ TestSHA3_256("9b3fdf8d448680840d6284f2997d3af55ffd85f6f4b33d7f8d", "25005d10e84ff97c74a589013be42fb37f68db64bdfc7626efc0dd628077493a");
+ TestSHA3_256("6b22fe94be2d0b2528d9847e127eb6c7d6967e7ec8b9660e77cc", "157a52b0477639b3bc179667b35c1cdfbb3eef845e4486f0f84a526e940b518c");
+ TestSHA3_256("d8decafdad377904a2789551135e782e302aed8450a42cfb89600c", "3ddecf5bba51643cd77ebde2141c8545f862067b209990d4cb65bfa65f4fa0c0");
+ TestSHA3_256("938fe6afdbf14d1229e03576e532f078898769e20620ae2164f5abfa", "9511abd13c756772b852114578ef9b96f9dc7d0f2b8dcde6ea7d1bd14c518890");
+ TestSHA3_256("66eb5e7396f5b451a02f39699da4dbc50538fb10678ec39a5e28baa3c0", "540acf81810a199996a612e885781308802fe460e9c638cc022e17076be8597a");
+ TestSHA3_256("de98968c8bd9408bd562ac6efbca2b10f5769aacaa01365763e1b2ce8048", "6b2f2547781449d4fa158180a178ef68d7056121bf8a2f2f49891afc24978521");
+ TestSHA3_256("94464e8fafd82f630e6aab9aa339d981db0a372dc5c1efb177305995ae2dc0", "ea7952ad759653cd47a18004ac2dbb9cf4a1e7bba8a530cf070570c711a634ea");
+ TestSHA3_256("c178ce0f720a6d73c6cf1caa905ee724d5ba941c2e2628136e3aad7d853733ba", "64537b87892835ff0963ef9ad5145ab4cfce5d303a0cb0415b3b03f9d16e7d6b");
+ TestSHA3_256("14365d3301150d7c5ba6bb8c1fc26e9dab218fc5d01c9ed528b72482aadee9c27bef667907797d55514468f68791f053daa2df598d7db7d54beea493bdcbb0c75c7b36ad84b9996dca96354190bd96d9d7fbe8ff54ffaf77c55eb92985da50825ee3b4179f5ec88b6fa60bb361d0caf9493494fe4d28ef843f0f498a2a9331b82a", "9b690531dee948a9c559a2e0efab2ec824151a9175f2730a030b748d07cbaa7f");
+ TestSHA3_256("4a757db93f6d4c6529211d70d5f8491799c0f73ae7f24bbd2138db2eaf2c63a85063b9f7adaa03fc348f275323248334e3ffdf9798859f9cf6693d29566ff7d50976c505ecb58e543c459b39acdf4ce4b5e80a682eaa7c1f1ce5fe4acb864ff91eb6892b23165735ea49626898b40ceeb78161f5d0ea4a103cb404d937f9d1dc362b", "1ac7cc7e2e8ea14fb1b90096f41265100712c5dd41519d78b2786cfb6355af72");
+ TestSHA3_256("da11c39c77250f6264dda4b096341ff9c4cc2c900633b20ea1664bf32193f790a923112488f882450cf334819bbaca46ffb88eff0265aa803bc79ca42739e4347c6bff0bb9aa99780261ffe42be0d3b5135d03723338fb2776841a0b4bc26360f9ef769b34c2bec5ed2feb216e2fa30fa5c37430c0360ecbfba3af6fb6b8dedacbb95c", "c163cd43de224ac5c262ae39db746cfcad66074ebaec4a6da23d86b310520f21");
+ TestSHA3_256("3341ca020d4835838b0d6c8f93aaaebb7af60730d208c85283f6369f1ee27fd96d38f2674f316ef9c29c1b6b42dd59ec5236f65f5845a401adceaa4cf5bbd91cac61c21102052634e99faedd6cdddcd4426b42b6a372f29a5a5f35f51ce580bb1845a3c7cfcd447d269e8caeb9b320bb731f53fe5c969a65b12f40603a685afed86bfe53", "6c3e93f2b49f493344cc3eb1e9454f79363032beee2f7ea65b3d994b5cae438f");
+ TestSHA3_256("989fc49594afc73405bacee4dbbe7135804f800368de39e2ea3bbec04e59c6c52752927ee3aa233ba0d8aab5410240f4c109d770c8c570777c928fce9a0bec9bc5156c821e204f0f14a9ab547e0319d3e758ae9e28eb2dbc3d9f7acf51bd52f41bf23aeb6d97b5780a35ba08b94965989744edd3b1d6d67ad26c68099af85f98d0f0e4fff9", "b10adeb6a9395a48788931d45a7b4e4f69300a76d8b716c40c614c3113a0f051");
+ TestSHA3_256("e5022f4c7dfe2dbd207105e2f27aaedd5a765c27c0bc60de958b49609440501848ccf398cf66dfe8dd7d131e04f1432f32827a057b8904d218e68ba3b0398038d755bd13d5f168cfa8a11ab34c0540873940c2a62eace3552dcd6953c683fdb29983d4e417078f1988c560c9521e6f8c78997c32618fc510db282a985f868f2d973f82351d11", "3293a4b9aeb8a65e1014d3847500ffc8241594e9c4564cbd7ce978bfa50767fe");
+ TestSHA3_256("b1f6076509938432145bb15dbe1a7b2e007934be5f753908b50fd24333455970a7429f2ffbd28bd6fe1804c4688311f318fe3fcd9f6744410243e115bcb00d7e039a4fee4c326c2d119c42abd2e8f4155a44472643704cc0bc72403b8a8ab0fd4d68e04a059d6e5ed45033b906326abb4eb4147052779bad6a03b55ca5bd8b140e131bed2dfada", "f82d9602b231d332d902cb6436b15aef89acc591cb8626233ced20c0a6e80d7a");
+ TestSHA3_256("56ea14d7fcb0db748ff649aaa5d0afdc2357528a9aad6076d73b2805b53d89e73681abfad26bee6c0f3d20215295f354f538ae80990d2281be6de0f6919aa9eb048c26b524f4d91ca87b54c0c54aa9b54ad02171e8bf31e8d158a9f586e92ffce994ecce9a5185cc80364d50a6f7b94849a914242fcb73f33a86ecc83c3403630d20650ddb8cd9c4", "4beae3515ba35ec8cbd1d94567e22b0d7809c466abfbafe9610349597ba15b45");
+
+ // SHA3-256 Long test vectors (SHA3_256LongMsg.rsp)
+ TestSHA3_256("b1caa396771a09a1db9bc20543e988e359d47c2a616417bbca1b62cb02796a888fc6eeff5c0b5c3d5062fcb4256f6ae1782f492c1cf03610b4a1fb7b814c057878e1190b9835425c7a4a0e182ad1f91535ed2a35033a5d8c670e21c575ff43c194a58a82d4a1a44881dd61f9f8161fc6b998860cbe4975780be93b6f87980bad0a99aa2cb7556b478ca35d1f3746c33e2bb7c47af426641cc7bbb3425e2144820345e1d0ea5b7da2c3236a52906acdc3b4d34e474dd714c0c40bf006a3a1d889a632983814bbc4a14fe5f159aa89249e7c738b3b73666bac2a615a83fd21ae0a1ce7352ade7b278b587158fd2fabb217aa1fe31d0bda53272045598015a8ae4d8cec226fefa58daa05500906c4d85e7567", "cb5648a1d61c6c5bdacd96f81c9591debc3950dcf658145b8d996570ba881a05");
+ TestSHA3_256("712b03d9ebe78d3a032a612939c518a6166ca9a161183a7596aa35b294d19d1f962da3ff64b57494cb5656e24adcf3b50e16f4e52135d2d9de76e94aa801cf49db10e384035329c54c9455bb3a9725fd9a44f44cb9078d18d3783d46ce372c31281aecef2f8b53d5702b863d71bc5786a33dd15d9256103b5ff7572f703d5cde6695e6c84f239acd1d6512ef581330590f4ab2a114ea064a693d5f8df5d908587bc7f998cde4a8b43d8821595566597dc8b3bf9ea78b154bd8907ee6c5d4d8a851f94be510962292b7ddda04d17b79fab4c022deb400e5489639dbc448f573d5cf72073a8001b36f73ac6677351b39d9bdb900e9a1121f488a7fa0aee60682e7dc7c531c85ec0154593ded3ae70e4121cae58445d8896b549cacf22d07cdace7625d57158721b44851d796d6511c38dac28dd37cbf2d7073b407fbc813149adc485e3dacee66755443c389d2d90dc70d8ff91816c0c5d7adbad7e30772a1f3ce76c72a6a2284ec7f174aefb6e9a895c118717999421b470a9665d2728c3c60c6d3e048d58b43c0d1b5b2f00be8b64bfe453d1e8fadf5699331f9", "095dcd0bc55206d2e1e715fb7173fc16a81979f278495dfc69a6d8f3174eba5a");
