diff options
62 files changed, 2695 insertions, 528 deletions
diff --git a/contrib/gitian-build.py b/contrib/gitian-build.py index 5cee59a9b9..570d4906cd 100755 --- a/contrib/gitian-build.py +++ b/contrib/gitian-build.py @@ -7,7 +7,7 @@ import sys def setup(): global args, workdir - programs = ['ruby', 'git', 'make', 'wget'] + programs = ['ruby', 'git', 'make', 'wget', 'curl'] if args.kvm: programs += ['apt-cacher-ng', 'python-vm-builder', 'qemu-kvm', 'qemu-utils'] elif args.docker and not os.path.isfile('/lib/systemd/system/docker.service'): diff --git a/depends/Makefile b/depends/Makefile index dc2a1e626c..70af875189 100644 --- a/depends/Makefile +++ b/depends/Makefile @@ -7,6 +7,7 @@ SDK_PATH ?= $(BASEDIR)/SDKs NO_QT ?= RAPIDCHECK ?= NO_WALLET ?= +NO_ZMQ ?= NO_UPNP ?= FALLBACK_DOWNLOAD_PATH ?= https://bitcoincore.org/depends-sources @@ -93,6 +94,7 @@ $(host_arch)_$(host_os)_id_string+=$(shell $(host_STRIP) --version 2>/dev/null) qt_packages_$(NO_QT) = $(qt_packages) $(qt_$(host_os)_packages) $(qt_$(host_arch)_$(host_os)_packages) wallet_packages_$(NO_WALLET) = $(wallet_packages) upnp_packages_$(NO_UPNP) = $(upnp_packages) +zmq_packages_$(NO_ZMQ) = $(zmq_packages) rapidcheck_packages_$(RAPIDCHECK) = $(rapidcheck_packages) @@ -103,6 +105,10 @@ ifneq ($(qt_packages_),) native_packages += $(qt_native_packages) endif +ifneq ($(zmq_packages_),) +packages += $(zmq_packages) +endif + ifeq ($(rapidcheck_packages_),) packages += $(rapidcheck_packages) endif @@ -143,6 +149,7 @@ $(host_prefix)/share/config.site : config.site.in $(host_prefix)/.stamp_$(final_ -e 's|@LDFLAGS@|$(strip $(host_LDFLAGS) $(host_$(release_type)_LDFLAGS))|' \ -e 's|@allow_host_packages@|$(ALLOW_HOST_PACKAGES)|' \ -e 's|@no_qt@|$(NO_QT)|' \ + -e 's|@no_zmq@|$(NO_ZMQ)|' \ -e 's|@no_wallet@|$(NO_WALLET)|' \ -e 's|@no_upnp@|$(NO_UPNP)|' \ -e 's|@debug@|$(DEBUG)|' \ diff --git a/depends/README.md b/depends/README.md index 52ca618d9d..6dbe365545 100644 --- a/depends/README.md +++ b/depends/README.md @@ -68,6 +68,7 @@ The following can be set when running make: make FOO=bar SDK_PATH: Path where sdk's can be found (used by macOS) FALLBACK_DOWNLOAD_PATH: If a source file can't be fetched, try here before giving up NO_QT: Don't download/build/cache qt and its dependencies + NO_ZMQ: Don't download/build/cache packages needed for enabling zeromq NO_WALLET: Don't download/build/cache libs needed to enable the wallet NO_UPNP: Don't download/build/cache packages needed for enabling upnp DEBUG: disable some optimizations and enable more runtime checking diff --git a/depends/config.site.in b/depends/config.site.in index 52b9a7eca2..e633752066 100644 --- a/depends/config.site.in +++ b/depends/config.site.in @@ -33,6 +33,10 @@ if test -z $with_gui && test -n "@no_qt@"; then with_gui=no fi +if test -z $enable_zmq && test -n "@no_zmq@"; then + enable_zmq=no +fi + if test x@host_os@ = xdarwin; then BREW=no PORT=no diff --git a/depends/packages/packages.mk b/depends/packages/packages.mk index 38329d16d7..9a08e30892 100644 --- a/depends/packages/packages.mk +++ b/depends/packages/packages.mk @@ -1,4 +1,4 @@ -packages:=boost openssl libevent zeromq +packages:=boost openssl libevent qt_native_packages = native_protobuf qt_packages = qrencode protobuf zlib @@ -12,6 +12,8 @@ qt_mingw32_packages=qt wallet_packages=bdb +zmq_packages=zeromq + upnp_packages=miniupnpc darwin_native_packages = native_biplist native_ds_store native_mac_alias diff --git a/doc/psbt.md b/doc/psbt.md index 9d85af0348..c411b31d5d 100644 --- a/doc/psbt.md +++ b/doc/psbt.md @@ -82,9 +82,10 @@ hardware implementations will typically implement multiple roles simultaneously. transactions. - **`decodepsbt`** is a diagnostic utility RPC which will show all information in a PSBT in human-readable form, as well as compute its eventual fee if known. -- **`analyzepsbt`** is a utility RPC that examines an RPC and reports the - next steps in the workflow if known, computes the fee of the resulting - transaction, and estimates the weight and feerate if possible. +- **`analyzepsbt`** is a utility RPC that examines a PSBT and reports the + current status of its inputs, the next step in the workflow if known, and if + possible, computes the fee of the resulting transaction and estimates the + final weight and feerate. ### Workflows diff --git a/src/Makefile.bench.include b/src/Makefile.bench.include index ef8a207841..c6162b5caa 100644 --- a/src/Makefile.bench.include +++ b/src/Makefile.bench.include @@ -28,6 +28,7 @@ bench_bench_bitcoin_SOURCES = \ bench/merkle_root.cpp \ bench/mempool_eviction.cpp \ bench/rpc_mempool.cpp \ + bench/util_time.cpp \ bench/verify_script.cpp \ bench/base58.cpp \ bench/bech32.cpp \ diff --git a/src/bench/util_time.cpp b/src/bench/util_time.cpp new file mode 100644 index 0000000000..72d97354aa --- /dev/null +++ b/src/bench/util_time.cpp @@ -0,0 +1,42 @@ +// Copyright (c) 2019 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <bench/bench.h> + +#include <util/time.h> + +static void BenchTimeDeprecated(benchmark::State& state) +{ + while (state.KeepRunning()) { + (void)GetTime(); + } +} + +static void BenchTimeMock(benchmark::State& state) +{ + SetMockTime(111); + while (state.KeepRunning()) { + (void)GetTime<std::chrono::seconds>(); + } + SetMockTime(0); +} + +static void BenchTimeMillis(benchmark::State& state) +{ + while (state.KeepRunning()) { + (void)GetTime<std::chrono::milliseconds>(); + } +} + +static void BenchTimeMillisSys(benchmark::State& state) +{ + while (state.KeepRunning()) { + (void)GetTimeMillis(); + } +} + +BENCHMARK(BenchTimeDeprecated, 100000000); +BENCHMARK(BenchTimeMillis, 6000000); +BENCHMARK(BenchTimeMillisSys, 6000000); +BENCHMARK(BenchTimeMock, 300000000); diff --git a/src/qt/forms/coincontroldialog.ui b/src/qt/forms/coincontroldialog.ui index bd7f3c5f56..5ce469ee96 100644 --- a/src/qt/forms/coincontroldialog.ui +++ b/src/qt/forms/coincontroldialog.ui @@ -467,12 +467,6 @@ </item> <item> <widget class="QDialogButtonBox" name="buttonBox"> - <property name="sizePolicy"> - <sizepolicy hsizetype="Maximum" vsizetype="Fixed"> - <horstretch>0</horstretch> - <verstretch>0</verstretch> - </sizepolicy> - </property> <property name="orientation"> <enum>Qt::Horizontal</enum> </property> diff --git a/src/secp256k1/.gitignore b/src/secp256k1/.gitignore index 87fea161ba..55d325aeef 100644 --- a/src/secp256k1/.gitignore +++ b/src/secp256k1/.gitignore @@ -1,5 +1,6 @@ bench_inv bench_ecdh +bench_ecmult bench_sign bench_verify bench_schnorr_verify diff --git a/src/secp256k1/.travis.yml b/src/secp256k1/.travis.yml index 2439529242..74f658f4d1 100644 --- a/src/secp256k1/.travis.yml +++ b/src/secp256k1/.travis.yml @@ -1,5 +1,5 @@ language: c -sudo: false +os: linux addons: apt: packages: libgmp-dev @@ -11,7 +11,7 @@ cache: - src/java/guava/ env: global: - - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no + - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no JNI=no - GUAVA_URL=https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar GUAVA_JAR=src/java/guava/guava-18.0.jar matrix: - SCALAR=32bit RECOVERY=yes @@ -29,7 +29,7 @@ env: - BUILD=distcheck - EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC - EXTRAFLAGS=CFLAGS=-O0 - - BUILD=check-java ECDH=yes EXPERIMENTAL=yes + - BUILD=check-java JNI=yes ECDH=yes EXPERIMENTAL=yes matrix: fast_finish: true include: @@ -65,5 +65,4 @@ before_script: ./autogen.sh script: - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi - - ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD -os: linux + - ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-recovery=$RECOVERY --enable-jni=$JNI $EXTRAFLAGS $USE_HOST && make -j2 $BUILD diff --git a/src/secp256k1/Makefile.am b/src/secp256k1/Makefile.am index c071fbe275..9e5b7dcce0 100644 --- a/src/secp256k1/Makefile.am +++ b/src/secp256k1/Makefile.am @@ -42,6 +42,8 @@ noinst_HEADERS += src/field_5x52_asm_impl.h noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h noinst_HEADERS += src/util.h +noinst_HEADERS += src/scratch.h +noinst_HEADERS += src/scratch_impl.h noinst_HEADERS += src/testrand.h noinst_HEADERS += src/testrand_impl.h noinst_HEADERS += src/hash.h @@ -79,7 +81,7 @@ libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES) noinst_PROGRAMS = if USE_BENCHMARK -noinst_PROGRAMS += bench_verify bench_sign bench_internal +noinst_PROGRAMS += bench_verify bench_sign bench_internal bench_ecmult bench_verify_SOURCES = src/bench_verify.c bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) bench_sign_SOURCES = src/bench_sign.c @@ -87,6 +89,9 @@ bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) bench_internal_SOURCES = src/bench_internal.c bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB) bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES) +bench_ecmult_SOURCES = src/bench_ecmult.c +bench_ecmult_LDADD = $(SECP_LIBS) $(COMMON_LIB) +bench_ecmult_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES) endif TESTS = @@ -109,7 +114,7 @@ exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src $(SECP_INCLUDE if !ENABLE_COVERAGE exhaustive_tests_CPPFLAGS += -DVERIFY endif -exhaustive_tests_LDADD = $(SECP_LIBS) +exhaustive_tests_LDADD = $(SECP_LIBS) $(COMMON_LIB) exhaustive_tests_LDFLAGS = -static TESTS += exhaustive_tests endif @@ -146,7 +151,6 @@ endif if USE_ECMULT_STATIC_PRECOMPUTATION CPPFLAGS_FOR_BUILD +=-I$(top_srcdir) -CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function gen_context_OBJECTS = gen_context.o gen_context_BIN = gen_context$(BUILD_EXEEXT) @@ -154,11 +158,12 @@ gen_%.o: src/gen_%.c $(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@ $(gen_context_BIN): $(gen_context_OBJECTS) - $(CC_FOR_BUILD) $^ -o $@ + $(CC_FOR_BUILD) $(CFLAGS_FOR_BUILD) $(LDFLAGS_FOR_BUILD) $^ -o $@ $(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h $(tests_OBJECTS): src/ecmult_static_context.h $(bench_internal_OBJECTS): src/ecmult_static_context.h +$(bench_ecmult_OBJECTS): src/ecmult_static_context.h src/ecmult_static_context.h: $(gen_context_BIN) ./$(gen_context_BIN) diff --git a/src/secp256k1/build-aux/m4/ax_jni_include_dir.m4 b/src/secp256k1/build-aux/m4/ax_jni_include_dir.m4 index 1fc3627614..cdc78d87d4 100644 --- a/src/secp256k1/build-aux/m4/ax_jni_include_dir.m4 +++ b/src/secp256k1/build-aux/m4/ax_jni_include_dir.m4 @@ -1,5 +1,5 @@ # =========================================================================== -# http://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html +# https://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html # =========================================================================== # # SYNOPSIS @@ -44,7 +44,7 @@ # and this notice are preserved. This file is offered as-is, without any # warranty. -#serial 10 +#serial 14 AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR]) AC_DEFUN([AX_JNI_INCLUDE_DIR],[ @@ -66,9 +66,17 @@ else fi case "$host_os" in - darwin*) _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'` - _JINC="$_JTOPDIR/Headers";; - *) _JINC="$_JTOPDIR/include";; + darwin*) # Apple Java headers are inside the Xcode bundle. + macos_version=$(sw_vers -productVersion | sed -n -e 's/^@<:@0-9@:>@*.\(@<:@0-9@:>@*\).@<:@0-9@:>@*/\1/p') + if @<:@ "$macos_version" -gt "7" @:>@; then + _JTOPDIR="$(xcrun --show-sdk-path)/System/Library/Frameworks/JavaVM.framework" + _JINC="$_JTOPDIR/Headers" + else + _JTOPDIR="/System/Library/Frameworks/JavaVM.framework" + _JINC="$_JTOPDIR/Headers" + fi + ;; + *) _JINC="$_JTOPDIR/include";; esac _AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR]) _AS_ECHO_LOG([_JINC=$_JINC]) @@ -76,30 +84,27 @@ _AS_ECHO_LOG([_JINC=$_JINC]) # On Mac OS X 10.6.4, jni.h is a symlink: # /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h # -> ../../CurrentJDK/Headers/jni.h. - AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path, [ -if test -f "$_JINC/jni.h"; then - ac_cv_jni_header_path="$_JINC" - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" -else - _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'` - if test -f "$_JTOPDIR/include/jni.h"; then - ac_cv_jni_header_path="$_JTOPDIR/include" + if test -f "$_JINC/jni.h"; then + ac_cv_jni_header_path="$_JINC" JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" else - ac_cv_jni_header_path=none + _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'` + if test -f "$_JTOPDIR/include/jni.h"; then + ac_cv_jni_header_path="$_JTOPDIR/include" + JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" + else + ac_cv_jni_header_path=none + fi fi -fi ]) - - # get the likely subdirectories for system specific java includes case "$host_os" in bsdi*) _JNI_INC_SUBDIRS="bsdos";; -darwin*) _JNI_INC_SUBDIRS="darwin";; freebsd*) _JNI_INC_SUBDIRS="freebsd";; +darwin*) _JNI_INC_SUBDIRS="darwin";; linux*) _JNI_INC_SUBDIRS="linux genunix";; osf*) _JNI_INC_SUBDIRS="alpha";; solaris*) _JNI_INC_SUBDIRS="solaris";; @@ -112,9 +117,9 @@ if test "x$ac_cv_jni_header_path" != "xnone"; then # add any subdirectories that are present for JINCSUBDIR in $_JNI_INC_SUBDIRS do - if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR" - fi + if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then + JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR" + fi done fi ]) diff --git a/src/secp256k1/build-aux/m4/bitcoin_secp.m4 b/src/secp256k1/build-aux/m4/bitcoin_secp.m4 index b74acb8c13..3b3975cbdd 100644 --- a/src/secp256k1/build-aux/m4/bitcoin_secp.m4 +++ b/src/secp256k1/build-aux/m4/bitcoin_secp.m4 @@ -48,7 +48,6 @@ if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then EC_KEY_free(eckey); ECDSA_SIG *sig_openssl; sig_openssl = ECDSA_SIG_new(); - (void)sig_openssl->r; ECDSA_SIG_free(sig_openssl); ]])],[has_openssl_ec=yes],[has_openssl_ec=no]) AC_MSG_RESULT([$has_openssl_ec]) diff --git a/src/secp256k1/configure.ac b/src/secp256k1/configure.ac index e5fcbcb4ed..3b7a328c8a 100644 --- a/src/secp256k1/configure.ac +++ b/src/secp256k1/configure.ac @@ -85,9 +85,9 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], ]) AC_ARG_ENABLE(benchmark, - AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is no)]), + AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is yes)]), [use_benchmark=$enableval], - [use_benchmark=no]) + [use_benchmark=yes]) AC_ARG_ENABLE(coverage, AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis]), @@ -135,9 +135,9 @@ AC_ARG_ENABLE(module_recovery, [enable_module_recovery=no]) AC_ARG_ENABLE(jni, - AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is auto)]), + AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is no)]), [use_jni=$enableval], - [use_jni=auto]) + [use_jni=no]) AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto], [Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto]) @@ -153,12 +153,6 @@ AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto] AC_CHECK_TYPES([__int128]) -AC_MSG_CHECKING([for __builtin_expect]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])], - [ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ], - [ AC_MSG_RESULT([no]) - ]) - if test x"$enable_coverage" = x"yes"; then AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code]) CFLAGS="$CFLAGS -O0 --coverage" @@ -168,27 +162,54 @@ else fi if test x"$use_ecmult_static_precomputation" != x"no"; then + # Temporarily switch to an environment for the native compiler save_cross_compiling=$cross_compiling cross_compiling=no - TEMP_CC="$CC" + SAVE_CC="$CC" CC="$CC_FOR_BUILD" - AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}]) + SAVE_CFLAGS="$CFLAGS" + CFLAGS="$CFLAGS_FOR_BUILD" + SAVE_CPPFLAGS="$CPPFLAGS" + CPPFLAGS="$CPPFLAGS_FOR_BUILD" + SAVE_LDFLAGS="$LDFLAGS" + LDFLAGS="$LDFLAGS_FOR_BUILD" + + warn_CFLAGS_FOR_BUILD="-Wall -Wextra -Wno-unused-function" + saved_CFLAGS="$CFLAGS" + CFLAGS="$CFLAGS $warn_CFLAGS_FOR_BUILD" + AC_MSG_CHECKING([if native ${CC_FOR_BUILD} supports ${warn_CFLAGS_FOR_BUILD}]) + AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], + [ AC_MSG_RESULT([yes]) ], + [ AC_MSG_RESULT([no]) + CFLAGS="$saved_CFLAGS" + ]) + + AC_MSG_CHECKING([for working native compiler: ${CC_FOR_BUILD}]) AC_RUN_IFELSE( - [AC_LANG_PROGRAM([], [return 0])], + [AC_LANG_PROGRAM([], [])], [working_native_cc=yes], [working_native_cc=no],[dnl]) - CC="$TEMP_CC" + + CFLAGS_FOR_BUILD="$CFLAGS" + + # Restore the environment cross_compiling=$save_cross_compiling + CC="$SAVE_CC" + CFLAGS="$SAVE_CFLAGS" + CPPFLAGS="$SAVE_CPPFLAGS" + LDFLAGS="$SAVE_LDFLAGS" if test x"$working_native_cc" = x"no"; then + AC_MSG_RESULT([no]) set_precomp=no + m4_define([please_set_for_build], [Please set CC_FOR_BUILD, CFLAGS_FOR_BUILD, CPPFLAGS_FOR_BUILD, and/or LDFLAGS_FOR_BUILD.]) if test x"$use_ecmult_static_precomputation" = x"yes"; then - AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD]) + AC_MSG_ERROR([native compiler ${CC_FOR_BUILD} does not produce working binaries. please_set_for_build]) else - AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD]) + AC_MSG_WARN([Disabling statically generated ecmult table because the native compiler ${CC_FOR_BUILD} does not produce working binaries. please_set_for_build]) fi else - AC_MSG_RESULT([ok]) + AC_MSG_RESULT([yes]) set_precomp=yes fi else @@ -441,17 +462,6 @@ if test x"$use_external_asm" = x"yes"; then AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used]) fi -AC_MSG_NOTICE([Using static precomputation: $set_precomp]) -AC_MSG_NOTICE([Using assembly optimizations: $set_asm]) -AC_MSG_NOTICE([Using field implementation: $set_field]) -AC_MSG_NOTICE([Using bignum implementation: $set_bignum]) -AC_MSG_NOTICE([Using scalar implementation: $set_scalar]) -AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism]) -AC_MSG_NOTICE([Building for coverage analysis: $enable_coverage]) -AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh]) -AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery]) -AC_MSG_NOTICE([Using jni: $use_jni]) - if test x"$enable_experimental" = x"yes"; then AC_MSG_NOTICE([******]) AC_MSG_NOTICE([WARNING: experimental build]) @@ -481,7 +491,7 @@ AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"]) AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"]) -AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"]) +AM_CONDITIONAL([USE_JNI], [test x"$use_jni" = x"yes"]) AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"]) AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"]) @@ -491,3 +501,24 @@ unset PKG_CONFIG_PATH PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP" AC_OUTPUT + +echo +echo "Build Options:" +echo " with endomorphism = $use_endomorphism" +echo " with ecmult precomp = $set_precomp" +echo " with jni = $use_jni" +echo " with benchmarks = $use_benchmark" +echo " with coverage = $enable_coverage" +echo " module ecdh = $enable_module_ecdh" +echo " module recovery = $enable_module_recovery" +echo +echo " asm = $set_asm" +echo " bignum = $set_bignum" +echo " field = $set_field" +echo " scalar = $set_scalar" +echo +echo " CC = $CC" +echo " CFLAGS = $CFLAGS" +echo " CPPFLAGS = $CPPFLAGS" +echo " LDFLAGS = $LDFLAGS" +echo diff --git a/src/secp256k1/include/secp256k1.h b/src/secp256k1/include/secp256k1.h index 3e9c098d19..43af09c330 100644 --- a/src/secp256k1/include/secp256k1.h +++ b/src/secp256k1/include/secp256k1.h @@ -42,6 +42,19 @@ extern "C" { */ typedef struct secp256k1_context_struct secp256k1_context; +/** Opaque data structure that holds rewriteable "scratch space" + * + * The purpose of this structure is to replace dynamic memory allocations, + * because we target architectures where this may not be available. It is + * essentially a resizable (within specified parameters) block of bytes, + * which is initially created either by memory allocation or TODO as a pointer + * into some fixed rewritable space. + * + * Unlike the context object, this cannot safely be shared between threads + * without additional synchronization logic. + */ +typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space; + /** Opaque data structure that holds a parsed and valid public key. * * The exact representation of data inside is implementation defined and not @@ -166,6 +179,13 @@ typedef int (*secp256k1_nonce_function)( #define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06 #define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07 +/** A simple secp256k1 context object with no precomputed tables. These are useful for + * type serialization/parsing functions which require a context object to maintain + * API consistency, but currently do not require expensive precomputations or dynamic + * allocations. + */ +SECP256K1_API extern const secp256k1_context *secp256k1_context_no_precomp; + /** Create a secp256k1 context object. * * Returns: a newly created context object. @@ -243,6 +263,26 @@ SECP256K1_API void secp256k1_context_set_error_callback( const void* data ) SECP256K1_ARG_NONNULL(1); +/** Create a secp256k1 scratch space object. + * + * Returns: a newly created scratch space. + * Args: ctx: an existing context object (cannot be NULL) + * In: max_size: maximum amount of memory to allocate + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create( + const secp256k1_context* ctx, + size_t max_size +) SECP256K1_ARG_NONNULL(1); + +/** Destroy a secp256k1 scratch space. + * + * The pointer may not be used afterwards. + * Args: scratch: space to destroy + */ +SECP256K1_API void secp256k1_scratch_space_destroy( + secp256k1_scratch_space* scratch +); + /** Parse a variable-length public key into the pubkey object. * * Returns: 1 if the public key was fully valid. @@ -498,7 +538,7 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( * * Returns: 1 always * Args: ctx: pointer to a context object - * In/Out: pubkey: pointer to the public key to be negated (cannot be NULL) + * In/Out: seckey: pointer to the 32-byte private key to be negated (cannot be NULL) */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate( const secp256k1_context* ctx, @@ -575,7 +615,7 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Updates the context randomization to protect against side-channel leakage. - * Returns: 1: randomization successfully updated + * Returns: 1: randomization successfully updated or nothing to randomize * 0: error * Args: ctx: pointer to a context object (cannot be NULL) * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state) @@ -590,6 +630,11 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( * that it does not affect function results, but shields against attacks which * rely on any input-dependent behaviour. * + * This function has currently an effect only on contexts initialized for signing + * because randomization is currently used only for signing. However, this is not + * guaranteed and may change in the future. It is safe to call this function on + * contexts not initialized for signing; then it will have no effect and return 1. + * * You should call this after secp256k1_context_create or * secp256k1_context_clone, and may call this repeatedly afterwards. */ diff --git a/src/secp256k1/include/secp256k1_ecdh.h b/src/secp256k1/include/secp256k1_ecdh.h index 88492dc1a4..df5fde235c 100644 --- a/src/secp256k1/include/secp256k1_ecdh.h +++ b/src/secp256k1/include/secp256k1_ecdh.h @@ -7,21 +7,45 @@ extern "C" { #endif +/** A pointer to a function that applies hash function to a point + * + * Returns: 1 if a point was successfully hashed. 0 will cause ecdh to fail + * Out: output: pointer to an array to be filled by the function + * In: x: pointer to a 32-byte x coordinate + * y: pointer to a 32-byte y coordinate + * data: Arbitrary data pointer that is passed through + */ +typedef int (*secp256k1_ecdh_hash_function)( + unsigned char *output, + const unsigned char *x, + const unsigned char *y, + void *data +); + +/** An implementation of SHA256 hash function that applies to compressed public key. */ +SECP256K1_API extern const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256; + +/** A default ecdh hash function (currently equal to secp256k1_ecdh_hash_function_sha256). */ +SECP256K1_API extern const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default; + /** Compute an EC Diffie-Hellman secret in constant time * Returns: 1: exponentiation was successful * 0: scalar was invalid (zero or overflow) * Args: ctx: pointer to a context object (cannot be NULL) - * Out: result: a 32-byte array which will be populated by an ECDH - * secret computed from the point and scalar + * Out: output: pointer to an array to be filled by the function * In: pubkey: a pointer to a secp256k1_pubkey containing an * initialized public key * privkey: a 32-byte scalar with which to multiply the point + * hashfp: pointer to a hash function. If NULL, secp256k1_ecdh_hash_function_sha256 is used + * data: Arbitrary data pointer that is passed through */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh( const secp256k1_context* ctx, - unsigned char *result, + unsigned char *output, const secp256k1_pubkey *pubkey, - const unsigned char *privkey + const unsigned char *privkey, + secp256k1_ecdh_hash_function hashfp, + void *data ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); #ifdef __cplusplus diff --git a/src/secp256k1/libsecp256k1.pc.in b/src/secp256k1/libsecp256k1.pc.in index a0d006f113..694e98eef5 100644 --- a/src/secp256k1/libsecp256k1.pc.in +++ b/src/secp256k1/libsecp256k1.pc.in @@ -8,6 +8,6 @@ Description: Optimized C library for EC operations on curve secp256k1 URL: https://github.com/bitcoin-core/secp256k1 Version: @PACKAGE_VERSION@ Cflags: -I${includedir} -Libs.private: @SECP_LIBS@ Libs: -L${libdir} -lsecp256k1 +Libs.private: @SECP_LIBS@ diff --git a/src/secp256k1/src/bench.h b/src/secp256k1/src/bench.h index d5ebe01301..5b59783f68 100644 --- a/src/secp256k1/src/bench.h +++ b/src/secp256k1/src/bench.h @@ -8,6 +8,7 @@ #define SECP256K1_BENCH_H #include <stdio.h> +#include <string.h> #include <math.h> #include "sys/time.h" @@ -63,4 +64,19 @@ void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), v printf("us\n"); } +int have_flag(int argc, char** argv, char *flag) { + char** argm = argv + argc; + argv++; + if (argv == argm) { + return 1; + } + while (argv != NULL && argv != argm) { + if (strcmp(*argv, flag) == 0) { + return 1; + } + argv++; + } + return 0; +} + #endif /* SECP256K1_BENCH_H */ diff --git a/src/secp256k1/src/bench_ecdh.c b/src/secp256k1/src/bench_ecdh.c index cde5e2dbb4..c1dd5a6ac9 100644 --- a/src/secp256k1/src/bench_ecdh.c +++ b/src/secp256k1/src/bench_ecdh.c @@ -15,11 +15,11 @@ typedef struct { secp256k1_context *ctx; secp256k1_pubkey point; unsigned char scalar[32]; -} bench_ecdh_t; +} bench_ecdh_data; static void bench_ecdh_setup(void* arg) { int i; - bench_ecdh_t *data = (bench_ecdh_t*)arg; + bench_ecdh_data *data = (bench_ecdh_data*)arg; const unsigned char point[] = { 0x03, 0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06, @@ -39,15 +39,15 @@ static void bench_ecdh_setup(void* arg) { static void bench_ecdh(void* arg) { int i; unsigned char res[32]; - bench_ecdh_t *data = (bench_ecdh_t*)arg; + bench_ecdh_data *data = (bench_ecdh_data*)arg; for (i = 0; i < 20000; i++) { - CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1); + CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar, NULL, NULL) == 1); } } int main(void) { - bench_ecdh_t data; + bench_ecdh_data data; run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000); return 0; diff --git a/src/secp256k1/src/bench_ecmult.c b/src/secp256k1/src/bench_ecmult.c new file mode 100644 index 0000000000..6d0ed1f436 --- /dev/null +++ b/src/secp256k1/src/bench_ecmult.c @@ -0,0 +1,207 @@ +/********************************************************************** + * Copyright (c) 2017 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ +#include <stdio.h> + +#include "include/secp256k1.h" + +#include "util.h" +#include "hash_impl.h" +#include "num_impl.h" +#include "field_impl.h" +#include "group_impl.h" +#include "scalar_impl.h" +#include "ecmult_impl.h" +#include "bench.h" +#include "secp256k1.c" + +#define POINTS 32768 +#define ITERS 10000 + +typedef struct { + /* Setup once in advance */ + secp256k1_context* ctx; + secp256k1_scratch_space* scratch; + secp256k1_scalar* scalars; + secp256k1_ge* pubkeys; + secp256k1_scalar* seckeys; + secp256k1_gej* expected_output; + secp256k1_ecmult_multi_func ecmult_multi; + + /* Changes per test */ + size_t count; + int includes_g; + + /* Changes per test iteration */ + size_t offset1; + size_t offset2; + + /* Test output. */ + secp256k1_gej* output; +} bench_data; + +static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) { + bench_data* data = (bench_data*)arg; + if (data->includes_g) ++idx; + if (idx == 0) { + *sc = data->scalars[data->offset1]; + *ge = secp256k1_ge_const_g; + } else { + *sc = data->scalars[(data->offset1 + idx) % POINTS]; + *ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS]; + } + return 1; +} + +static void bench_ecmult(void* arg) { + bench_data* data = (bench_data*)arg; + + size_t count = data->count; + int includes_g = data->includes_g; + size_t iters = 1 + ITERS / count; + size_t iter; + + for (iter = 0; iter < iters; ++iter) { + data->ecmult_multi(&data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g); + data->offset1 = (data->offset1 + count) % POINTS; + data->offset2 = (data->offset2 + count - 1) % POINTS; + } +} + +static void bench_ecmult_setup(void* arg) { + bench_data* data = (bench_data*)arg; + data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS; + data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; +} + +static void bench_ecmult_teardown(void* arg) { + bench_data* data = (bench_data*)arg; + size_t iters = 1 + ITERS / data->count; + size_t iter; + /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */ + for (iter = 0; iter < iters; ++iter) { + secp256k1_gej tmp; + secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL); + CHECK(secp256k1_gej_is_infinity(&tmp)); + } +} + +static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) { + secp256k1_sha256 sha256; + unsigned char c[11] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0}; + unsigned char buf[32]; + int overflow = 0; + c[6] = num; + c[7] = num >> 8; + c[8] = num >> 16; + c[9] = num >> 24; + secp256k1_sha256_initialize(&sha256); + secp256k1_sha256_write(&sha256, c, sizeof(c)); + secp256k1_sha256_finalize(&sha256, buf); + secp256k1_scalar_set_b32(scalar, buf, &overflow); + CHECK(!overflow); +} + +static void run_test(bench_data* data, size_t count, int includes_g) { + char str[32]; + static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + size_t iters = 1 + ITERS / count; + size_t iter; + + data->count = count; + data->includes_g = includes_g; + + /* Compute (the negation of) the expected results directly. */ + data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS; + data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; + for (iter = 0; iter < iters; ++iter) { + secp256k1_scalar tmp; + secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS]; + size_t i = 0; + for (i = 0; i + 1 < count; ++i) { + secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]); + secp256k1_scalar_add(&total, &total, &tmp); + } + secp256k1_scalar_negate(&total, &total); + secp256k1_ecmult(&data->ctx->ecmult_ctx, &data->expected_output[iter], NULL, &zero, &total); + } + + /* Run the benchmark. */ + sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count); + run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * (1 + ITERS / count)); +} + +int main(int argc, char **argv) { + bench_data data; + int i, p; + secp256k1_gej* pubkeys_gej; + size_t scratch_size; + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16; + data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size); + data.ecmult_multi = secp256k1_ecmult_multi_var; + + if (argc > 1) { + if(have_flag(argc, argv, "pippenger_wnaf")) { + printf("Using pippenger_wnaf:\n"); + data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single; + } else if(have_flag(argc, argv, "strauss_wnaf")) { + printf("Using strauss_wnaf:\n"); + data.ecmult_multi = secp256k1_ecmult_strauss_batch_single; + } else if(have_flag(argc, argv, "simple")) { + printf("Using simple algorithm:\n"); + data.ecmult_multi = secp256k1_ecmult_multi_var; + secp256k1_scratch_space_destroy(data.scratch); + data.scratch = NULL; + } else { + fprintf(stderr, "%s: unrecognized argument '%s'.\n", argv[0], argv[1]); + fprintf(stderr, "Use 'pippenger_wnaf', 'strauss_wnaf', 'simple' or no argument to benchmark a combined algorithm.\n"); + return 1; + } + } + + /* Allocate stuff */ + data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS); + data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS); + data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS); + data.expected_output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); + data.output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); + + /* Generate a set of scalars, and private/public keypairs. */ + pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS); + secp256k1_gej_set_ge(&pubkeys_gej[0], &secp256k1_ge_const_g); + secp256k1_scalar_set_int(&data.seckeys[0], 1); + for (i = 0; i < POINTS; ++i) { + generate_scalar(i, &data.scalars[i]); + if (i) { + secp256k1_gej_double_var(&pubkeys_gej[i], &pubkeys_gej[i - 1], NULL); + secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]); + } + } + secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS); + free(pubkeys_gej); + + for (i = 1; i <= 8; ++i) { + run_test(&data, i, 1); + } + + for (p = 0; p <= 11; ++p) { + for (i = 9; i <= 16; ++i) { + run_test(&data, i << p, 1); + } + } + secp256k1_context_destroy(data.ctx); + if (data.scratch != NULL) { + secp256k1_scratch_space_destroy(data.scratch); + } + free(data.scalars); + free(data.pubkeys); + free(data.seckeys); + free(data.output); + free(data.expected_output); + + return(0); +} diff --git a/src/secp256k1/src/bench_internal.c b/src/secp256k1/src/bench_internal.c index 0809f77bda..9071724331 100644 --- a/src/secp256k1/src/bench_internal.c +++ b/src/secp256k1/src/bench_internal.c @@ -25,10 +25,10 @@ typedef struct { secp256k1_gej gej_x, gej_y; unsigned char data[64]; int wnaf[256]; -} bench_inv_t; +} bench_inv; void bench_setup(void* arg) { - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; static const unsigned char init_x[32] = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13, @@ -58,7 +58,7 @@ void bench_setup(void* arg) { void bench_scalar_add(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 2000000; i++) { secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); @@ -67,7 +67,7 @@ void bench_scalar_add(void* arg) { void bench_scalar_negate(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 2000000; i++) { secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x); @@ -76,7 +76,7 @@ void bench_scalar_negate(void* arg) { void bench_scalar_sqr(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x); @@ -85,7 +85,7 @@ void bench_scalar_sqr(void* arg) { void bench_scalar_mul(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y); @@ -95,7 +95,7 @@ void bench_scalar_mul(void* arg) { #ifdef USE_ENDOMORPHISM void bench_scalar_split(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 20000; i++) { secp256k1_scalar l, r; @@ -107,7 +107,7 @@ void bench_scalar_split(void* arg) { void bench_scalar_inverse(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 2000; i++) { secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x); @@ -117,7 +117,7 @@ void bench_scalar_inverse(void* arg) { void bench_scalar_inverse_var(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 2000; i++) { secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x); @@ -127,7 +127,7 @@ void bench_scalar_inverse_var(void* arg) { void bench_field_normalize(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 2000000; i++) { secp256k1_fe_normalize(&data->fe_x); @@ -136,7 +136,7 @@ void bench_field_normalize(void* arg) { void bench_field_normalize_weak(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 2000000; i++) { secp256k1_fe_normalize_weak(&data->fe_x); @@ -145,7 +145,7 @@ void bench_field_normalize_weak(void* arg) { void bench_field_mul(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y); @@ -154,7 +154,7 @@ void bench_field_mul(void* arg) { void bench_field_sqr(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_fe_sqr(&data->fe_x, &data->fe_x); @@ -163,7 +163,7 @@ void bench_field_sqr(void* arg) { void bench_field_inverse(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 20000; i++) { secp256k1_fe_inv(&data->fe_x, &data->fe_x); @@ -173,7 +173,7 @@ void bench_field_inverse(void* arg) { void bench_field_inverse_var(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 20000; i++) { secp256k1_fe_inv_var(&data->fe_x, &data->fe_x); @@ -183,17 +183,19 @@ void bench_field_inverse_var(void* arg) { void bench_field_sqrt(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; + secp256k1_fe t; for (i = 0; i < 20000; i++) { - secp256k1_fe_sqrt(&data->fe_x, &data->fe_x); + t = data->fe_x; + secp256k1_fe_sqrt(&data->fe_x, &t); secp256k1_fe_add(&data->fe_x, &data->fe_y); } } void bench_group_double_var(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL); @@ -202,7 +204,7 @@ void bench_group_double_var(void* arg) { void bench_group_add_var(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL); @@ -211,7 +213,7 @@ void bench_group_add_var(void* arg) { void bench_group_add_affine(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y); @@ -220,7 +222,7 @@ void bench_group_add_affine(void* arg) { void bench_group_add_affine_var(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 200000; i++) { secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL); @@ -229,7 +231,7 @@ void bench_group_add_affine_var(void* arg) { void bench_group_jacobi_var(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 20000; i++) { secp256k1_gej_has_quad_y_var(&data->gej_x); @@ -238,7 +240,7 @@ void bench_group_jacobi_var(void* arg) { void bench_ecmult_wnaf(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 20000; i++) { secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A); @@ -248,10 +250,10 @@ void bench_ecmult_wnaf(void* arg) { void bench_wnaf_const(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; for (i = 0; i < 20000; i++) { - secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A); + secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A, 256); secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); } } @@ -259,8 +261,8 @@ void bench_wnaf_const(void* arg) { void bench_sha256(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; - secp256k1_sha256_t sha; + bench_inv *data = (bench_inv*)arg; + secp256k1_sha256 sha; for (i = 0; i < 20000; i++) { secp256k1_sha256_initialize(&sha); @@ -271,8 +273,8 @@ void bench_sha256(void* arg) { void bench_hmac_sha256(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; - secp256k1_hmac_sha256_t hmac; + bench_inv *data = (bench_inv*)arg; + secp256k1_hmac_sha256 hmac; for (i = 0; i < 20000; i++) { secp256k1_hmac_sha256_initialize(&hmac, data->data, 32); @@ -283,8 +285,8 @@ void bench_hmac_sha256(void* arg) { void bench_rfc6979_hmac_sha256(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; - secp256k1_rfc6979_hmac_sha256_t rng; + bench_inv *data = (bench_inv*)arg; + secp256k1_rfc6979_hmac_sha256 rng; for (i = 0; i < 20000; i++) { secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64); @@ -311,7 +313,7 @@ void bench_context_sign(void* arg) { #ifndef USE_NUM_NONE void bench_num_jacobi(void* arg) { int i; - bench_inv_t *data = (bench_inv_t*)arg; + bench_inv *data = (bench_inv*)arg; secp256k1_num nx, norder; secp256k1_scalar_get_num(&nx, &data->scalar_x); @@ -324,23 +326,8 @@ void bench_num_jacobi(void* arg) { } #endif -int have_flag(int argc, char** argv, char *flag) { - char** argm = argv + argc; - argv++; - if (argv == argm) { - return 1; - } - while (argv != NULL && argv != argm) { - if (strcmp(*argv, flag) == 0) { - return 1; - } - argv++; - } - return 0; -} - int main(int argc, char **argv) { - bench_inv_t data; + bench_inv data; if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000); if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000); if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000); diff --git a/src/secp256k1/src/bench_recover.c b/src/secp256k1/src/bench_recover.c index 6489378cc6..b806eed94e 100644 --- a/src/secp256k1/src/bench_recover.c +++ b/src/secp256k1/src/bench_recover.c @@ -13,11 +13,11 @@ typedef struct { secp256k1_context *ctx; unsigned char msg[32]; unsigned char sig[64]; -} bench_recover_t; +} bench_recover_data; void bench_recover(void* arg) { int i; - bench_recover_t *data = (bench_recover_t*)arg; + bench_recover_data *data = (bench_recover_data*)arg; secp256k1_pubkey pubkey; unsigned char pubkeyc[33]; @@ -38,7 +38,7 @@ void bench_recover(void* arg) { void bench_recover_setup(void* arg) { int i; - bench_recover_t *data = (bench_recover_t*)arg; + bench_recover_data *data = (bench_recover_data*)arg; for (i = 0; i < 32; i++) { data->msg[i] = 1 + i; @@ -49,7 +49,7 @@ void bench_recover_setup(void* arg) { } int main(void) { - bench_recover_t data; + bench_recover_data data; data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); diff --git a/src/secp256k1/src/bench_sign.c b/src/secp256k1/src/bench_sign.c index ed7224d757..544b43963c 100644 --- a/src/secp256k1/src/bench_sign.c +++ b/src/secp256k1/src/bench_sign.c @@ -12,11 +12,11 @@ typedef struct { secp256k1_context* ctx; unsigned char msg[32]; unsigned char key[32]; -} bench_sign_t; +} bench_sign; static void bench_sign_setup(void* arg) { int i; - bench_sign_t *data = (bench_sign_t*)arg; + bench_sign *data = (bench_sign*)arg; for (i = 0; i < 32; i++) { data->msg[i] = i + 1; @@ -26,9 +26,9 @@ static void bench_sign_setup(void* arg) { } } -static void bench_sign(void* arg) { +static void bench_sign_run(void* arg) { int i; - bench_sign_t *data = (bench_sign_t*)arg; + bench_sign *data = (bench_sign*)arg; unsigned char sig[74]; for (i = 0; i < 20000; i++) { @@ -45,11 +45,11 @@ static void bench_sign(void* arg) { } int main(void) { - bench_sign_t data; + bench_sign data; data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - run_benchmark("ecdsa_sign", bench_sign, bench_sign_setup, NULL, &data, 10, 20000); + run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, 20000); secp256k1_context_destroy(data.ctx); return 0; diff --git a/src/secp256k1/src/eckey_impl.h b/src/secp256k1/src/eckey_impl.h index 1ab9a68ec0..7c5b789325 100644 --- a/src/secp256k1/src/eckey_impl.h +++ b/src/secp256k1/src/eckey_impl.h @@ -18,7 +18,7 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) { secp256k1_fe