+ TestSHA3_256("2a459282195123ebc6cf5782ab611a11b9487706f7795e236df3a476404f4b8c1e9904e2dc5ef29c5e06b179b8649707928c3913d1e53164747f1fa9bba6eeaf8fb759d71e32adc8c611d061345882f1cdeee3ab4cab3554adb2e43f4b01c37b4546994b25f4dcd6c497bc206865643930157cb5b2f4f25be235fa223688535907efcc253bcd083021407ea09cb1c34684aa0c1849e7efe2d9af6938c46525af9e5afb4da6e5b83da4b61dc718672a8090549cbe5aadb44f5bc93a6b3fbdc2e6d32e2eaaae637465179ea17f23ad1e4f1ebc328e2c6dc90c302b74a1edbbb0676c136b269d70c41040a313af06ab291bf489d9700950b77f207c1fc41884799931b3bca8b93331a6e96b7a3f0a8bd24cdb64964c377e0512f36444bb0643a4e3ecb328194cd5428fd89ede167472a14a9bf5730aff1e3b2c708de96eff1ebaaf63beb75f9c7d8034d6e5471e8f8a1f7efce37793a958e134619c19c54d3d42645f7a7263f25471fbaae8be3ea2fbd34ec6d7aacd7d5680948c3cd9a837c9c469a88f600d95829f4d1e4e4a5ef4ed4623c07815a1c33d9fb3b91333ff04eac92806a68a46cf2e9293f8bff466ce87fe66b46fbff7c238c7f9b2c92eb2fdc7d8084167f6f4e680d03301e5c33f78f1857d6863b1b8c36c7fce3e07d2a96a8979712079ae0023a1e3970165bfcf3a5463d2a4fdf1ca0e044f9a247528cd935734cb6d85ba53ceb95325c0eaf0ff5cd81ecb32e58917eb26bfc52dba3704bf5a927fee3220", "cb1c691c87244c0caf733aacd427f83412cd48820b358c1b15dd9fadee54e5af");
+ TestSHA3_256("32659902674c94473a283be00835eb86339d394a189a87da41dad500db27da6b6a4753b2bb219c961a227d88c6df466ba2fc1e9a2d4c982db4398778c76714d5e9940da48bc3808f3c9989131a07683b8c29d6af336e9aee1dfa57d83c48a86f17146edec07869bb06550689ebf4788159ed0a921048b4a6e3e3ec272413bec15d8e1f6a40897fa0e11d9df223ef9fc270106249ae220fdc6ebdef6d6611805421ccc850f53ee9c836baf657a94005883b5a85def344d218264f07b2ea8714afcc941096c6ded0bb6bf5b8bf652fd15a21931c58c9f526e27363ddff98c0a25bc7af9f469ab35bffea948b333f042cc18a82cec0177f33c3bdbf185b580353de79e51e675b03b31e195f19ba1f063d44def0441dc52820426c2c61cf12974ec249fd3502f017ffa06220075ced7e2d6b86a52677ba3916e8e8726062aec5bc8ea1c18b1e4137680b2c9d002191b423bee8691bd7e0f93c3b9959bc1c14d5c5cbe8f7c9c336aa16e9de9faa12f3f048c66d04cb441eb2bbc5e8a91e052c0f9000856896f9b7ba30c1e2eead36fc7ac30a7d3ddfc65caaba0e3b292d26dfba46b5e2dc9bc9acadde1c9f52b2969299bd1281ddff65822b629cfba2928613200e73661b803afdcc4a817d9361389e975e67dfadd22a797bdaf991ddf42db18711c079ecec55925f9978e478612609bacd900172011c27e24bad639ffc24a23877278318872153aef6893ccb5b68b94b33154df7334375aadd3edbb35272cc7b672dec68faa62900873ded52f6049891b77f2d0311a84b19b73660e09d1f1998095c1da1edecfa9f741b5fd6db048dd68255085d43529279021d59ed853470d6863b7c8e07fcb0d1e6acfb1eb16f7f60bb1f46ce70493010e57930a3b4b8b87e065272f6f1dd31df057627f4214e58798b664e1e40960f2789d44ccacfb3dbd8b02a68a053976711f8034c1ed3a8", "5ac9275e02543410359a3f364b2ae3b85763321fd6d374d13fe54314e5561b01");
+ TestSHA3_256("a65da8277a3b3738432bca9822d43b3d810cdad3b0ed2468d02bd269f1a416cd77392190c2dde8630eeb28a297bda786017abe9cf82f14751422ac9fff6322d5d9a33173db49792d3bc37fff501af667f7ca3dd335d028551e04039ef5a9d42a9443e1b80ea872fd945ad8999514ae4a29a35f60b0f7e971b67ae04d1ba1b53470c03847a3225c3ddf593a57aed3599661ae2d2bb1cddd2fa62c4a94b8704c5c35c33e08e2debe54e567ae21e27e7eb36593ae1c807a8ef8b5c1495b15412108aaf3fce4130520aa6e2d3bdf7b3ea609fdf9ea1c64258435aae2e58a7b3abda198f979c17dbe0aa74253e979bf3a5800f388ea11a7f7454c4e36270a3083a790c77cbe89693205b32880c0d8f79b1c000ee9b5e58f175ba7696616c17c45673cff25d1221f899836e95cc9e26a887a7115c4537e65ad4eacc319ba98a9a8860c089cbc76e7ea4c984d900b80622afbbbd1c0cdc670e3a4c523f81c77fed38b6aa988876b097da8411cc48e9b25a826460a862aa3fadfe75952aa4347c2effebdac9138ebcc6c34991e9f5b19fc2b847a87be72ff49c99ecf19d837ee3e23686cd760d9dd7adc78091bca79e42fdb9bc0120faec1a6ca52913e2a0156ba9850e1f39d712859f7fdf7daedf0e206dff67e7121e5d1590a8a068947a8657d753e83c7f009b6b2e54acc24afc9fdc9601a1d6d9d1f17aab0ce96c4d83405d1e3baba1dffa86ecccee7f1c1b80b1bbf859106ce2b647ae1e4a6a9b584ae1dfc0a4deebb755638f1d95dcc79b1be263177e2a05c72bde545d09ba726f41d9547117e876af81bfc672e33c71442eb05675d9552df1b313d1f9934f9ddd08955fa21d6edf23000a277f6f149591299a0a96032861ecdc96bb76afa05a2bffb445d61dc891bc70c13695920b911cad0df3fa842a3e2318c57556974343f69794cb8fa18c1ad624835857e4781041198aa705c4d11f3ef82e941be2aee7a770e54521312fe6facbaf1138eee08fa90fae986a5d93719aeb30ac292a49c1d91bf4574d553a92a4a6c305ab09db6bbeffd84c7aa707f1c1628a0220d6ba4ee5e960566686228a6e766d8a30dddf30ed5aa637c949950c3d0e894a7560670b6879a7d70f3c7e5ab29aed236cc3527bdea076fec8add12d784fbcf9a", "68f62c418a6b97026cc70f6abf8419b671ee373709fa13074e37bd39f0a50fcb");
+ TestSHA3_256("460f8c7aac921fa9a55800b1d04cf981717c78217cd43f98f02c5c0e66865c2eea90bcce0971a0d22bc1c74d24d9bfea054e558b38b8502fccb85f190d394f2f58f581a02d3b9cc986f07f5a67d57ab4b707bd964ecc10f94f8cc538b81eeb743746c537407b7b575ced0e1ec4c691a72eb0978be798e8be22b278b390be99c730896fdc69b6a44456be5ee261366e8b1351cbb22aa53e45ec325ed2bca0bfeeebc867d7d07681581b6d56ed66ac78280df04053407a7b57561261dd644cc7b20f0a95709e42795b5402dd89fcb11746c597e0b650a008bc085c681bb24b17db4458e1effba3f414a883ddfc4bccb3ace24d9223839d4b3ca9185ad5cc24193134b9339b0e205a4cc0fa3d8f7a85b4230d1b3ee101fbae9ee14c2153da5f337c853573bd004114cb436ee58ab1648373ee07cc39f14198ac5a02a4dd0585cf83dfd4899df88e8859dae8bc351af286642c1c25737bf8712cb941cbbb741d540feb9f5d831f901fbe2d6facd7dab626bd705f2fd7c9a7a0e7a9127e3451af2ae8509dd7b79dce41c1e30b9dba1c38cb4861dad3ac00d68fa5d07ba591c1c3b9d6b7d6e08099d0572ca4c475240601decba894fa3c4b0ea52ed687281beee268a1c8535e283b1fc7c51aa31d5ec098c50fec958acdd0d54a49643bef170093a1102a1b3bf5ad42fb55ebaf7db07385eadcd6e66da8b7b6e6c022a1e3d01f5fccec86365d3014c159a3bff17d614751b3fa0e8e89152936e159b7c0ea8d71cd4ffd83adae209b254b793f6f06bb63838a303b95c85b4edfa4ddcca0ed952165930bca87140f67f5389d1233fe04f0a3d647050410c44d389513084ad53155af00de02cc7943a3b988d8e1454f85153aff0816e24b964ec91dc514c588a93634ff3dd485c40575faa2f254abdf86fbcf6d381337601a7b1ba5b99719f045eb7bf6f2e8b9dd9d053ef0b3126f984fc9ea87a2a70b3798fab593b83a4ff44d9c0c4ec3e570ac537c10d9e3c4996027a813b70d7867b858f31f508aa56e7b087370707974b2186f02f5c549112f2158c0d365402e52cba18fe245f77f7e6fbf952ec2dc3c880b38be771caea23bc22838b1f70472d558bdf585d9c77088b7ba2dceaeb3e6f96df7d91d47da1ec42be03936d621ecf747f24f9073c122923b4161d99bc8190e24f57b6fac952ed344c7eae86a5f43c08089c28c7daf3aa7e39c59d6f1e17ece1977caf6b4a77a6ff52774521b861f38ebc978005e5763cc97123e4d17c7bc4134c8f139c7d7a9a02646fef9525d2a6871fc99747e81430b3fec38c677427c6f5e2f16c14eee646ebf6eb16775ad0957f8684c7045f7826bc3736eca", "7d495ddf961cbff060f80b509f2b9e20bed95319eef61c7adb5edeec18e64713");