x; return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD); - } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { + } else if (size == 65 && (pub[0] == SECP256K1_TAG_PUBKEY_UNCOMPRESSED || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) { secp256k1_fe x, y; if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) { return 0; diff --git a/src/secp256k1/src/ecmult.h b/src/secp256k1/src/ecmult.h index 6d44aba60b..3d75a960f4 100644 --- a/src/secp256k1/src/ecmult.h +++ b/src/secp256k1/src/ecmult.h @@ -1,5 +1,5 @@ /********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * + * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ @@ -9,6 +9,8 @@ #include "num.h" #include "group.h" +#include "scalar.h" +#include "scratch.h" typedef struct { /* For accelerating the computation of a*P + b*G: */ @@ -28,4 +30,19 @@ static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx /** Double multiply: R = na*A + ng*G */ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng); +typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data); + +/** + * Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai. + * Chooses the right algorithm for a given number of points and scratch space + * size. Resets and overwrites the given scratch space. If the points do not + * fit in the scratch space the algorithm is repeatedly run with batches of + * points. If no scratch space is given then a simple algorithm is used that + * simply multiplies the points with the corresponding scalars and adds them up. + * Returns: 1 on success (including when inp_g_sc is NULL and n is 0) + * 0 if there is not enough scratch space for a single point or + * callback returns 0 + */ +static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n); + #endif /* SECP256K1_ECMULT_H */ diff --git a/src/secp256k1/src/ecmult_const.h b/src/secp256k1/src/ecmult_const.h index 72bf7d7582..d4804b8b68 100644 --- a/src/secp256k1/src/ecmult_const.h +++ b/src/secp256k1/src/ecmult_const.h @@ -10,6 +10,8 @@ #include "scalar.h" #include "group.h" -static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q); +/* Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus + * one because we internally sometimes add 2 to the number during the WNAF conversion. */ +static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits); #endif /* SECP256K1_ECMULT_CONST_H */ diff --git a/src/secp256k1/src/ecmult_const_impl.h b/src/secp256k1/src/ecmult_const_impl.h index 7d7a172b7b..8411752eb0 100644 --- a/src/secp256k1/src/ecmult_const_impl.h +++ b/src/secp256k1/src/ecmult_const_impl.h @@ -12,13 +12,6 @@ #include "ecmult_const.h" #include "ecmult_impl.h" -#ifdef USE_ENDOMORPHISM - #define WNAF_BITS 128 -#else - #define WNAF_BITS 256 -#endif -#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) - /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ int m; \ @@ -55,7 +48,7 @@ * * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 */ -static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { +static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) { int global_sign; int skew = 0; int word = 0; @@ -74,9 +67,14 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { * and we'd lose any performance benefit. Instead, we use a technique from * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) * or 2 (for odd) to the number we are encoding, returning a skew value indicating - * this, and having the caller compensate after doing the multiplication. */ - - /* Negative numbers will be negated to keep their bit representation below the maximum width */ + * this, and having the caller compensate after doing the multiplication. + * + * In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in + * particular, to ensure that the outputs from the endomorphism-split fit into + * 128 bits). If we negate, the parity of our number flips, inverting which of + * {1, 2} we want to add to the scalar when ensuring that it's odd. Further + * complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and + * we need to special-case it in this logic. */ flip = secp256k1_scalar_is_high(&s); /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ bit = flip ^ !secp256k1_scalar_is_even(&s); @@ -95,7 +93,7 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { /* 4 */ u_last = secp256k1_scalar_shr_int(&s, w); - while (word * w < WNAF_BITS) { + while (word * w < size) { int sign; int even; @@ -115,37 +113,44 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { wnaf[word] = u * global_sign; VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); - VERIFY_CHECK(word == WNAF_SIZE(w)); + VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w)); return skew; } - -static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) { +static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar, int size) { secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ge tmpa; secp256k1_fe Z; int skew_1; - int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; #ifdef USE_ENDOMORPHISM secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; int skew_lam; secp256k1_scalar q_1, q_lam; #endif + int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; int i; secp256k1_scalar sc = *scalar; /* build wnaf representation for q. */ + int rsize = size; +#ifdef USE_ENDOMORPHISM + if (size > 128) { + rsize = 128; + /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ + secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); + skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1, 128); + skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1, 128); + } else +#endif + { + skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1, size); #ifdef USE_ENDOMORPHISM - /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ - secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); - skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1); - skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1); -#else - skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1); + skew_lam = 0; #endif + } /* Calculate odd multiples of a. * All multiples are brought to the same Z 'denominator', which is stored @@ -159,26 +164,30 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons secp256k1_fe_normalize_weak(&pre_a[i].y); } #ifdef USE_ENDOMORPHISM - for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); + if (size > 128) { + for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { + secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); + } } #endif /* first loop iteration (separated out so we can directly set r, rather * than having it start at infinity, get doubled several times, then have * its new value added to it) */ - i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)]; + i = wnaf_1[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; VERIFY_CHECK(i != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); secp256k1_gej_set_ge(r, &tmpa); #ifdef USE_ENDOMORPHISM - i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)]; - VERIFY_CHECK(i != 0); - ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); - secp256k1_gej_add_ge(r, r, &tmpa); + if (size > 128) { + i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; + VERIFY_CHECK(i != 0); + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); + secp256k1_gej_add_ge(r, r, &tmpa); + } #endif /* remaining loop iterations */ - for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) { + for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) { int n; int j; for (j = 0; j < WINDOW_A - 1; ++j) { @@ -190,10 +199,12 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons VERIFY_CHECK(n != 0); secp256k1_gej_add_ge(r, r, &tmpa); #ifdef USE_ENDOMORPHISM - n = wnaf_lam[i]; - ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); - VERIFY_CHECK(n != 0); - secp256k1_gej_add_ge(r, r, &tmpa); + if (size > 128) { + n = wnaf_lam[i]; + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); + VERIFY_CHECK(n != 0); + secp256k1_gej_add_ge(r, r, &tmpa); + } #endif } @@ -213,14 +224,18 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons secp256k1_ge_set_gej(&correction, &tmpj); secp256k1_ge_to_storage(&correction_1_stor, a); #ifdef USE_ENDOMORPHISM - secp256k1_ge_to_storage(&correction_lam_stor, a); + if (size > 128) { + secp256k1_ge_to_storage(&correction_lam_stor, a); + } #endif secp256k1_ge_to_storage(&a2_stor, &correction); /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); #ifdef USE_ENDOMORPHISM - secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); + if (size > 128) { + secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); + } #endif /* Apply the correction */ @@ -229,10 +244,12 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons secp256k1_gej_add_ge(r, r, &correction); #ifdef USE_ENDOMORPHISM - secp256k1_ge_from_storage(&correction, &correction_lam_stor); - secp256k1_ge_neg(&correction, &correction); - secp256k1_ge_mul_lambda(&correction, &correction); - secp256k1_gej_add_ge(r, r, &correction); + if (size > 128) { + secp256k1_ge_from_storage(&correction, &correction_lam_stor); + secp256k1_ge_neg(&correction, &correction); + secp256k1_ge_mul_lambda(&correction, &correction); + secp256k1_gej_add_ge(r, r, &correction); + } #endif } } diff --git a/src/secp256k1/src/ecmult_gen_impl.h b/src/secp256k1/src/ecmult_gen_impl.h index 9615b932dd..d64505dc00 100644 --- a/src/secp256k1/src/ecmult_gen_impl.h +++ b/src/secp256k1/src/ecmult_gen_impl.h @@ -77,7 +77,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); } } - secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb); + secp256k1_ge_set_all_gej_var(prec, precj, 1024); } for (j = 0; j < 64; j++) { for (i = 0; i < 16; i++) { @@ -161,7 +161,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const secp256k1_gej gb; secp256k1_fe s; unsigned char nonce32[32]; - secp256k1_rfc6979_hmac_sha256_t rng; + secp256k1_rfc6979_hmac_sha256 rng; int retry; unsigned char keydata[64] = {0}; if (seed32 == NULL) { diff --git a/src/secp256k1/src/ecmult_impl.h b/src/secp256k1/src/ecmult_impl.h index 93d3794cb4..1986914a4f 100644 --- a/src/secp256k1/src/ecmult_impl.h +++ b/src/secp256k1/src/ecmult_impl.h @@ -1,13 +1,14 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/***************************************************************************** + * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php. * + *****************************************************************************/ #ifndef SECP256K1_ECMULT_IMPL_H #define SECP256K1_ECMULT_IMPL_H #include <string.h> +#include <stdint.h> #include "group.h" #include "scalar.h" @@ -41,9 +42,36 @@ #endif #endif +#ifdef USE_ENDOMORPHISM + #define WNAF_BITS 128 +#else + #define WNAF_BITS 256 +#endif +#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w)) +#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w) + /** The number of entries a table with precomputed multiples needs to have. */ #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) +/* The number of objects allocated on the scratch space for ecmult_multi algorithms */ +#define PIPPENGER_SCRATCH_OBJECTS 6 +#define STRAUSS_SCRATCH_OBJECTS 6 + +#define PIPPENGER_MAX_BUCKET_WINDOW 12 + +/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */ +#ifdef USE_ENDOMORPHISM + #define ECMULT_PIPPENGER_THRESHOLD 88 +#else + #define ECMULT_PIPPENGER_THRESHOLD 160 +#endif + +#ifdef USE_ENDOMORPHISM + #define ECMULT_MAX_POINTS_PER_BATCH 5000000 +#else + #define ECMULT_MAX_POINTS_PER_BATCH 10000000 +#endif + /** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z. @@ -109,24 +137,135 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); } -static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) { - secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n); - secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n); - secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n); +static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp256k1_ge_storage *pre, const secp256k1_gej *a) { + secp256k1_gej d; + secp256k1_ge d_ge, p_ge; + secp256k1_gej pj; + secp256k1_fe zi; + secp256k1_fe zr; + secp256k1_fe dx_over_dz_squared; int i; - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(n, prej, zr, a); - /* Convert them in batch to affine coordinates. */ - secp256k1_ge_set_table_gej_var(prea, prej, zr, n); - /* Convert them to compact storage form. */ - for (i = 0; i < n; i++) { - secp256k1_ge_to_storage(&pre[i], &prea[i]); + VERIFY_CHECK(!a->infinity); + + secp256k1_gej_double_var(&d, a, NULL); + + /* First, we perform all the additions in an isomorphic curve obtained by multiplying + * all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use + * `secp256k1_gej_add_ge_var` to perform the additions. For each addition, we store + * the resulting y-coordinate and the z-ratio, since we only have enough memory to + * store two field elements. These are sufficient to efficiently undo the isomorphism + * and recompute all the `x`s. + */ + d_ge.x = d.x; + d_ge.y = d.y; + d_ge.infinity = 0; + + secp256k1_ge_set_gej_zinv(&p_ge, a, &d.z); + pj.x = p_ge.x; + pj.y = p_ge.y; + pj.z = a->z; + pj.infinity = 0; + + for (i = 0; i < (n - 1); i++) { + secp256k1_fe_normalize_var(&pj.y); + secp256k1_fe_to_storage(&pre[i].y, &pj.y); + secp256k1_gej_add_ge_var(&pj, &pj, &d_ge, &zr); + secp256k1_fe_normalize_var(&zr); + secp256k1_fe_to_storage(&pre[i].x, &zr); } - free(prea); - free(prej); - free(zr); + /* Invert d.z in the same batch, preserving pj.z so we can extract 1/d.z */ + secp256k1_fe_mul(&zi, &pj.z, &d.z); + secp256k1_fe_inv_var(&zi, &zi); + + /* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so + * that we can combine it with the saved z-ratios to compute the other zs + * without any more inversions. */ + secp256k1_ge_set_gej_zinv(&p_ge, &pj, &zi); + secp256k1_ge_to_storage(&pre[n - 1], &p_ge); + + /* Compute the actual x-coordinate of D, which will be needed below. */ + secp256k1_fe_mul(&d.z, &zi, &pj.z); /* d.z = 1/d.z */ + secp256k1_fe_sqr(&dx_over_dz_squared, &d.z); + secp256k1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x); + + /* Going into the second loop, we have set `pre[n-1]` to its final affine + * form, but still need to set `pre[i]` for `i` in 0 through `n-2`. We + * have `zi = (p.z * d.z)^-1`, where + * + * `p.z` is the z-coordinate