+ TestSHA3_256("c8a2a26587d0126abe9ba8031f37d8a7d18219c41fe639bc7281f32d7c83c376b7d8f9770e080d98d95b320c0f402d57b7ef680da04e42dd5211aacf4426ecca5050ca596312cfae79cee0e8c92e14913cc3c66b24ece86c2bfa99078991faad7b513e94f0b601b7853ddb1eb3c9345f47445a651389d070e482ea5db48d962820257daf1cbe4bb8e5f04a3637d836c8c1bc4d83d6eda5f165f2c2592be268412712ae324ef054bb812f56b8bc25c1d59071c64dd3e00df896924c84575817027861faa5f016c5c74142272daa767e8c9dacee4c732ab08b5fa9ad65a0b74c73fb5a889169f645e50d70e41d689415f7d0b4ec071e9238b5a88110856fc6ae9b9944817e21597d1ccd03b60e60472d1e11d3e9063de24a7b59609b6a2a4ee68238690cf2800614746941c48af9566e07494f0dd236e091e75a8f769e3b179b30c10f5277eec7b3f5c97337189b8b82bc5e717ff27355b2009356caa908e976ae1d7f7a94d36202a8d5e03641aeac0e453a8168ee5a0858ceecfcbf11fb8c1f033201add297a0a89476d2ea8b9a82bda8c3c7ef4f55c3295a4ecb7c607ac73d37eadc13b7a2494ec1928f7a80c8d534efe38a3d9ccb4ccdab9f092a1def6478532c5ad3cd5c259b3812600fa89e6d1e228114795d246cedc9c9fff0d1c1297a5ddfc1169c2efb3800df8dd18a8511214785abcc1bc7eb31bdb2f5f70358dfe860ed5a03ab7e95cc21df5ee7aee68be568d6985e5c1e91408e4432663b1c4e6d613d6dc382b5b900a4fc1b7a9c27a1138c5e2356ab9026c34465006602753daf6ab7427da93c307c901d0bb1ddb21c53bc0493dd8d857161e8ffa51fdecb75568243205aa979c2e7ed2a77b5f8edc34cffb0321a8c653bc381f96ab85a86bf0bb2c9518208d636eac40aa7ad754260a75d4a46362f994c90173b975afb0ee17601311b1c51ba562c1ca7e3c2dd18b90bdebb1858fe876c71b3ad742c4bcba33e7763c750098de856fde8731cb6d698218be9f0a98298630e5b374957d126cf0b1c489c48bab6b50f6fb59ee28be6c3916bbd16514234f80e1ac15d0215852b87f9c6e429eb9f85007bf6ae3de1af0202861fd177c7c4f51af533f956a051815815c6e51e25af20d02893e95442991f1de5f86a4397ae20d9f675657bf9f397267831e94cef4e4d287f759850350ce0898f2e29de3c5c41f4246fe998a8d1359a2bed36ded1e4d6b08682025843700fee8cab56703e342212870acdd53655255b35e414fa53d9810f47a37195f22d72f6e555392023a08adc282c585b2ae62e129efccdc9fe9617eecac12b2ecdabd247a1161a17750740f90ebed3520ceb17676f1fa87259815ff415c2794c5953f689c8d5407dbbd10d1241a986e265cea901af34ec1ded0323ca3290a317208ba865637af4797e65b9cfcad3b931bbf6ac896623e2f4408529172911f1b6a9bcae8279ec7e33452d0cd7b026b46a99cbe8a69cd4d21cdc6d3a84002fab527c4fd18a121526d49890ced3fb89beb384b524015a2e03c049241eb9", "b8d4b29b086ef6d6f73802b9e7a4f2001e384c8258e7046e6779662fd958517e");
+ TestSHA3_256("3a86a182b54704a3af811e3e660abcfbaef2fb8f39bab09115c1068976ff694bb6f5a3839ae44590d73e4996d45af5ceb26b03218ab3fef6f5f4ef48d22839fb4371c270f9535357b22142c4ffb54e854b64cab41932fe888d41ca702e908c63eae244715bfbf69f481250f16f848dc881c6996e6f9d76f0e491de2c129f2a2ab22e72b04644f610a2fabc45aa2d7b3e5d77b87a135d2fd502ca74a207bddaf9a43e945245961a53c7bfcfe73a1ae090e6606ffe8ddbf1e0f0d6d4fa94526578c6faf282dd592b10bf4bce00a7b1846625690623667e83b9b59b465d42c6944e224ad36698f5f2ee938404b7775c2e66207bc41025adaf07590312f398812d24c0178126fdd334964a54b8353482a83be17cf2ee52d23b72e5f57fe31eebf8a1a64742eb9459bcb0eca231a1658ab88b7056d8e47554f0a46058d6565c6cbf6edec45fdde6f051e38255b82493de27ffd3efbe1b179b9642d2166073db6d4832707420237a00bad7125795e645e5bc3e1431ecbabf0ff5f74416626322545c966241cce6d8f2c035a78f100e030741f13b02a9eaf618d468bc40274db98bc342be12ad4d892c2ba546e571c556ac7cbf4e4c3fd3431efd40457cf65a297845dd8cce09811418c3cef941ff32c43c375157f6f49c2e893625e4b216b1f985aa0fd25f29a9011d4f59c78b037ed71f384e5de8116e3fc148c0a3cad07cb119b9829aac55eed9a299edb9abc5d017be485f690add70ff2efbb889ac6ce0da9b3bdbeb9dd47823116733d58a8d510b7f2e2c8244a2cbf53816b59e413207fb75f9c5ce1af06e67d182d3250ea3283bcbb45cb07ea6a6aa486361eb6f69199c0eb8e6490beff82e4ab274b1204e7f2f0ba097fba0332aa4c4a861771f5b3d45ce43e667581a40fee4bebe7fa9d87b70a5bb876c928f7e6d16ae604b3a4e9c7f1d616e2deab96b6207705b9a8f87468503cdd20a3c02cc8da43d046da68b5ed163d926a5a714a4df1b8ef007bca408f68b9e20de86d6398ad81df5e74d5aaac40874b5d6787211ff88e128cf1676e84ca7f51aee5951efee1915dcc11502a8df74fac4c8451dda49b631a8fb87470f0ebe9b67449bbd1640ceee6101e8cd82aa1033fa84f75b28450e461b93f65da5c43759b0e83660d50961702bb1ad015dad42e600117475237cf6e7279d4a02d1f67cf59de0108355d03963e3d84ce7647173dd7d77a6b3f275d7de74236d7bbb2df437d536136dbe1dbe8f307facc7bc7d0cde1abf745cbeb81af1ab2c46138cf007e901f22668377958bcbbadb7e9905973b27ff0c5baaece25e974c1bd116cc81dd1c81a30bae86a6fb12c6a5494068e122153128313eb3e628d76e9babc823c9eb9d3b81bacfa7a6b372abe6b1246a350f23e2e95b09c9037a75aac255ef7d4f267cad3ce869531b4165db2e5a9792094efea4ae3d9ea4d0efdc712e63df21882a353743190e016b2166e4da8a2c78e48defc7155d5fdfc4e596624e6a19c91b43719a22c1204b1cefe05989d455773d3881fa8d3eefc255f81dfe90bd41dc6f1e9c265a753298a6e98c999acd9525a9db5f9f9456a0f51a93dd9693e1d9c3fa283f7c58a9c752afcaa635abea8dfc80e2c326b939260069457fdad68c341852dcb5fcbbd351318defd7ae3b9f827478eb77306a5ae14cf8895f2bc6f0f361ffc8aa37e286629dc7e59b73a8712525e851c64d363065631edc1609f3d49a09575876a", "b71ec00c0fcc4f8663312711540df1cd236eb52f237409415b749ff9436dc331");
+ TestSHA3_256("c041e23b6d55998681802114abc73d2776967cab715572698d3d497ec66a790b0531d32f45b3c432f5b2d8039ea47de5c6060a6514f3ff8fb5f58e61fd1b5b80524c812a46dad56c035a6e95ecb465ea8176d99b836e36f65977b7dbb3932a706d3af415b6f2549b7120ecb0db1e7d9e6f8df23607eda006436bccd32ef96d431fa434d9de22ca2608ab593eb50b4d6a57f45c1ce698c3283a77d330b876ad6030324a5c0693be7790a4bd26c0a25eb403531f37689829c20546d6dc97327131688b3d88766db8f5d1b22050450c37e53951446dd7155a3e6d7edcbe1354411d8f58154475d74008937e8ba48b706066c296d1a87936dd023ac8eebe7605a58c6c40da774cf9df189db0050adcf7629e66cbd1cf9824397834cb13c4066c26e6c8ec950b44fc1c8db8ef976a7ec8c4f4ec9849ca7a07f906223053b80db24b946b034ee7a30880d0ace348acba0d0ed21ea443816706a216ce9eb682d1fe9dfc1d2e0bf3b1449247413520b8d8ebc99fc298c6dca949be0ffebe450b9b79a387a615d617b8d9da5b3e8d2776208c7cc2a11bdbc387f9d4597b380739b24ae59dcd5fb63bfeefe0746d9266cfda18afa583d6891e483e6d5c0db305f5609beba75bb5b447ccac2dfb94ede4a94db6eaaf3070d8d5353f107f7bd74528eb913e0b19bed6236a3b48567c46a9eec28fb6486f92d0d09625452d8f4dd1b89c566533cc2326b820c2b9efed43be8481cb9ad809e47af7b31795cb0fbdb18fbb12e8853f8bacec366a092daf8f2a55d2911fc7c70ddd33d33e86c2c4ceeb9390ec506b399f6fa8f35abf7789d0f547fd09cb7e6fb6016a3fc2a27a762989ae620d234c810777d5a1bb633744af2844495d2963c986ef8540ca715bed7692c77b9dec90e06acc5986b47dd4a8d3ca3300b2bedf9f26ae6d1c7e7acef05c0fc521c3309e1e70771eea6e96b67de5e3fb6833145bb73d46081b074539498307929da779e003c27f0a171035458b8c7c86c905b23dda74c040878d5a05be94821537724ebd5608ec0754c3e3e99a719bbb6d5320eed07323fca637429b18378936364c389de1e9c6fce8af270a713b4b829b43e7d761e17724c22e84611e1322dde45cbee86a0e16d01cfb8910d99391c39afd8e5f5567c59f219aa8c19ad158f287cb6807ba1fe46d38d091639a217766b3aa9ded73ac14570ba236225218305d68c0be6099c336ba8455c86b7c8c04542e729ceb84596c33ca6eb7ec1091b406cf64495ccfa2169f47b3b590477d4073537c14c05015d51ba527b3869ae4ebd603df906323658b04cb11e13bc29b34ac69f18dd49f8958f7e3f5b05ab8b8ddb34e581bde5eb49dd15698d2d2b68fe7e8baf88d8f395cfcafcdff38cf34b59386f6f77333483655ee316f12bfeb00610d8cba9e59e637ca2cab6ed24dd584143844e61fcca994ba44a4c029682997ab04285f479a6dc2c854c569073c62cd68af804aa70f4976d5b9f6b09d3738fcccb6d60e11ba97a4001062195d05a43798d5f24e9466f082ac367169f892dfd6cc0adeef82212c867a49cba65e0e636bab91e2176d3865634aa45b13c1e3e7cdb4e7872b2437f40f3de5493792c06611a9ca97d0baed71bfb4e9fdd58191198a8b371aea7f65b6e851ce22f4808377d09b6a5a9f04eddc3ff4ef9fd8bf043bb559e1df5319113cb8beea9e06b0c05c50885873acd19f6e8a109c894403a415f627cd1e8f7ca54c288c230795aaddde3a787c2a20ac6dee4913da0240d6d971f3fce31fc53087afe0c45fa3c8f744c53673bec6231abe2623029053f4be0b1557e00b291ebb212d876e88bcc81e5bd9eb820691dca5fbdcc1e7a6c58945a2cac8db2d86c2a7d98dc5908598bda78ce202ac3cd174d48ad9cac9039e27f30658eef6317cd87c199944343e7fce1b3ea7", "ad635385a289163fbaf04b5850285bfe3759774aee7fd0211d770f63985e1b44");
+ TestSHA3_256("01ec0bfc6cc56e4964808e2f1e516416717dad133061e30cb6b66b1dc213103b86b3b017fa7935457631c79e801941e3e3a0e1a3016d435e69a390eaac64f3166d944c8eb8df29fe95fdf27adc34631e4a1f3ff1d5af430f3d6f5908e40c0f83df1447274dfe30bbe76b758bd9abb40ed18331c7552dcc6959a1303e11134ec904bd0aab62de33c39703b99920851afd9d531eeb28f1c4b2e6c17c55db8296320316fbe19e881b5fcb4d266c58ca7f31d9176e26f70315330b58a516ec60d10404a78393aa03ced7acd225cb2a83caf3ab5888406a69a534f1ed1346e9b5e68831f90b872d57367361191c803eb7e38b3b9cd601282d5efdbf082db07d89bd06b093f986d08d3a7b12aa74513b6eb241b26ebf31da5726d59e315d1b4ee53ec6a9fdb6583bacc136e90e9607cab01e5d3853ab9727ede706b6f10b4e04d0510f45c0abc515bcb5ed0bcce86a92861126f4d502fcb8f988d62ecf9d124853de2bab633f9506c6fde8a36cd4413cf773e50f7b2d283482f18e2f547c2fc275cd60056ed98fb8d0816fd777c1566f0c2ae3b1cd92e344910a75e006106d193e06f7786ae37dd0e529cacf74176fd4cc1f6500549af5902dbbd56a70c194f5b671372edec425f90add40b4eb3d55123f3ab62797ad25bf5eecf4f417f86b00e6f76a4f52e44fd949851aae649dd0d26d641d4c1f343c7a2c851ca7851bbbdfd57ed6024eabc518a909a1e4689ea7bc5f83e19872950368a06e93ab41944c3d8befc5705b814e5f33511a7f7ea8a4771c804b321a3a3f32c18fa127d3c9e6c011337dc100ceb156ed45d0a62f238dacac44a3429f89bb7f98d09043c42451106e30471cc6fab7a4e1ce0a8202772b0218b631f287ec3ef82b1aa6299a0b54d6aad06aa9346d28f117d20f3b7f0d462267bd3c685cca8f4584532dfee0e8b9bacefa3092d28fcce7953a28f82e4ba6b3a1430ecca58b770dab656bed1b224663e196dffc28c96a2c65ef9de1989a125ecf2fed47eb96bef8a636a91bd521c47aeb8bc011bf81cc688fd8b620446353cbf7692201b5552cb07fb02eb3954dfaa6f5c31bf91e20b84419dcbbdaba0c31a124d8f4218b2f88da3eba44dbe40eb290052538dccd0ff7670de5f33a83ff74895b66adcff58c9c21e93b31bb49ccb2e026995ee155b5517b72daa76526a2e42aa6fa94357cd42e2a8a1d3e7d4cefc33d5d07d6303d798d2551a21f862b5f492d0c7cf078a77007a02847b34675dfad4fb457e9f20dc5750fb127a3c31b9d6a3996d50ac3ffc6ef29cca1d8414d0438bf3271dc4f4e00cfe19a507b447dc310f74aeb2a3c0b3fae6d7d13f4935bc72c35df3efa6e879164421505ee32d93b030e32a7970b53430b1643855167278e5058c4a48a7840e2fcdb282e45b5b86c0b2756f19b595f3bcfc926df35e33ac26dd1e88cd394015a5f54deb4c9f4a0bef0eabcb27c4eb88dc2302f09e92f1bcc4b4754df1eeb536154543c7dbf181c9979fe6ed08311e5a3acf365ebb5745212b2630e83b3a5bd5fa4834c727248b165700c7435f8cb6ee455bad16ee0da68fe6acd2062dae9c8bc178b157b29ade98a9bbbd4c723a3dcb7852c7978b488e4f73a2c9163dbdffae175119f812b6f4b70c2b498704bc2b58603f167f277a74e64ec296a6dfdb0de3486c0f36ac1b55f80af9fc817ba4f84b898b2a3c5725e2faf466bb26a8a84f91e123d182033a7ae2029236aa4b673ceb50c1733d7edd60e3f119b7141c882d508e0331689c96fbfb9f7e888fe88561de427c721123036737c1460b0da00d3f958b948f68fcb321ab4e297290f781ff8afb06b755d82a7e6ce1963761d799eed786524bf19801b4877b2d856becdf7e87d71aa359f2d51f09de64bcbf27d0c3aceac70790e314fd06c2f5216f3d10574b7302d6bc2775b185145c1b741524567c456d42c5826f93afa20ae7196ca7224c3b69b1eada9eee752fb6d43f24170fcc02af7e1dea73f0f884f936f900165800acb9d57480a31e409d3f676ed92b6812cf182a088fc49d68082aa19c7be0711f436db1d7be44d97dc9405591a8d3e7f6f731c6f3e6c401749829b7624497f5eeac1fc782e7d6988340541f2617a317e", "2a6283b1c02c6aaf74c4155091ff54a904bb700077f96a9c4bd84e8e51b54d01");