of the point on the isomorphic curve + * which was ultimately assigned to `pre[n-1]`. + * `d.z` is the multiplier that must be applied to all z-coordinates + * to move from our isomorphic curve back to secp256k1; so the + * product `p.z * d.z` is the z-coordinate of the secp256k1 + * point assigned to `pre[n-1]`. + * + * All subsequent inverse-z-coordinates can be obtained by multiplying this + * factor by successive z-ratios, which is much more efficient than directly + * computing each one. + * + * Importantly, these inverse-zs will be coordinates of points on secp256k1, + * while our other stored values come from computations on the isomorphic + * curve. So in the below loop, we will take care not to actually use `zi` + * or any derived values until we're back on secp256k1. + */ + i = n - 1; + while (i > 0) { + secp256k1_fe zi2, zi3; + const secp256k1_fe *rzr; + i--; + + secp256k1_ge_from_storage(&p_ge, &pre[i]); + + /* For each remaining point, we extract the z-ratio from the stored + * x-coordinate, compute its z^-1 from that, and compute the full + * point from that. */ + rzr = &p_ge.x; + secp256k1_fe_mul(&zi, &zi, rzr); + secp256k1_fe_sqr(&zi2, &zi); + secp256k1_fe_mul(&zi3, &zi2, &zi); + /* To compute the actual x-coordinate, we use the stored z ratio and + * y-coordinate, which we obtained from `secp256k1_gej_add_ge_var` + * in the loop above, as well as the inverse of the square of its + * z-coordinate. We store the latter in the `zi2` variable, which is + * computed iteratively starting from the overall Z inverse then + * multiplying by each z-ratio in turn. + * + * Denoting the z-ratio as `rzr`, we observe that it is equal to `h` + * from the inside of the above `gej_add_ge_var` call. This satisfies + * + * rzr = d_x * z^2 - x * d_z^2 + * + * where (`d_x`, `d_z`) are Jacobian coordinates of `D` and `(x, z)` + * are Jacobian coordinates of our desired point -- except both are on + * the isomorphic curve that we were using when we called `gej_add_ge_var`. + * To get back to secp256k1, we must multiply both `z`s by `d_z`, or + * equivalently divide both `x`s by `d_z^2`. Our equation then becomes + * + * rzr = d_x * z^2 / d_z^2 - x + * + * (The left-hand-side, being a ratio of z-coordinates, is unaffected + * by the isomorphism.) + * + * Rearranging to solve for `x`, we have + * + * x = d_x * z^2 / d_z^2 - rzr + * + * But what we actually want is the affine coordinate `X = x/z^2`, + * which will satisfy + * + * X = d_x / d_z^2 - rzr / z^2 + * = dx_over_dz_squared - rzr * zi2 + */ + secp256k1_fe_mul(&p_ge.x, rzr, &zi2); + secp256k1_fe_negate(&p_ge.x, &p_ge.x, 1); + secp256k1_fe_add(&p_ge.x, &dx_over_dz_squared); + /* y is stored_y/z^3, as we expect */ + secp256k1_fe_mul(&p_ge.y, &p_ge.y, &zi3); + /* Store */ + secp256k1_ge_to_storage(&pre[i], &p_ge); + } } /** The following two macro retrieves a particular odd multiple from a table @@ -138,7 +277,8 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge if ((n) > 0) { \ *(r) = (pre)[((n)-1)/2]; \ } else { \ - secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \ + *(r) = (pre)[(-(n)-1)/2]; \ + secp256k1_fe_negate(&((r)->y), &((r)->y), 1); \ } \ } while(0) @@ -150,7 +290,7 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ } else { \ secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ - secp256k1_ge_neg((r), (r)); \ + secp256k1_fe_negate(&((r)->y), &((r)->y), 1); \ } \ } while(0) @@ -174,7 +314,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); /* precompute the tables with odd multiples */ - secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb); + secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj); #ifdef USE_ENDOMORPHISM { @@ -188,7 +328,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const for (i = 0; i < 128; i++) { secp256k1_gej_double_var(&g_128j, &g_128j, NULL); } - secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb); + secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j); } #endif } @@ -283,50 +423,78 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, return last_set_bit + 1; } -static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { - secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_ge tmpa; - secp256k1_fe Z; +struct secp256k1_strauss_point_state { #ifdef USE_ENDOMORPHISM - secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_scalar na_1, na_lam; - /* Splitted G factors. */ - secp256k1_scalar ng_1, ng_128; int wnaf_na_1[130]; int wnaf_na_lam[130]; int bits_na_1; int bits_na_lam; - int wnaf_ng_1[129]; - int bits_ng_1; - int wnaf_ng_128[129]; - int bits_ng_128; #else int wnaf_na[256]; int bits_na; +#endif + size_t input_pos; +}; + +struct secp256k1_strauss_state { + secp256k1_gej* prej; + secp256k1_fe* zr; + secp256k1_ge* pre_a; +#ifdef USE_ENDOMORPHISM + secp256k1_ge* pre_a_lam; +#endif + struct secp256k1_strauss_point_state* ps; +}; + +static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { + secp256k1_ge tmpa; + secp256k1_fe Z; +#ifdef USE_ENDOMORPHISM + /* Splitted G factors. */ + secp256k1_scalar ng_1, ng_128; + int wnaf_ng_1[129]; + int bits_ng_1 = 0; + int wnaf_ng_128[129]; + int bits_ng_128 = 0; +#else int wnaf_ng[256]; - int bits_ng; + int bits_ng = 0; #endif int i; - int bits; + int bits = 0; + int np; + int no = 0; + for (np = 0; np < num; ++np) { + if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) { + continue; + } + state->ps[no].input_pos = np; #ifdef USE_ENDOMORPHISM - /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ - secp256k1_scalar_split_lambda(&na_1, &na_lam, na); - - /* build wnaf representation for na_1 and na_lam. */ - bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A); - bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A); - VERIFY_CHECK(bits_na_1 <= 130); - VERIFY_CHECK(bits_na_lam <= 130); - bits = bits_na_1; - if (bits_na_lam > bits) { - bits = bits_na_lam; - } + /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ + secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]); + + /* build wnaf representation for na_1 and na_lam. */ + state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A); + state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A); + VERIFY_CHECK(state->ps[no].bits_na_1 <= 130); + VERIFY_CHECK(state->ps[no].bits_na_lam <= 130); + if (state->ps[no].bits_na_1 > bits) { + bits = state->ps[no].bits_na_1; + } + if (state->ps[no].bits_na_lam > bits) { + bits = state->ps[no].bits_na_lam; + } #else - /* build wnaf representation for na. */ - bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A); - bits = bits_na; + /* build wnaf representation for na. */ + state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A); + if (state->ps[no].bits_na > bits) { + bits = state->ps[no].bits_na; + } #endif + ++no; + } /* Calculate odd multiples of a. * All multiples are brought to the same Z 'denominator', which is stored @@ -338,29 +506,51 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same * isomorphism to efficiently add with a known Z inverse. */ - secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a); + if (no > 0) { + /* Compute the odd multiples in Jacobian form. */ + secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]); + for (np = 1; np < no; ++np) { + secp256k1_gej tmp = a[state->ps[np].input_pos]; +#ifdef VERIFY + secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); +#endif + secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); + secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp); + secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z)); + } + /* Bring them to the same Z denominator. */ + secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr); + } else { + secp256k1_fe_set_int(&Z, 1); + } #ifdef USE_ENDOMORPHISM - for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); + for (np = 0; np < no; ++np) { + for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { + secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]); + } } - /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ - secp256k1_scalar_split_128(&ng_1, &ng_128, ng); + if (ng) { + /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ + secp256k1_scalar_split_128(&ng_1, &ng_128, ng); - /* Build wnaf representation for ng_1 and ng_128 */ - bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); - bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); - if (bits_ng_1 > bits) { - bits = bits_ng_1; - } - if (bits_ng_128 > bits) { - bits = bits_ng_128; + /* Build wnaf representation for ng_1 and ng_128 */ + bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); + bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); + if (bits_ng_1 > bits) { + bits = bits_ng_1; + } + if (bits_ng_128 > bits) { + bits = bits_ng_128; + } } #else - bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); - if (bits_ng > bits) { - bits = bits_ng; + if (ng) { + bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); + if (bits_ng > bits) { + bits = bits_ng; + } } #endif @@ -370,13 +560,15 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej int n; secp256k1_gej_double_var(r, r, NULL); #ifdef USE_ENDOMORPHISM - if (i < bits_na_1 && (n = wnaf_na_1[i])) { - ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); - } - if (i < bits_na_lam && (n = wnaf_na_lam[i])) { - ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + for (np = 0; np < no; ++np) { + if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) { + ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); + secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + } + if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) { + ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); + secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + } } if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); @@ -387,9 +579,11 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } #else - if (i < bits_na && (n = wnaf_na[i])) { - ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + for (np = 0; np < no; ++np) { + if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) { + ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); + secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + } } if (i < bits_ng && (n = wnaf_ng[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); @@ -403,4 +597,585 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej } } +static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { + secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; + struct secp256k1_strauss_point_state ps[1]; +#ifdef USE_ENDOMORPHISM + secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; +#endif + struct secp256k1_strauss_state state; + + state.prej = prej; + state.zr = zr; + state.pre_a = pre_a; +#ifdef USE_ENDOMORPHISM + state.pre_a_lam = pre_a_lam; +#endif + state.ps = ps; + secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng); +} + +static size_t secp256k1_strauss_scratch_size(size_t n_points) { +#ifdef USE_ENDOMORPHISM + static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); +#else + static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); +#endif + return n_points*point_size; +} + +static int secp256k1_ecmult_strauss_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { + secp256k1_gej* points; + secp256k1_scalar* scalars; + struct secp256k1_strauss_state state; + size_t i; + + secp256k1_gej_set_infinity(r); + if (inp_g_sc == NULL && n_points == 0) { + return 1; + } + + if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_strauss_scratch_size(n_points), STRAUSS_SCRATCH_OBJECTS)) { + return 0; + } + points = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_gej)); + scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_scalar)); + state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej)); + state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); +#ifdef USE_ENDOMORPHISM + state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); + state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A); +#else + state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); +#endif + state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); + + for (i = 0; i < n_points; i++) { + secp256k1_ge point; + if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) { + secp256k1_scratch_deallocate_frame(scratch); + return 0; + } + secp256k1_gej_set_ge(&points[i], &point); + } + secp256k1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc); + secp256k1_scratch_deallocate_frame(scratch); + return 1; +} + +/* Wrapper for secp256k1_ecmult_multi_func interface */ +static int secp256k1_ecmult_strauss_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { + return secp256k1_ecmult_strauss_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); +} + +static size_t secp256k1_strauss_max_points(secp256k1_scratch *scratch) { + return secp256k1_scratch_max_allocation(scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1); +} + +/** Convert a number to WNAF notation. + * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. + * It has the following guarantees: + * - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w) + * - the number of words set is always WNAF_SIZE(w) + * - the returned skew is 0 or 1 + */ +static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) { + int skew = 0; + int pos; + int max_pos; + int last_w; + const secp256k1_scalar *work = s; + + if (secp256k1_scalar_is_zero(s)) { + for (pos = 0; pos < WNAF_SIZE(w); pos++) { + wnaf[pos] = 0; + } + return 0; + } + + if (secp256k1_scalar_is_even(s)) { + skew = 1; + } + + wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew; + /* Compute last window size. Relevant when window size doesn't divide the + * number of bits in the scalar */ + last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w; + + /* Store the position of the first nonzero word in max_pos to allow + * skipping leading zeros when calculating the wnaf. */ + for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) { + int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); + if(val != 0) { + break; + } + wnaf[pos] = 0; + } + max_pos = pos; + pos = 1; + + while (pos <= max_pos) { + int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); + if ((val & 1) == 0) { + wnaf[pos - 1] -= (1 << w); + wnaf[pos] = (val + 1); + } else { + wnaf[pos] = val; + } + /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit + * is strictly negative or strictly positive respectively. Only change + * coefficients at previous positions because above code assumes that + * wnaf[pos - 1] is odd. + */ + if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) { + if (wnaf[pos - 1] == 1) { + wnaf[pos - 2] += 1 << w; + } else { + wnaf[pos - 2] -= 1 << w; + } + wnaf[pos - 1] = 0; + } + ++pos; + } + + return skew; +} + +struct secp256k1_pippenger_point_state { + int skew_na; + size_t input_pos; +}; + +struct secp256k1_pippenger_state { + int *wnaf_na; + struct secp256k1_pippenger_point_state* ps; +}; + +/* + * pippenger_wnaf computes the result of a multi-point multiplication as + * follows: The scalars are brought into wnaf with n_wnaf elements each. Then + * for every i < n_wnaf, first each point is added to a "bucket" corresponding + * to the point's wnaf[i]. Second, the buckets are added together such that + * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ... + */ +static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) { + size_t n_wnaf = WNAF_SIZE(bucket_window+1); + size_t np; + size_t no = 0; + int i; + int j; + + for (np = 0; np < num; ++np) { + if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) { + continue; + } + state->ps[no].input_pos = np; + state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1); + no++; + } + secp256k1_gej_set_infinity(r); + + if (no == 0) { + return 1; + } + + for (i = n_wnaf - 1; i >= 0; i--) { + secp256k1_gej running_sum; + + for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) { + secp256k1_gej_set_infinity(&buckets[j]); + } + + for (np = 0; np < no; ++np) { + int n = state->wnaf_na[np*n_wnaf + i]; + struct secp256k1_pippenger_point_state point_state = state->ps[np]; + secp256k1_ge tmp; + int idx; + + if (i == 0) { + /* correct for wnaf skew */ + int skew = point_state.skew_na; + if (skew) { + secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); + secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL); + } + } + if (n > 0) { + idx = (n - 1)/2; + secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL); + } else if (n < 0) { + idx = -(n + 1)/2; + secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); + secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL); + } + } + + for(j = 0; j < bucket_window; j++) { + secp256k1_gej_double_var(r, r, NULL); + } + + secp256k1_gej_set_infinity(&running_sum); + /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ... + * = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ... + * + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...) + * using an intermediate running sum: + * running_sum = bucket[0] + bucket[1] + bucket[2] + ... + * + * The doubling is done implicitly by deferring the final window doubling (of 'r'). + */ + for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) { + secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL); + secp256k1_gej_add_var(r, r, &running_sum, NULL); + } + + secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL); + secp256k1_gej_double_var(r, r, NULL); + secp256k1_gej_add_var(r, r, &running_sum, NULL); + } + return 1; +} + +/** + * Returns optimal bucket_window (number of bits of a scalar represented by a + * set of buckets) for a given number of points. + */ +static int secp256k1_pippenger_bucket_window(size_t n) { +#ifdef USE_ENDOMORPHISM + if (n <= 1) { + return 1; + } else if (n <= 4) { + return 2; + } else if (n <= 20) { + return 3; + } else if (n <= 57) { + return 4; + } else if (n <= 136) { + return 5; + } else if (n <= 235) { + return 6; + } else if (n <= 1260) { + return 7; + } else if (n <= 4420) { + return 9; + } else if (n <= 7880) { + return 10; + } else if (n <= 16050) { + return 11; + } else { + return PIPPENGER_MAX_BUCKET_WINDOW; + } +#else + if (n <= 1) { + return 1; + } else if (n <= 11) { + return 2; + } else if (n <= 45) { + return 3; + } else if (n <= 100) { + return 4; + } else if (n <= 275) { + return 5; + } else if (n <= 625) { + return 6; + } else if (n <= 1850) { + return 7; + } else if (n <= 3400) { + return 8; + } else if (n <= 9630) { + return 9; + } else if (n <= 17900) { + return 10; + } else if (n <= 32800) { + return 11; + } else { + return PIPPENGER_MAX_BUCKET_WINDOW; + } +#endif +} + +/** + * Returns the maximum optimal number of points for a bucket_window. + */ +static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) { + switch(bucket_window) { +#ifdef USE_ENDOMORPHISM + case 1: return 1; + case 2: return 4; + case 3: return 20; + case 4: return 57; + case 5: return 136; + case 6: return 235; + case 7: return 1260; + case 8: return 1260; + case 9: return 4420; + case 10: return 7880; + case 11: return 16050; + case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; +#else + case 1: return 1; + case 2: return 11; + case 3: return 45; + case 4: return 100; + case 5: return 275; + case 6: return 625; + case 7: return 1850; + case 8: return 3400; + case 9: return 9630; + case 10: return 17900; + case 11: return 32800; + case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; +#endif + } + return 0; +} + + +#ifdef USE_ENDOMORPHISM +SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) { + secp256k1_scalar tmp = *s1; + secp256k1_scalar_split_lambda(s1, s2, &tmp); + secp256k1_ge_mul_lambda(p2, p1); + + if (secp256k1_scalar_is_high(s1)) { + secp256k1_scalar_negate(s1, s1); + secp256k1_ge_neg(p1, p1); + } + if (secp256k1_scalar_is_high(s2)) { + secp256k1_scalar_negate(s2, s2); + secp256k1_ge_neg(p2, p2); + } +} +#endif + +/** + * Returns the scratch size required for a given number of points (excluding + * base point G) without considering alignment. + */ +static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) { +#ifdef USE_ENDOMORPHISM + size_t entries = 2*n_points + 2; +#else + size_t entries = n_points + 1; +#endif + size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); + return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size; +} + +static int secp256k1_ecmult_pippenger_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { + /* Use 2(n+1) with the endomorphism, n+1 without, when calculating batch + * sizes. The reason for +1 is that we add the G scalar to the list of + * other scalars. */ +#ifdef USE_ENDOMORPHISM + size_t entries = 2*n_points + 2; +#else + size_t entries = n_points + 1; +#endif + secp256k1_ge *points; + secp256k1_scalar *scalars; + secp256k1_gej *buckets; + struct secp256k1_pippenger_state *state_space; + size_t idx = 0; + size_t point_idx = 0; + int i, j; + int bucket_window; + + (void)ctx; + secp256k1_gej_set_infinity(r); + if (inp_g_sc == NULL && n_points == 0) { + return 1; + } + + bucket_window = secp256k1_pippenger_bucket_window(n_points); + if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points, bucket_window), PIPPENGER_SCRATCH_OBJECTS)) { + return 0; + } + points = (secp256k1_ge *) secp256k1_scratch_alloc(scratch, entries * sizeof(*points)); + scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(scratch, entries * sizeof(*scalars)); + state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(scratch, sizeof(*state_space)); + state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(scratch, entries * sizeof(*state_space->ps)); + state_space->wnaf_na = (int *) secp256k1_scratch_alloc(scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int)); + buckets = (secp256k1_gej *) secp256k1_scratch_alloc(scratch, sizeof(*buckets) << bucket_window); + + if (inp_g_sc != NULL) { + scalars[0] = *inp_g_sc; + points[0] = secp256k1_ge_const_g; + idx++; +#ifdef USE_ENDOMORPHISM + secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]); + idx++; +#endif + } + + while (point_idx < n_points) { + if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) { + secp256k1_scratch_deallocate_frame(scratch); + return 0; + } + idx++; +#ifdef USE_ENDOMORPHISM + secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]); + idx++; +#endif + point_idx++; + } + + secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx); + + /* Clear data */ + for(i = 0; (size_t)i < idx; i++) { + secp256k1_scalar_clear(&scalars[i]); + state_space->ps[i].skew_na = 0; + for(j = 0; j < WNAF_SIZE(bucket_window+1); j++) { + state_space->wnaf_na[i * WNAF_SIZE(bucket_window+1) + j] = 0; + } + } + for(i = 0; i < 1<<bucket_window; i++) { + secp256k1_gej_clear(&buckets[i]); + } + secp256k1_scratch_deallocate_frame(scratch); + return 1; +} + +/* Wrapper for secp256k1_ecmult_multi_func interface */ +static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { + return secp256k1_ecmult_pippenger_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); +} + +/** + * Returns the maximum number of points in addition to G that can be used with + * a given scratch space. The function ensures that fewer points may also be + * used. + */ +static size_t secp256k1_pippenger_max_points(secp256k1_scratch *scratch) { + size_t max_alloc = secp256k1_scratch_max_allocation(scratch, PIPPENGER_SCRATCH_OBJECTS); + int bucket_window; + size_t res = 0; + + for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) { + size_t n_points; + size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window); + size_t space_for_points; + size_t space_overhead; + size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); + +#ifdef USE_ENDOMORPHISM + entry_size = 2*entry_size; +#endif + space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state); + if (space_overhead > max_alloc) { + break; + } + space_for_points = max_alloc - space_overhead; + + n_points = space_for_points/entry_size; + n_points = n_points > max_points ? max_points : n_points; + if (n_points > res) { + res = n_points; + } + if (n_points < max_points) { + /* A larger bucket_window may support even more points. But if we + * would choose that then the caller couldn't safely use any number + * smaller than what this function returns */ + break; + } + } + return res; +} + +/* Computes ecmult_multi by simply multiplying and adding each point. Does not + * require a scratch space */ +static int secp256k1_ecmult_multi_simple_var(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) { + size_t point_idx; + secp256k1_scalar szero; + secp256k1_gej tmpj; + + secp256k1_scalar_set_int(&szero, 0); + secp256k1_gej_set_infinity(r); + secp256k1_gej_set_infinity(&tmpj); + /* r = inp_g_sc*G */ + secp256k1_ecmult(ctx, r, &tmpj, &szero, inp_g_sc); + for (point_idx = 0; point_idx < n_points; point_idx++) { + secp256k1_ge point; + secp256k1_gej pointj; + secp256k1_scalar scalar; + if (!cb(&scalar, &point, point_idx, cbdata)) { + return 0; + } + /* r += scalar*point */ + secp256k1_gej_set_ge(&pointj, &point); + secp256k1_ecmult(ctx, &tmpj, &pointj, &scalar, NULL); + secp256k1_gej_add_var(r, r, &tmpj, NULL); + } + return 1; +} + +/* Compute the number of batches and the batch size given the maximum batch size and the + * total number of points */ +static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) { + if (max_n_batch_points == 0) { + return 0; + } + if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) { + max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH; + } + if (n == 0) { + *n_batches = 0; + *n_batch_points = 0; + return 1; + } + /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */ + *n_batches = 1 + (n - 1) / max_n_batch_points; + *n_batch_points = 1 + (n - 1) / *n_batches; + return 1; +} + +typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); +static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { + size_t i; + + int (*f)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t); + size_t n_batches; + size_t n_batch_points; + + secp256k1_gej_set_infinity(r); + if (inp_g_sc == NULL && n == 0) { + return 1; + } else if (n == 0) { + secp256k1_scalar szero; + secp256k1_scalar_set_int(&szero, 0); + secp256k1_ecmult(ctx, r, r, &szero, inp_g_sc); + return 1; + } + if (scratch == NULL) { + return secp256k1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n); + } + + /* Compute the batch sizes for pippenger given a scratch space. If it's greater than a threshold + * use pippenger. Otherwise use strauss */ + if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(scratch), n)) { + return 0; + } + if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) { + f = secp256k1_ecmult_pippenger_batch; + } else { + if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(scratch), n)) { + return 0; + } + f = secp256k1_ecmult_strauss_batch; + } + for(i = 0; i < n_batches; i++) { + size_t nbp = n < n_batch_points ? n : n_batch_points; + size_t offset = n_batch_points*i; + secp256k1_gej tmp; + if (!f(ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) { + return 0; + } + secp256k1_gej_add_var(r, r, &tmp, NULL); + n -= nbp; + } + return 1; +} + #endif /* SECP256K1_ECMULT_IMPL_H */ diff --git a/src/secp256k1/src/field_10x26.h b/src/secp256k1/src/field_10x26.h index 727c5267fb..5ff03c8abc 100644 --- a/src/secp256k1/src/field_10x26.h +++ b/src/secp256k1/src/field_10x26.h @@ -10,7 +10,9 @@ #include <stdint.h> typedef struct { - /* X = sum(i=0..9, elem[i]*2^26) mod n */ + /* X = sum(i=0..9, n[i]*2^(i*26)) mod p + * where p = 2^256 - 0x1000003D1 + */ uint32_t n[10]; #ifdef VERIFY int magnitude; diff --git a/src/secp256k1/src/field_10x26_impl.h b/src/secp256k1/src/field_10x26_impl.h index 94f8132fc8..4ae4fdcec8 100644 --- a/src/secp256k1/src/field_10x26_impl.h +++ b/src/secp256k1/src/field_10x26_impl.h @@ -8,7 +8,6 @@ #define SECP256K1_FIELD_REPR_IMPL_H #include "util.h" -#include "num.h" #include "field.h" #ifdef VERIFY @@ -486,7 +485,8 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t VERIFY_BITS(b[9], 26); /** [... a b c] is a shorthand for ... + a<<52 + b<<26 + c<<0 mod n. - * px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 0 <= x <= 9, px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 9 <= x <= 18, px is a shorthand for sum(a[i]*b[x-i], i=(x-9)..9) * Note that [x 0 0 0 0 0 0 0 0 0 0] = [x*R1 x*R0]. */ @@ -1069,6 +1069,7 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2 secp256k1_fe_verify(a); secp256k1_fe_verify(b); VERIFY_CHECK(r != b); + VERIFY_CHECK(a != b); #endif secp256k1_fe_mul_inner(r->n, a->n, b->n); #ifdef VERIFY diff --git a/src/secp256k1/src/field_5x52.h b/src/secp256k1/src/field_5x52.h index bccd8feb4d..fc5bfe357e 100644 --- a/src/secp256k1/src/field_5x52.h +++ b/src/secp256k1/src/field_5x52.h @@ -10,7 +10,9 @@ #include <stdint.h> typedef struct { - /* X = sum(i=0..4, elem[i]*2^52) mod n */ + /* X = sum(i=0..4, n[i]*2^(i*52)) mod p + * where p = 2^256 - 0x1000003D1 + */ uint64_t n[5]; #ifdef VERIFY int magnitude; diff --git a/src/secp256k1/src/field_5x52_impl.h b/src/secp256k1/src/field_5x52_impl.h index 957c61b014..f4263320d5 100644 --- a/src/secp256k1/src/field_5x52_impl.h +++ b/src/secp256k1/src/field_5x52_impl.h @@ -12,7 +12,6 @@ #endif #include "util.h" -#include "num.h" #include "field.h" #if defined(USE_ASM_X86_64) @@ -422,6 +421,7 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2 secp256k1_fe_verify(a); secp256k1_fe_verify(b); VERIFY_CHECK(r != b); + VERIFY_CHECK(a != b); #endif secp256k1_fe_mul_inner(r->n, a->n, b->n); #ifdef VERIFY diff --git a/src/secp256k1/src/field_5x52_int128_impl.h b/src/secp256k1/src/field_5x52_int128_impl.h index 95a0d1791c..bcbfb92ac2 100644 --- a/src/secp256k1/src/field_5x52_int128_impl.h +++ b/src/secp256k1/src/field_5x52_int128_impl.h @@ -32,9 +32,11 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t VERIFY_BITS(b[3], 56); VERIFY_BITS(b[4], 52); VERIFY_CHECK(r != b); + VERIFY_CHECK(a != b); /* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n. - * px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 0 <= x <= 4, px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 4 <= x <= 8, px is a shorthand for sum(a[i]*b[x-i], i=(x-4)..4) * Note that [x 0 0 0 0 0] = [x*R]. */ diff --git a/src/secp256k1/src/field_impl.h b/src/secp256k1/src/field_impl.h index 20428648af..6070caccfe 100644 --- a/src/secp256k1/src/field_impl.h +++ b/src/secp256k1/src/field_impl.h @@ -12,6 +12,7 @@ #endif #include "util.h" +#include "num.h" #if defined(USE_FIELD_10X26) #include "field_10x26_impl.h" @@ -48,6 +49,8 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) { secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; + VERIFY_CHECK(r != a); + /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] diff --git a/src/secp256k1/src/gen_context.c b/src/secp256k1/src/gen_context.c index 1835fd491d..87d296ebf0 100644 --- a/src/secp256k1/src/gen_context.c +++ b/src/secp256k1/src/gen_context.c @@ -41,7 +41,7 @@ int main(int argc, char **argv) { fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); - fprintf(fp, "#include \"group.h\"\n"); + fprintf(fp, "#include \"src/group.h\"\n"); fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n"); fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n"); diff --git a/src/secp256k1/src/group.h b/src/secp256k1/src/group.h index ea1302deb8..8e122ab429 100644 --- a/src/secp256k1/src/group.h +++ b/src/secp256k1/src/group.h @@ -65,12 +65,7 @@ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a); /** Set a batch of group elements equal to the inputs given in jacobian coordinates */ -static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb); - -/** Set a batch of group elements equal to the inputs given in jacobian - * coordinates (with known z-ratios). zr must contain the known z-ratios such - * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */ -static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len); +static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len); /** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to * the same global z "denominator". zr must contain the known z-ratios such @@ -79,6 +74,9 @@ static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej * stored in globalz. */ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr); +/** Set a group element (affine) equal to the point at infinity. */ +static void secp256k1_ge_set_infinity(secp256k1_ge *r); + /** Set a group element (jacobian) equal to the point at infinity. */ static void secp256k1_gej_set_infinity(secp256k1_gej *r); diff --git a/src/secp256k1/src/group_impl.h b/src/secp256k1/src/group_impl.h index b31b6c12ef..9b93c39e92 100644 --- a/src/secp256k1/src/group_impl.h +++ b/src/secp256k1/src/group_impl.h @@ -38,22 +38,22 @@ */ #if defined(EXHAUSTIVE_TEST_ORDER) # if EXHAUSTIVE_TEST_ORDER == 199 -const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( +static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069, 0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18, 0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868, 0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED ); -const int CURVE_B = 4; +static const int CURVE_B = 4; # elif EXHAUSTIVE_TEST_ORDER == 13 -const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( +static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0, 0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15, 0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e, 0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac ); -const int CURVE_B = 2; +static const int CURVE_B = 2; # else # error No known generator for the specified exhaustive test group order. # endif @@ -68,7 +68,7 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL ); -const int CURVE_B = 7; +static const int CURVE_B = 7; #endif static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { @@ -126,46 +126,43 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { r->y = a->y; } -static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) { - secp256k1_fe *az; - secp256k1_fe *azi; +static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { + secp256k1_fe u; size_t i; - size_t count = 0; - az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); + size_t last_i = SIZE_MAX; + for (i = 0; i < len; i++) { if (!a[i].infinity) { - az[count++] = a[i].z; + /* Use destination's x coordinates as scratch space */ + if (last_i == SIZE_MAX) { + r[i].x = a[i].z; + } else { + secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z); + } + last_i = i; } } + if (last_i == SIZE_MAX) { + return; + } + secp256k1_fe_inv_var(&u, &r[last_i].x); - azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); - secp256k1_fe_inv_all_var(azi, az, count); - free(az); - - count = 0; - for (i = 0; i < len; i++) { - r[i].infinity = a[i].infinity; + i = last_i; + while (i > 0) { + i--; if (!a[i].infinity) { - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); + secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u); + secp256k1_fe_mul(&u, &u, &a[last_i].z); + last_i = i; } } - free(azi); -} - -static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) { - size_t i = len - 1; - secp256k1_fe zi; + VERIFY_CHECK(!a[last_i].infinity); + r[last_i].x = u; - if (len > 0) { - /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ - secp256k1_fe_inv(&zi, &a[i].z); - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); - - /* Work out way backwards, using the z-ratios to scale the x/y values. */ - while (i > 0) { - secp256k1_fe_mul(&zi, &zi, &zr[i]); - i--; - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); + for (i = 0; i < len; i++) { + r[i].infinity = a[i].infinity; + if (!a[i].infinity) { + secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); } } } @@ -178,6 +175,8 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp /* The z of the final point gives us the "global Z" for the table. */ r[i].x = a[i].x; r[i].y = a[i].y; + /* Ensure all y values are in weak normal form for fast negation of points */ + secp256k1_fe_normalize_weak(&r[i].y); *globalz = a[i].z; r[i].infinity = 0; zs = zr[i]; @@ -200,6 +199,12 @@ static void secp256k1_gej_set_infinity(secp256k1_gej *r) { secp256k1_fe_clear(&r->z); } +static void secp256k1_ge_set_infinity(secp256k1_ge *r) { + r->infinity = 1; + secp256k1_fe_clear(&r->x); + secp256k1_fe_clear(&r->y); +} + static void secp256k1_gej_clear(secp256k1_gej *r) { r->infinity = 0; secp256k1_fe_clear(&r->x); diff --git a/src/secp256k1/src/hash.h b/src/secp256k1/src/hash.h index e08d25d225..de26e4b89f 100644 --- a/src/secp256k1/src/hash.h +++ b/src/secp256k1/src/hash.h @@ -14,28 +14,28 @@ typedef struct { uint32_t s[8]; uint32_t buf[16]; /* In big endian */ size_t bytes; -} secp256k1_sha256_t; +} secp256k1_sha256; -static void secp256k1_sha256_initialize(secp256k1_sha256_t *hash); -static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char *data, size_t size); -static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *out32); +static void secp256k1_sha256_initialize(secp256k1_sha256 *hash); +static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size); +static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32); typedef struct { - secp256k1_sha256_t inner, outer; -} secp256k1_hmac_sha256_t; + secp256k1_sha256 inner, outer; +} secp256k1_hmac_sha256; -static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, const unsigned char *key, size_t size); -static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256_t *hash, const unsigned char *data, size_t size); -static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsigned char *out32); +static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size); +static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size); +static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32); typedef struct { unsigned char v[32]; unsigned char k[32]; int retry; -} secp256k1_rfc6979_hmac_sha256_t; +} secp256k1_rfc6979_hmac_sha256; -static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen); -static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen); -static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng); +static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen); +static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen); +static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng); #endif /* SECP256K1_HASH_H */ diff --git a/src/secp256k1/src/hash_impl.h b/src/secp256k1/src/hash_impl.h index 4c9964ee06..009f26beba 100644 --- a/src/secp256k1/src/hash_impl.h +++ b/src/secp256k1/src/hash_impl.h @@ -33,7 +33,7 @@ #define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) #endif -static void secp256k1_sha256_initialize(secp256k1_sha256_t *hash) { +static void secp256k1_sha256_initialize(secp256k1_sha256 *hash) { hash->s[0] = 0x6a09e667ul; hash->s[1] = 0xbb67ae85ul; hash->s[2] = 0x3c6ef372ul; @@ -128,14 +128,15 @@ static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) { s[7] += h; } -static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char *data, size_t len) { +static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) { size_t bufsize = hash->bytes & 0x3F; hash->bytes += len; while (bufsize + len >= 64) { /* Fill the buffer, and process it. */ - memcpy(((unsigned char*)hash->buf) + bufsize, data, 64 - bufsize); - data += 64 - bufsize; - len -= 64 - bufsize; + size_t chunk_len = 64 - bufsize; + memcpy(((unsigned char*)hash->buf) + bufsize, data, chunk_len); + data += chunk_len; + len -= chunk_len; secp256k1_sha256_transform(hash->s, hash->buf); bufsize = 0; } @@ -145,7 +146,7 @@ static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char } } -static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *out32) { +static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32) { static const unsigned char pad[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint32_t sizedesc[2]; uint32_t out[8]; @@ -161,14 +162,14 @@ static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *o memcpy(out32, (const unsigned char*)out, 32); } -static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, const unsigned char *key, size_t keylen) { - int n; +static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) { + size_t n; unsigned char rkey[64]; - if (keylen <= 64) { + if (keylen <= sizeof(rkey)) { memcpy(rkey, key, keylen); - memset(rkey + keylen, 0, 64 - keylen); + memset(rkey + keylen, 0, sizeof(rkey) - keylen); } else { - secp256k1_sha256_t sha256; + secp256k1_sha256 sha256; secp256k1_sha256_initialize(&sha256); secp256k1_sha256_write(&sha256, key, keylen); secp256k1_sha256_finalize(&sha256, rkey); @@ -176,24 +177,24 @@ static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, cons } secp256k1_sha256_initialize(&hash->outer); - for (n = 0; n < 64; n++) { + for (n = 0; n < sizeof(rkey); n++) { rkey[n] ^= 0x5c; } - secp256k1_sha256_write(&hash->outer, rkey, 64); + secp256k1_sha256_write(&hash->outer, rkey, sizeof(rkey)); secp256k1_sha256_initialize(&hash->inner); - for (n = 0; n < 64; n++) { + for (n = 0; n < sizeof(rkey); n++) { rkey[n] ^= 0x5c ^ 0x36; } - secp256k1_sha256_write(&hash->inner, rkey, 64); - memset(rkey, 0, 64); + secp256k1_sha256_write(&hash->inner, rkey, sizeof(rkey)); + memset(rkey, 0, sizeof(rkey)); } -static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256_t *hash, const unsigned char *data, size_t size) { +static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size) { secp256k1_sha256_write(&hash->inner, data, size); } -static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsigned char *out32) { +static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32) { unsigned char temp[32]; secp256k1_sha256_finalize(&hash->inner, temp); secp256k1_sha256_write(&hash->outer, temp, 32); @@ -202,8 +203,8 @@ static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsign } -static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen) { - secp256k1_hmac_sha256_t hmac; +static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen) { + secp256k1_hmac_sha256 hmac; static const unsigned char zero[1] = {0x00}; static const unsigned char one[1] = {0x01}; @@ -232,11 +233,11 @@ static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha2 rng->retry = 0; } -static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen) { +static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen) { /* RFC6979 3.2.h. */ static const unsigned char zero[1] = {0x00}; if (rng->retry) { - secp256k1_hmac_sha256_t hmac; + secp256k1_hmac_sha256 hmac; secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); secp256k1_hmac_sha256_write(&hmac, rng->v, 32); secp256k1_hmac_sha256_write(&hmac, zero, 1); @@ -247,7 +248,7 @@ static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 } while (outlen > 