+ TestSHA3_256("9271fd111dcf260c04cf4b748f269ac80f7485c41f7724352a7ed40b2e2125b0bf30f3984ee9d21aab6eb07ec976b557c2426e131ad32bd0485aa57172f0e4f1798760f8352067ac023fbeca7b9c8bf5851c724e90ffff44195b44ae73c9c317c85e8e585bddac6d0f2abf812d02e44b62eadb9d0765683aa56af8e9b91588c7b49dc3e146866a02dc18f9ca680f88006094ef29096c2d5af5700b4aca3dfcab462c48bb8085691671efb5ceb22b3ebd8702f71a1d7c184b1053c3fa30a7e76b85f3650d9140714fd4993bb496becf2ae01d3a98ccfdefb6fefd692173bd11af7adb61ffff214a550ffcd3a5993004ee72cb02ca9c577b42c85444e619e6411e2bca86bb548ebbd12a02c5c945eaa3b246f595d817f3849875429e72ac894160a2a91a6617f18e6b2b9258472152741d62843cebc537d25f0daebdedb410d71ee761662bd1b189ca1c93d648b5d141d8d05e3f2b2d8c2c40997fea7eb7e2cc0000d8b2300936759704ef85f38ad0d08a986de6bfd75b5be3209f6d4d3f67e7adf7f8469d47e81979ec8dae7127b5eadcc09779cf4b0a28efaaf58e83d307f2ced4a8699b142f3f19db5598e914e9577652c63f851203580d40699548fc2ab30a9dcf6452f673ad1ed92f8d84dad5dfff55e18107b3acb6e4e8e3c9c34038f40a5c577fe9771c2c31ef03d36a00e04a20d2d0877db66f091dac4b741d2a997b75182702881f9284fa23b9b3c20e715f80d07b9910a4b3185f9489dc7d3fb510f4da273559753d7d207f3975b48df2e7c857caffe703dfac53a786490c09f57d2fa93f60810186df4c0b6b616a04caab9f70a5002c5e5d8da0ed2805f20fbf89cd8d57ca2b4bd37125ce38bf09fb6170ae21f4e6043a9483ef6e585756d97cfb778e57bc7ddc8dfc54d086d6bcfa1f019c749ff79921ec56e833ff8660f0959cd4b5277e9f3b1d4880193fefa98a6c2512718e7c139acdcd324303db3adb70348d09b058baf0e91d52b24952f832b0a3b81fa9bc9a2e9fb276a64e9e0922778b4992d892f6845b4372a28e47d27b53443586d9015463cacb5b65c617f84e1168b15988737a7eda8187f1f4165fecbdd032ae04916cc4b6e18a87558d2ce6a5946c65a9446f66cda139a76506c60d560f56a013b508d6ccbbaa14e24ad0729dd823bf214efcc59e6932cdc860306687c84a63efb551237223641554940a7a60fa7e6ddad64a21b4a2176b046dc480b6c5b5ff7ed96e3211df609195b4028756c22479ba278105771493870372abe24dcc407daa69878b12b845908cf2e220e7fabeeaab88c8f64f864c2bacba0c14b2a693e45aacc6b7db76bc1a2195cfce7b68f3c99440477ea4c1ea5ee78c109f4f1b553c76eb513dd6e16c383ce7f3187ad66c1d5c982724de8e16299c2fde0a8af22e8de56e50a56ac0fef1c52e76864c0ad1eeedd8907065b37892b3eca0ddcdf5c8e0917dec78fedd194ea4b380a059ccc9452e48a9eba2f8b7a4150b7ba17feac83c61604c3cfcfe6655c2be37ef0ae6fc29072f9b1cfb277b64a8d499dd079ad9aa3d5e9a7ccbec8c100596c6fac51e13a260d78d8cd9066edc558e2219cfcda1310dc1fbbdd36f348756855349f33eb6b82186a8c1a55f361305833edd3e4ac8d9b9cf99897c4e06c19ed10765fd0c8c7433851445c5f87b119ef913b2bcdbf7aa2ad19c672e53a9c6c3c309d549513edd7c1cf8a0a399e6df0939cc1fb146d6ad460e2ce05144c69eafa3822141d473fbe5927c58a50c1e842f8b8fad85540ce9f6d06f7b4dea045248b999d24c5fd4d75631caf73518cc08f73684e2a1cd4266235d90c08a0d0ce8784c776fd1b80978b83f0705ba8498744884d5496b791f2db3ffb5377175856b25a643803aa8b9e7f1055e089c1929cf0cbba7674c204c4590fb076968e918e0390d268eeef78c2aebcbf58a429f28212a2425c6ad8970b6a09cadddd8336d519bca4820556d2c4b8cd9f41216de3c728a0774edf47d3489cd29cf1b2a192bc53325d0bed7d23e51be7684297f9d0ecb14acbf648bc440c5fde997acc464fb45e965e6f0dced6d4568ebcd55e5a64633b05a2cb4d8263b721a252b1710dc84d8a5d4b43fcc875e2e7281f621b0bf8bb3465be364456bcd990b26b3e474486f864fb85f320f68bc14c37d271249b18552bef50dfc385a9f41b831589c5a716357cf5a12520d582d00452a8ab21643dd180071d2041bbc5972099141c6292009540d02f3252f1f59f8dfcf4488803f3b0df41759055559a334e68c98ea491b0984f2f82a35db84ea0779b3801cf06b463a832e", "4e75bf3c580474575c96ec7faa03feb732379f95660b77149974133644f5d2a0");
+ TestSHA3_256("075997f09ab1980a3179d4da78c2e914a1ff48f34e5d3c2ab157281ef1841052d0b45a228c3cd6b5028efd2d190d76205e1fdf4cec83c9868fe504f429af1e7c5423267c48a7b5bc005f30a1980147a3fae5c100b95c7cb23d43af9f21d87311d9cc826598993e077015f59ebc476383bb7a78787d915c97039ab188a2a618f7a8d7f64542ba787e9dd7d48c4c87d2aaea068c1b00c9711b2812901673c11418096d0a850fb36b0acece56d311689dfeceb0835009adc427f6d2d6b05ed26f5a43b6478bc72c1f914a2202dbd393cb69b1a1e78162e55ca4b3030ac0298131a7a0d934c032cc9dfc5afa600c59b064d2d9013f15d1184278a8ccb5ad9d7563e666fe5a8c173cec34467ef9cf6d6671208ff714741fee7c8d1d565edf82570dffde4f3f584024142056d8548ad55df83d1babed06141114c95ac88dbea0ce35d950f16d8a732a1ea7d22dfaa75a3e0410c546523277261116a64bcbb2be83e55e040f6c8c79f911b301a8718cc4b19a81d5f0cb6312d87c5b4b079e23a61d247541cfc2c41a37f52b2c6e43a3db5dc47892d0e1feabcc5c808f2391791e45fb065159f99c1d8dd2f69baaf75267eb89dd460f1b6c0badb96cbbc8291cefa370fa7ad6997a4ca2b1fe968216032f02f29837d40215fa219c09161df074e1de8e37056e28c86d1f992a651e271dfc4b0592ad481c613fd00c3eea4b6deabb9f5aa63a4830ed49ab93624fa7b208966eccb1f293f4b9a46411f37d7928e4478dde2f608d3851a8efa68e9d45402bc5124fde4ddc0f83ef82b31019d0aacb4b5121bbc064c95c5292da97981f58f051df9502054bf728e9d4fb7e04787a0890922b30a3f66a760e3d3763855e82be017fa603630a33115a02f02386982001def905784f6ba307a598c6dbaf2946fe9e978acbaf3e4ba50ab49ae8e9582520fc2eb6790deafc77e04a8ee75da92d16f0d249403112c74bc09102b573e110ccb4d8461d249bfe2e85fc9770d606be6fbfd5ec4c30ac306d46412f736e5b696ccc9fbe4adea730955c55ea5c63678271d34b7bd6f6340e72626d290820eeb96a0d2d25ea81361a122ffe8e954cf4ff84f4dafcc5c9d3e7c2ddbdf95ed2c0862d3f2783e4566f450ec49e8b01d9d7bf11e92a7903f2b045c57ed8a65ccbfc5b1d2a38e020a57b38f2e4deea8a52354a7e7be4f977b8f5afe30f6738e955c8bda295064586b6827b245766b217fe39263572b0850965c7ae845611b8efb64c36244a39b9fed0ab970ee5ddeb8f2608dd9c963524a14050c9101d7f2d5537b24d0b0f7a45703c1e131656ec9edc12cdf71dae1cde2790b888ef2a589f03201f8bbfad71f0c4430477a6713ad2e50aaefa1f840cbb839e277389454517e0b9bd76a8ecc5c2e22b854c25ff708f9256d3700adeaec49eb2c4134638ee9bd649b4982f931ec3b23cc819fbc835ddcb3d65e04585aa005e13b7ef8fcafa36cc1a2c79ba6c26fc1dc0f6668f9432c578088cd33a41a778ac0b298fcac212edab724c9fb33d827409fd36bc4b2b0e4e81006fd050d94d3271e0427c61e9ddca599a3c9480cfdd33603cb1a196557281ce6a375fef17463893db293dba0704d4bfda25e08beadd4208c58ea0d8d9066448910b087fc13792fc44075a3fe42e13c5792f093a552aa8ebe0f63e7a807102d5bc145468a0cb469263035c5647049054c18199f7da6d6defd51105e2125c605e327aca137ca85e3f7f46ca69f92d5252f84418293f4e9afeeb067c79576e88cc3c64f3e61d76e1e9e2f72cdfc35261a9679f0c374d7436ff6cfe2ba71650810522fa554a4aded87ad23f0b206b1bc63f56bbff8bcc8849d99e209bd519a953f32c667aa8cd874ad99846ed94b92f88fe0dbf788c8431dc76ca9553692622077da2cdea666c1b3fee7c335da37737afccd3d400a23d18f5bd3784dbcd0663a38acb5a2beef03fc0a1c52ee0b56bda4493f2221e35bee59f962f16bc6781133204f032c7a6209dd3dabd6100325ec14e3ab0d05aadd03fdfe9f8737da15edab9d2598046f8c6dd8381aaf244821994d5a956073c733bcebf9edbc2a6e2676242dc4e6a2e4ba8a7d57ed509340d61fae2c82bee4dedc73b469e202cc0916250d40a1718090690a1d3b986cf593b019b7b7f79ae14843b2e7ccf0fd85218184f7844fbb35e934476841b056b3a75bf20abb6866e19a0614e6a1af0eee4de510535724363b6598cccf08a99066021653177559c57e5aaff4417670a98fe4bd41a137c384f98c0324c20ef8bc851a9b975e9440191ff08deb78c9fa6fc29c76b371a4a1fa08c30fc9d1b3323d897738495086bfd43ef24c650cfa80c42ecbadc0453c4437d1a11b467e93ca95fbae98d38dcb2da953e657fb7ea6c8493d08cf028c5d3eb0fcbcb205493f4658440719e076e02deb07332d093e4d256175ca56f4c785d5e7e26c6090a20429f70b3757daac54153bc16f5828dc6c1c9f5186e2117754be5f1b46b3631980d9e4a9a5c", "2e07737d271b9a0162eb2f4be1be54887118c462317eb6bd9f9baf1e24111848");
+ TestSHA3_256("119a356f8c0790bbd5e9f3b4c5c4a70e97f462364c88cad04d5435645342b35484e94e12df61908fd95546f74859849b817ee92fbd242435c210b7b9bfbffb3f77f965faa1a9073e8feb5a380f673add8fde32208402fa680c8b3e41d187a15131f1028f9d86feaf3fd4b6e0e094d2ba0839c67267c9535173ec51645343ad74fcfaae389aa17cca3137e2588488531c36ba2b8e2f2238d8415c798a0b9a258f1e3cef605fa18977ad3d6707c3ecc5ea5f86ebdaa4b4b0e5bc023d1bc335138ae0de506cb52f2d9efa0ecc546468310cccc88ec08d28c3602e07257f41bb7e4d8a0956c564f3712761d199a931a39e69c5a69aa7b3257931dd92b91e4ed56fbf64e48bd334945cfa2aaf576df04614eb914899f7df54db4012cc8261b12bedcab69876feedbbf7009dcf8d076af89b797ad71217d75cf07514dc07ae34640055c74c9faf560f491f015ac3e167623cfbc67b8e7163e7c1b92debd06e9d28b049e0298f4c38395a40a0778162af2cfe5abe5b946c4d9a54f2a321660ab521068c4957cd3f5be0324cc04f50f209fdea7caaa0ac705c1fb30abfa550e844f509074afde1ee87adda29aa09b7f93e7d064ad2715ee5571ee6e7c9a01672124cc2a22b4354c3844759c1a6ce3fdf17555cac7df73334073ef3730939410fe6cf37463352ad241958b7fafbc66e0d592df48bf55ab2c33428e494c6995826892572d9ab52747b1085fcbef318cfe9cfacd4cd80c164fba584c1344ae7e321c4f77b44db6b322f2f7831f4d4ede7dc407b065c6754cf4424f9903adb4c6b675ded58700bc36da83fd95e84e76c404f7342921ef23d7d07772f5b8ec2f077601cae13448385b04e074f895574be61a831a87efd68a1f6aa67cf291847fa8f74cbe3b4a78ad780895183bc51c30ad2514255d4e013abc097bc8103c0b1933b0b303341836ae167c1e31dfe5f1b791cb06ef29cae398065343eecf06e4ae2048d1547c4bf69ccec5e86c45867c633c62f7d27dc51234b6debb5b9f80a5810716240c64443d0c098c80220d0520a5f5834369b9eb019325e23e88f237c24440bf27959caf7e7e4f1671fda710630255a2962f7e9b3625dc243a0177aacf6a758a68aa85dc3f56181a4a59a406c7fae5575c9e2c64248f520b5a5f904821661e2e43a5a058f445fd0e55b07476c4122d18033053b45112201e0bfdcc9e7cb9931155018ca431a0564930aca8defbca954b2680753a4060bec2cb668d2c15e77cba29589b5c7c07bc7177a8b1adb3a6968732f9213476fd96901514626fa17243af1d156cd037eea81d773f1f71a018d942b524b851794b300c7591ecd783ec8066ccb261bdf9b7a183dbda42b92593b614297dcb0fabcc23ae69797d0251b8ab57a4da2a544615216b01f4dbe2d8c9b5520c7ed9cd9312e9ec6d05a36e7f693d1821d727518169b03976394b9d1e1d7fa2daa25529d391eb5d0cf0f07a8160be2ee043d9345037c655c4f2023689f14d8d2072dd92c1dba056a5b5d4c4fc4196e25caab05b1701ec666ac9a04d90f7d7575a7ac3970252c18fd3bec0cc448e5ff8f3765d546a4a8ad1d41a9640c79375b80534b7b50989976f238654fefea981c9413130beae943a3e9d8f64ce9256d1259d1b2a6b3c02ca5af1a701db8f25a4e9c255dad8785172f323728c3585a45206ae988c283e30a2f9ea9b47f07a7521b0f36e9c504c14bd96027e8d24161e70f196576d8a74a5e9c26acda7cc452a90e550e625a49e50829db70de808c827c67d00c23ee073d4e72aeed891dd73b86acd6756e753e3975a80cdab1d521052caef6a5380f8b03023ba0326a6928aa127ffb33b51dcb05bbdd592d0ad9e8321e6ef2f95c401be6a37e634425689fe7750e2a0fe05ad89001502b309095ca517b2e2ed0388b9f2c59c45feb61222539d6e1ccd397344d23708aebacec10ada96a7711f173f7ff1e4b94fceec6a0a0ea5d814a4581b412063012ff6ac5527b8314d00326b68c2304a276a217fde9fa4034750a2e47e10f816870d12fc4641a27a1c16c35a953f32685f2b92cae0519848045765591c42ddc402dc7c6914d74dd38d2b5e7f35358cb1d91a9f681fde7fd6c7af5840663525ee1d04bf6d3156fed018c44043d95383d92dada3d1cd84af51d9bee814ec8675073e1c48632c5f59e257682542e1f7dc20b56b5c92a9e2cb2be30cb1512fb55fa1de99a3f5864ed3acc19d79e6ffb0da3b08ba0615157747d75c1f308fa0202a4086f34e9eafa3e071dfbacaca731d228aa0304cf390c0a9e6ad7ce22ade758965cfbfc4c9390d24e41a667447fc7b29821464ad98bc5d65dc7f9c42bd4b23e174015592ff92c905660a2722f9fc7973d3cdad848ef88bf02b1b03dea16699b71dc46b35bc4d96069a0753335ae38685d244918e30c5fb0d45283a1281c1659ea591573999d9c2acd2ca9141d55230d41011b70748b518e1cd2fa58ad8dc05fcbdf0bffaf2c7fd6cb2ac67bb13b8f6d31fad64ac113664223599dca411270955c95aec06518894dabc352d2b70984727437040d944da7b42e0ef560ac532de3e4a4891e8509c275b51ed780f8660b0354e12c21b3e11bcc88198980b5f7ff31ad342182d5a933373164dced3cfb2a081720d7eee676cb7378a3e19326a7ee67fd6c00521f9de37c66bcea814b6feb6a061b8cdcf7b4bd8f45d48602c5", "c26d0b064e409df64819cd7c1a3b8076f19815b9823adac4e3ce0b4d3a29de18");
+ TestSHA3_256("72c57c359e10684d0517e46653a02d18d29eff803eb009e4d5eb9e95add9ad1a4ac1f38a70296f3a369a16985ca3c957de2084cdc9bdd8994eb59b8815e0debad4ec1f001feac089820db8becdaf896aaf95721e8674e5d476b43bd2b873a7d135cd685f545b438210f9319e4dcd55986c85303c1ddf18dc746fe63a409df0a998ed376eb683e16c09e6e9018504152b3e7628ef350659fb716e058a5263a18823d2f2f6ee6a8091945a48ae1c5cb1694cf2c1fe76ef9177953afe8899cfa2b7fe0603bfa3180937dadfb66fbbdd119bbf8063338aa4a699075a3bfdbae8db7e5211d0917e9665a702fc9b0a0a901d08bea97654162d82a9f05622b060b634244779c33427eb7a29353a5f48b07cbefa72f3622ac5900bef77b71d6b314296f304c8426f451f32049b1f6af156a9dab702e8907d3cd72bb2c50493f4d593e731b285b70c803b74825b3524cda3205a8897106615260ac93c01c5ec14f5b11127783989d1824527e99e04f6a340e827b559f24db9292fcdd354838f9339a5fa1d7f6b2087f04835828b13463dd40927866f16ae33ed501ec0e6c4e63948768c5aeea3e4f6754985954bea7d61088c44430204ef491b74a64bde1358cecb2cad28ee6a3de5b752ff6a051104d88478653339457ac45ba44cbb65f54d1969d047cda746931d5e6a8b48e211416aefd5729f3d60b56b54e7f85aa2f42de3cb69419240c24e67139a11790a709edef2ac52cf35dd0a08af45926ebe9761f498ff83bfe263d6897ee97943a4b982fe3404ef0b4a45e06113c60340e0664f14799bf59cb4b3934b465fabefd87155905ee5309ba41e9e402973311831ea600b16437f71df39ee77130490c4d0227e5d1757fdc66af3ae6b9953053ed9aafca0160209858a7d4dd38fe10e0cb153672d08633ed6c54977aa0a6e67f9ff2f8c9d22dd7b21de08192960fd0e0da68d77c8d810db11dcaa61c725cd4092cbff76c8e1debd8d0361bb3f2e607911d45716f53067bdc0d89dd4889177765166a424e9fc0cb711201099dda213355e6639ac7eb86eca2ae0ab38b7f674f37ef8a6fcca1a6f52f55d9e1dcd631d2c3c82bba129172feb991d5af51afecd9d61a88b6832e4107480e392aed61a8644f551665ebff6b20953b635737a4f895e429fddcfe801f606fbda74b3bf6f5767d0fac14907fcfd0aa1d4c11b9e91b01d68052399b51a29f1ae6acd965109977c14a555cbcbd21ad8cb9f8853506d4bc21c01e62d61d7b21be1b923be54914e6b0a7ca84dd11f1159193e1184568a6134a6bbadf5b4df986edcf2019390ae841cfaa44435e28ce877d3dae4177992fa5d4e5c005876dbe3d1e63bec7dcc0942762b48b1ecc6c1a918409a8a72812a1e245c0c67be6e729c2b49bc6ee4d24a8f63e78e75db45655c26a9a78aff36fcd67117f26b8f654dca664b9f0e30681874cb749e1a692720078856286c2560b0292cc837933423147569350955c9571bf8941ba128fd339cb4268f46b94bc6ee203eb7026813706ea51c4f24c91866fc23a724bf2501327e6ae89c29f8db315dc28d2c7c719514036367e018f4835f63fdecd71f9bdced7132b6c4f8b13c69a517026fcd3622d67cb632320d5e7308f78f4b7cea11f6291b137851dc6cd6366f2785c71c3f237f81a7658b2a8d512b61e0ad5a4710b7b124151689fcb2116063fbff7e9115fed7b93de834970b838e49f8f8ba5f1f874c354078b5810a55ae289a56da563f1da6cd80a3757d6073fa55e016e45ac6cec1f69d871c92fd0ae9670c74249045e6b464787f9504128736309fed205f8df4d90e332908581298d9c75a3fa36ab0c3c9272e62de53ab290c803d67b696fd615c260a47bffad16746f18ba1a10a061bacbea9369693b3c042eec36bed289d7d12e52bca8aa1c2dff88ca7816498d25626d0f1e106ebb0b4a12138e00f3df5b1c2f49d98b1756e69b641b7c6353d99dbff050f4d76842c6cf1c2a4b062fc8e6336fa689b7c9d5c6b4ab8c15a5c20e514ff070a602d85ae52fa7810c22f8eeffd34a095b93342144f7a98d024216b3d68ed7bea047517bfcd83ec83febd1ba0e5858e2bdc1d8b1f7b0f89e90ccc432a3f930cb8209462e64556c5054c56ca2a85f16b32eb83a10459d13516faa4d23302b7607b9bd38dab2239ac9e9440c314433fdfb3ceadab4b4f87415ed6f240e017221f3b5f7ac196cdf54957bec42fe6893994b46de3d27dc7fb58ca88feb5b9e79cf20053d12530ac524337b22a3629bea52f40b06d3e2128f32060f9105847daed81d35f20e2002817434659baff64494c5b5c7f9216bfda38412a0f70511159dc73bb6bae1f8eaa0ef08d99bcb31f94f6be12c29c83df45926430b366c99fca3270c15fc4056398fdf3135b7779e3066a006961d1ac0ad1c83179ce39e87a96b722ec23aabc065badf3e188347a360772ca6a447abac7e6a44f0d4632d52926332e44a0a86bff5ce699fd063bdda3ffd4c41b53ded49fecec67f40599b934e16e3fd1bc063ad7026f8d71bfd4cbaf56599586774723194b692036f1b6bb242e2ffb9c600b5215b412764599476ce475c9e5b396fbcebd6be323dcf4d0048077400aac7500db41dc95fc7f7edbe7c9c2ec5ea89943fe13b42217eef530bbd023671509e12dfce4e1c1c82955d965e6a68aa66f6967dba48feda572db1f099d9a6dc4bc8edade852b5e824a06890dc48a6a6510ecaf8cf7620d757290e3166d431abecc624fa9ac2234d2eb783308ead45544910c633a94964b2ef5fbc409cb8835ac4147d384e12e0a5e13951f7de0ee13eafcb0ca0c04946d7804040c0a3cd088352424b097adb7aad1ca4495952f3e6c0158c02d2bcec33bfda69301434a84d9027ce02c0b9725dad118", "d894b86261436362e64241e61f6b3e6589daf64dc641f60570c4c0bf3b1f2ca3");
+}
+
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/wallet/db.h b/src/wallet/db.h
index 96d1f44d91..617ed46141 100644
--- a/src/wallet/db.h
+++ b/src/wallet/db.h
@@ -212,6 +212,7 @@ enum class DatabaseStatus {
FAILED_ALREADY_EXISTS,
FAILED_NOT_FOUND,
FAILED_CREATE,
+ FAILED_LOAD,
FAILED_VERIFY,
FAILED_ENCRYPT,
};
diff --git a/src/wallet/wallet.cpp b/src/wallet/wallet.cpp
index e2a2503035..73e11a5b52 100644
--- a/src/wallet/wallet.cpp
+++ b/src/wallet/wallet.cpp
@@ -212,6 +212,7 @@ std::shared_ptr<CWallet> LoadWalletInternal(interfaces::Chain& chain, const std:
std::shared_ptr<CWallet> wallet = CWallet::Create(chain, name, std::move(database), options.create_flags, error, warnings);
if (!wallet) {
error = Untranslated("Wallet loading failed.") + Untranslated(" ") + error;
+ status = DatabaseStatus::FAILED_LOAD;
return nullptr;
}
AddWallet(wallet);
@@ -223,6 +224,7 @@ std::shared_ptr<CWallet> LoadWalletInternal(interfaces::Chain& chain, const std:
return wallet;
} catch (const std::runtime_error& e) {
error = Untranslated(e.what());
+ status = DatabaseStatus::FAILED_LOAD;
return nullptr;
}
}
@@ -233,6 +235,7 @@ std::shared_ptr<CWallet> LoadWallet(interfaces::Chain& chain, const std::string&
auto result = WITH_LOCK(g_loading_wallet_mutex, return g_loading_wallet_set.insert(name));
if (!result.second) {
error = Untranslated("Wallet already being loading.");
+ status = DatabaseStatus::FAILED_LOAD;
return nullptr;
}
auto wallet = LoadWalletInternal(chain, name, load_on_start, options, status, error, warnings);
diff --git a/test/functional/rpc_txoutproof.py b/test/functional/rpc_txoutproof.py
index ca8be42d3b..93fb62c5d6 100755
--- a/test/functional/rpc_txoutproof.py
+++ b/test/functional/rpc_txoutproof.py
@@ -6,41 +6,31 @@
from test_framework.messages import CMerkleBlock, FromHex, ToHex
from test_framework.test_framework import BitcoinTestFramework
-from test_framework.util import assert_equal, assert_raises_rpc_error, connect_nodes
+from test_framework.util import assert_equal, assert_raises_rpc_error
+from test_framework.wallet import MiniWallet
+
class MerkleBlockTest(BitcoinTestFramework):
def set_test_params(self):
- self.num_nodes = 4
+ self.num_nodes = 2
self.setup_clean_chain = True
- # Nodes 0/1 are "wallet" nodes, Nodes 2/3 are used for testing
- self.extra_args = [[], [], [], ["-txindex"]]
-
- def skip_test_if_missing_module(self):
- self.skip_if_no_wallet()
-
- def setup_network(self):
- self.setup_nodes()
- connect_nodes(self.nodes[0], 1)
- connect_nodes(self.nodes[0], 2)
- connect_nodes(self.nodes[0], 3)
-
- self.sync_all()
+ self.extra_args = [
+ [],
+ ["-txindex"],
+ ]
def run_test(self):
- self.log.info("Mining blocks...")
- self.nodes[0].generate(105)
+ miniwallet = MiniWallet(self.nodes[0])
+ # Add enough mature utxos to the wallet, so that all txs spend confirmed coins
+ miniwallet.generate(5)
+ self.nodes[0].generate(100)
self.sync_all()
chain_height = self.nodes[1].getblockcount()
assert_equal(chain_height, 105)
- assert_equal(self.nodes[1].getbalance(), 0)
- assert_equal(self.nodes[2].getbalance(), 0)
-
- node0utxos = self.nodes[0].listunspent(1)
- tx1 = self.nodes[0].createrawtransaction([node0utxos.pop()], {self.nodes[1].getnewaddress(): 49.99})
- txid1 = self.nodes[0].sendrawtransaction(self.nodes[0].signrawtransactionwithwallet(tx1)["hex"])
- tx2 = self.nodes[0].createrawtransaction([node0utxos.pop()], {self.nodes[1].getnewaddress(): 49.99})
- txid2 = self.nodes[0].sendrawtransaction(self.nodes[0].signrawtransactionwithwallet(tx2)["hex"])
+
+ txid1 = miniwallet.send_self_transfer(from_node=self.nodes[0])['txid']
+ txid2 = miniwallet.send_self_transfer(from_node=self.nodes[0])['txid']
# This will raise an exception because the transaction is not yet in a block
assert_raises_rpc_error(-5, "Transaction not yet in block", self.nodes[0].gettxoutproof, [txid1])
@@ -53,50 +43,54 @@ class MerkleBlockTest(BitcoinTestFramework):
txlist.append(blocktxn[1])
txlist.append(blocktxn[2])
- assert_equal(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid1])), [txid1])
- assert_equal(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid1, txid2])), txlist)
- assert_equal(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid1, txid2], blockhash)), txlist)
+ assert_equal(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid1])), [txid1])
+ assert_equal(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid1, txid2])), txlist)
+ assert_equal(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid1, txid2], blockhash)), txlist)
- txin_spent = self.nodes[1].listunspent(1).pop()
- tx3 = self.nodes[1].createrawtransaction([txin_spent], {self.nodes[0].getnewaddress(): 49.98})
- txid3 = self.nodes[0].sendrawtransaction(self.nodes[1].signrawtransactionwithwallet(tx3)["hex"])
+ txin_spent = miniwallet.get_utxo() # Get the change from txid2
+ tx3 = miniwallet.send_self_transfer(from_node=self.nodes[0], utxo_to_spend=txin_spent)
+ txid3 = tx3['txid']
self.nodes[0].generate(1)
self.sync_all()
txid_spent = txin_spent["txid"]
- txid_unspent = txid1 if txin_spent["txid"] != txid1 else txid2
+ txid_unspent = txid1 # Input was change from txid2, so txid1 should be unspent
# Invalid txids
- assert_raises_rpc_error(-8, "txid must be of length 64 (not 32, for '00000000000000000000000000000000')", self.nodes[2].gettxoutproof, ["00000000000000000000000000000000"], blockhash)
- assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[2].gettxoutproof, ["ZZZ0000000000000000000000000000000000000000000000000000000000000"], blockhash)
+ assert_raises_rpc_error(-8, "txid must be of length 64 (not 32, for '00000000000000000000000000000000')", self.nodes[0].gettxoutproof, ["00000000000000000000000000000000"], blockhash)
+ assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].gettxoutproof, ["ZZZ0000000000000000000000000000000000000000000000000000000000000"], blockhash)
# Invalid blockhashes
- assert_raises_rpc_error(-8, "blockhash must be of length 64 (not 32, for '00000000000000000000000000000000')", self.nodes[2].gettxoutproof, [txid_spent], "00000000000000000000000000000000")
- assert_raises_rpc_error(-8, "blockhash must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[2].gettxoutproof, [txid_spent], "ZZZ0000000000000000000000000000000000000000000000000000000000000")
+ assert_raises_rpc_error(-8, "blockhash must be of length 64 (not 32, for '00000000000000000000000000000000')", self.nodes[0].gettxoutproof, [txid_spent], "00000000000000000000000000000000")
+ assert_raises_rpc_error(-8, "blockhash must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].gettxoutproof, [txid_spent], "ZZZ0000000000000000000000000000000000000000000000000000000000000")
# We can't find the block from a fully-spent tx
- assert_raises_rpc_error(-5, "Transaction not yet in block", self.nodes[2].gettxoutproof, [txid_spent])
+ assert_raises_rpc_error(-5, "Transaction not yet in block", self.nodes[0].gettxoutproof, [txid_spent])
# We can get the proof if we specify the block
- assert_equal(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid_spent], blockhash)), [txid_spent])
+ assert_equal(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid_spent], blockhash)), [txid_spent])
# We can't get the proof if we specify a non-existent block
- assert_raises_rpc_error(-5, "Block not found", self.nodes[2].gettxoutproof, [txid_spent], "0000000000000000000000000000000000000000000000000000000000000000")
+ assert_raises_rpc_error(-5, "Block not found", self.nodes[0].gettxoutproof, [txid_spent], "0000000000000000000000000000000000000000000000000000000000000000")
# We can get the proof if the transaction is unspent
- assert_equal(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid_unspent])), [txid_unspent])
+ assert_equal(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid_unspent])), [txid_unspent])
# We can get the proof if we provide a list of transactions and one of them is unspent. The ordering of the list should not matter.
- assert_equal(sorted(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid1, txid2]))), sorted(txlist))
- assert_equal(sorted(self.nodes[2].verifytxoutproof(self.nodes[2].gettxoutproof([txid2, txid1]))), sorted(txlist))
+ assert_equal(sorted(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid1, txid2]))), sorted(txlist))
+ assert_equal(sorted(self.nodes[0].verifytxoutproof(self.nodes[0].gettxoutproof([txid2, txid1]))), sorted(txlist))
# We can always get a proof if we have a -txindex
- assert_equal(self.nodes[2].verifytxoutproof(self.nodes[3].gettxoutproof([txid_spent])), [txid_spent])
+ assert_equal(self.nodes[0].verifytxoutproof(self.nodes[1].gettxoutproof([txid_spent])), [txid_spent])
# We can't get a proof if we specify transactions from different blocks
- assert_raises_rpc_error(-5, "Not all transactions found in specified or retrieved block", self.nodes[2].gettxoutproof, [txid1, txid3])
+ assert_raises_rpc_error(-5, "Not all transactions found in specified or retrieved block", self.nodes[0].gettxoutproof, [txid1, txid3])
+ # Test empty list
+ assert_raises_rpc_error(-5, "Transaction not yet in block", self.nodes[0].gettxoutproof, [])
+ # Test duplicate txid
+ assert_raises_rpc_error(-8, 'Invalid parameter, duplicated txid', self.nodes[0].gettxoutproof, [txid1, txid1])
# Now we'll try tweaking a proof.
- proof = self.nodes[3].gettxoutproof([txid1, txid2])
+ proof = self.nodes[1].gettxoutproof([txid1, txid2])
assert txid1 in self.nodes[0].verifytxoutproof(proof)
assert txid2 in self.nodes[1].verifytxoutproof(proof)
tweaked_proof = FromHex(CMerkleBlock(), proof)
# Make sure that our serialization/deserialization is working
- assert txid1 in self.nodes[2].verifytxoutproof(ToHex(tweaked_proof))
+ assert txid1 in self.nodes[0].verifytxoutproof(ToHex(tweaked_proof))
# Check to see if we can go up the merkle tree and pass this off as a
# single-transaction block
diff --git a/test/functional/test_framework/wallet.py b/test/functional/test_framework/wallet.py
index c4a9d2138d..39b3bf2a5b 100644
--- a/test/functional/test_framework/wallet.py
+++ b/test/functional/test_framework/wallet.py
@@ -40,17 +40,21 @@ class MiniWallet:
self._utxos.append({'txid': cb_tx['txid'], 'vout': 0, 'value': cb_tx['vout'][0]['value']})
return blocks
- def send_self_transfer(self, *, fee_rate, from_node):
+ def get_utxo(self):
+ """Return the last utxo. Can be used to get the change output immediately after a send_self_transfer"""
+ return self._utxos.pop()
+
+ def send_self_transfer(self, *, fee_rate=Decimal("0.003"), from_node, utxo_to_spend=None):
"""Create and send a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
- self._utxos = sorted(self._utxos, key=lambda k: -k['value'])
- largest_utxo = self._utxos.pop() # Pick the largest utxo and hope it covers the fee
+ self._utxos = sorted(self._utxos, key=lambda k: k['value'])
+ utxo_to_spend = utxo_to_spend or self._utxos.pop() # Pick the largest utxo (if none provided) and hope it covers the fee
vsize = Decimal(96)
- send_value = satoshi_round(largest_utxo['value'] - fee_rate * (vsize / 1000))
- fee = largest_utxo['value'] - send_value
- assert (send_value > 0)
+ send_value = satoshi_round(utxo_to_spend['value'] - fee_rate * (vsize / 1000))
+ fee = utxo_to_spend['value'] - send_value
+ assert send_value > 0
tx = CTransaction()
- tx.vin = [CTxIn(COutPoint(int(largest_utxo['txid'], 16), largest_utxo['vout']))]
+ tx.vin = [CTxIn(COutPoint(int(utxo_to_spend['txid'], 16), utxo_to_spend['vout']))]
tx.vout = [CTxOut(int(send_value * COIN), self._scriptPubKey)]
tx.wit.vtxinwit = [CTxInWitness()]
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]