0) { - secp256k1_hmac_sha256_t hmac; + secp256k1_hmac_sha256 hmac; int now = outlen; secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); secp256k1_hmac_sha256_write(&hmac, rng->v, 32); @@ -263,7 +264,7 @@ static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 rng->retry = 1; } -static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng) { +static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng) { memset(rng->k, 0, 32); memset(rng->v, 0, 32); rng->retry = 0; diff --git a/src/secp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java b/src/secp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java index c00d08899b..d766a1029c 100644 --- a/src/secp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java +++ b/src/secp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java @@ -52,7 +52,7 @@ public class NativeSecp256k1Test { } /** - * This tests secret key verify() for a invalid secretkey + * This tests secret key verify() for an invalid secretkey */ public static void testSecKeyVerifyNeg() throws AssertFailException{ boolean result = false; diff --git a/src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c index bcef7b32ce..b50970b4f2 100644 --- a/src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c +++ b/src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c @@ -83,7 +83,7 @@ SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1e secp256k1_ecdsa_signature sig[72]; - int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL ); + int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL); unsigned char outputSer[72]; size_t outputLen = 72; @@ -353,7 +353,9 @@ SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1e ctx, nonce_res, &pubkey, - secdata + secdata, + NULL, + NULL ); } diff --git a/src/secp256k1/src/modules/ecdh/main_impl.h b/src/secp256k1/src/modules/ecdh/main_impl.h index 01ecba4d53..44cb68e750 100644 --- a/src/secp256k1/src/modules/ecdh/main_impl.h +++ b/src/secp256k1/src/modules/ecdh/main_impl.h @@ -10,16 +10,35 @@ #include "include/secp256k1_ecdh.h" #include "ecmult_const_impl.h" -int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) { +static int ecdh_hash_function_sha256(unsigned char *output, const unsigned char *x, const unsigned char *y, void *data) { + unsigned char version = (y[31] & 0x01) | 0x02; + secp256k1_sha256 sha; + (void)data; + + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, &version, 1); + secp256k1_sha256_write(&sha, x, 32); + secp256k1_sha256_finalize(&sha, output); + + return 1; +} + +const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256 = ecdh_hash_function_sha256; +const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default = ecdh_hash_function_sha256; + +int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *output, const secp256k1_pubkey *point, const unsigned char *scalar, secp256k1_ecdh_hash_function hashfp, void *data) { int ret = 0; int overflow = 0; secp256k1_gej res; secp256k1_ge pt; secp256k1_scalar s; VERIFY_CHECK(ctx != NULL); - ARG_CHECK(result != NULL); + ARG_CHECK(output != NULL); ARG_CHECK(point != NULL); ARG_CHECK(scalar != NULL); + if (hashfp == NULL) { + hashfp = secp256k1_ecdh_hash_function_default; + } secp256k1_pubkey_load(ctx, &pt, point); secp256k1_scalar_set_b32(&s, scalar, &overflow); @@ -27,24 +46,18 @@ int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const se ret = 0; } else { unsigned char x[32]; - unsigned char y[1]; - secp256k1_sha256_t sha; + unsigned char y[32]; - secp256k1_ecmult_const(&res, &pt, &s); + secp256k1_ecmult_const(&res, &pt, &s, 256); secp256k1_ge_set_gej(&pt, &res); - /* Compute a hash of the point in compressed form - * Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not - * expect its output to be secret and has a timing sidechannel. */ + + /* Compute a hash of the point */ secp256k1_fe_normalize(&pt.x); secp256k1_fe_normalize(&pt.y); secp256k1_fe_get_b32(x, &pt.x); - y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y); + secp256k1_fe_get_b32(y, &pt.y); - secp256k1_sha256_initialize(&sha); - secp256k1_sha256_write(&sha, y, sizeof(y)); - secp256k1_sha256_write(&sha, x, sizeof(x)); - secp256k1_sha256_finalize(&sha, result); - ret = 1; + ret = hashfp(output, x, y, data); } secp256k1_scalar_clear(&s); diff --git a/src/secp256k1/src/modules/ecdh/tests_impl.h b/src/secp256k1/src/modules/ecdh/tests_impl.h index cec30b67c6..fe26e8fb69 100644 --- a/src/secp256k1/src/modules/ecdh/tests_impl.h +++ b/src/secp256k1/src/modules/ecdh/tests_impl.h @@ -7,6 +7,23 @@ #ifndef SECP256K1_MODULE_ECDH_TESTS_H #define SECP256K1_MODULE_ECDH_TESTS_H +int ecdh_hash_function_test_fail(unsigned char *output, const unsigned char *x, const unsigned char *y, void *data) { + (void)output; + (void)x; + (void)y; + (void)data; + return 0; +} + +int ecdh_hash_function_custom(unsigned char *output, const unsigned char *x, const unsigned char *y, void *data) { + (void)data; + /* Save x and y as uncompressed public key */ + output[0] = 0x04; + memcpy(output + 1, x, 32); + memcpy(output + 33, y, 32); + return 1; +} + void test_ecdh_api(void) { /* Setup context that just counts errors */ secp256k1_context *tctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); @@ -21,15 +38,15 @@ void test_ecdh_api(void) { CHECK(secp256k1_ec_pubkey_create(tctx, &point, s_one) == 1); /* Check all NULLs are detected */ - CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1); + CHECK(secp256k1_ecdh(tctx, res, &point, s_one, NULL, NULL) == 1); CHECK(ecount == 0); - CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one) == 0); + CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one, NULL, NULL) == 0); CHECK(ecount == 1); - CHECK(secp256k1_ecdh(tctx, res, NULL, s_one) == 0); + CHECK(secp256k1_ecdh(tctx, res, NULL, s_one, NULL, NULL) == 0); CHECK(ecount == 2); - CHECK(secp256k1_ecdh(tctx, res, &point, NULL) == 0); + CHECK(secp256k1_ecdh(tctx, res, &point, NULL, NULL, NULL) == 0); CHECK(ecount == 3); - CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1); + CHECK(secp256k1_ecdh(tctx, res, &point, s_one, NULL, NULL) == 1); CHECK(ecount == 3); /* Cleanup */ @@ -44,29 +61,36 @@ void test_ecdh_generator_basepoint(void) { s_one[31] = 1; /* Check against pubkey creation when the basepoint is the generator */ for (i = 0; i < 100; ++i) { - secp256k1_sha256_t sha; + secp256k1_sha256 sha; unsigned char s_b32[32]; - unsigned char output_ecdh[32]; + unsigned char output_ecdh[65]; unsigned char output_ser[32]; - unsigned char point_ser[33]; + unsigned char point_ser[65]; size_t point_ser_len = sizeof(point_ser); secp256k1_scalar s; random_scalar_order(&s); secp256k1_scalar_get_b32(s_b32, &s); - /* compute using ECDH function */ CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1); - CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1); - /* compute "explicitly" */ CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1); + + /* compute using ECDH function with custom hash function */ + CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32, ecdh_hash_function_custom, NULL) == 1); + /* compute "explicitly" */ + CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_UNCOMPRESSED) == 1); + /* compare */ + CHECK(memcmp(output_ecdh, point_ser, 65) == 0); + + /* compute using ECDH function with default hash function */ + CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32, NULL, NULL) == 1); + /* compute "explicitly" */ CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1); - CHECK(point_ser_len == sizeof(point_ser)); secp256k1_sha256_initialize(&sha); secp256k1_sha256_write(&sha, point_ser, point_ser_len); secp256k1_sha256_finalize(&sha, output_ser); /* compare */ - CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0); + CHECK(memcmp(output_ecdh, output_ser, 32) == 0); } } @@ -89,11 +113,14 @@ void test_bad_scalar(void) { CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1); /* Try to multiply it by bad values */ - CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0); - CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0); + CHECK(secp256k1_ecdh(ctx, output, &point, s_zero, NULL, NULL) == 0); + CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow, NULL, NULL) == 0); /* ...and a good one */ s_overflow[31] -= 1; - CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1); + CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow, NULL, NULL) == 1); + + /* Hash function failure results in ecdh failure */ + CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow, ecdh_hash_function_test_fail, NULL) == 0); } void run_ecdh_tests(void) { diff --git a/src/secp256k1/src/scalar_4x64_impl.h b/src/secp256k1/src/scalar_4x64_impl.h index db1ebf94be..d378335d99 100644 --- a/src/secp256k1/src/scalar_4x64_impl.h +++ b/src/secp256k1/src/scalar_4x64_impl.h @@ -376,7 +376,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) /* extract m6 */ "movq %%r8, %q6\n" : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6) - : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) + : "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1) : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc"); /* Reduce 385 bits into 258. */ @@ -455,7 +455,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) /* extract p4 */ "movq %%r9, %q4\n" : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4) - : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) + : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1) : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc"); /* Reduce 258 bits into 256. */ @@ -501,7 +501,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) /* Extract c */ "movq %%r9, %q0\n" : "=g"(c) - : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) + : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1) : "rax", "rdx", "r8", "r9", "r10", "cc", "memory"); #else uint128_t c; diff --git a/src/secp256k1/src/scratch.h b/src/secp256k1/src/scratch.h new file mode 100644 index 0000000000..fef377af0d --- /dev/null +++ b/src/secp256k1/src/scratch.h @@ -0,0 +1,39 @@ +/********************************************************************** + * Copyright (c) 2017 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_SCRATCH_ +#define _SECP256K1_SCRATCH_ + +#define SECP256K1_SCRATCH_MAX_FRAMES 5 + +/* The typedef is used internally; the struct name is used in the public API + * (where it is exposed as a different typedef) */ +typedef struct secp256k1_scratch_space_struct { + void *data[SECP256K1_SCRATCH_MAX_FRAMES]; + size_t offset[SECP256K1_SCRATCH_MAX_FRAMES]; + size_t frame_size[SECP256K1_SCRATCH_MAX_FRAMES]; + size_t frame; + size_t max_size; + const secp256k1_callback* error_callback; +} secp256k1_scratch; + +static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size); + +static void secp256k1_scratch_destroy(secp256k1_scratch* scratch); + +/** Attempts to allocate a new stack frame with `n` available bytes. Returns 1 on success, 0 on failure */ +static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects); + +/** Deallocates a stack frame */ +static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch); + +/** Returns the maximum allocation the scratch space will allow */ +static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t n_objects); + +/** Returns a pointer into the most recently allocated frame, or NULL if there is insufficient available space */ +static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t n); + +#endif diff --git a/src/secp256k1/src/scratch_impl.h b/src/secp256k1/src/scratch_impl.h new file mode 100644 index 0000000000..abed713b21 --- /dev/null +++ b/src/secp256k1/src/scratch_impl.h @@ -0,0 +1,86 @@ +/********************************************************************** + * Copyright (c) 2017 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_SCRATCH_IMPL_H_ +#define _SECP256K1_SCRATCH_IMPL_H_ + +#include "scratch.h" + +/* Using 16 bytes alignment because common architectures never have alignment + * requirements above 8 for any of the types we care about. In addition we + * leave some room because currently we don't care about a few bytes. + * TODO: Determine this at configure time. */ +#define ALIGNMENT 16 + +static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size) { + secp256k1_scratch* ret = (secp256k1_scratch*)checked_malloc(error_callback, sizeof(*ret)); + if (ret != NULL) { + memset(ret, 0, sizeof(*ret)); + ret->max_size = max_size; + ret->error_callback = error_callback; + } + return ret; +} + +static void secp256k1_scratch_destroy(secp256k1_scratch* scratch) { + if (scratch != NULL) { + VERIFY_CHECK(scratch->frame == 0); + free(scratch); + } +} + +static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t objects) { + size_t i = 0; + size_t allocated = 0; + for (i = 0; i < scratch->frame; i++) { + allocated += scratch->frame_size[i]; + } + if (scratch->max_size - allocated <= objects * ALIGNMENT) { + return 0; + } + return scratch->max_size - allocated - objects * ALIGNMENT; +} + +static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects) { + VERIFY_CHECK(scratch->frame < SECP256K1_SCRATCH_MAX_FRAMES); + + if (n <= secp256k1_scratch_max_allocation(scratch, objects)) { + n += objects * ALIGNMENT; + scratch->data[scratch->frame] = checked_malloc(scratch->error_callback, n); + if (scratch->data[scratch->frame] == NULL) { + return 0; + } + scratch->frame_size[scratch->frame] = n; + scratch->offset[scratch->frame] = 0; + scratch->frame++; + return 1; + } else { + return 0; + } +} + +static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch) { + VERIFY_CHECK(scratch->frame > 0); + scratch->frame -= 1; + free(scratch->data[scratch->frame]); +} + +static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t size) { + void *ret; + size_t frame = scratch->frame - 1; + size = ((size + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT; + + if (scratch->frame == 0 || size + scratch->offset[frame] > scratch->frame_size[frame]) { + return NULL; + } + ret = (void *) ((unsigned char *) scratch->data[frame] + scratch->offset[frame]); + memset(ret, 0, size); + scratch->offset[frame] += size; + + return ret; +} + +#endif diff --git a/src/secp256k1/src/secp256k1.c b/src/secp256k1/src/secp256k1.c index 4f8c01655b..15981f46e2 100644 --- a/src/secp256k1/src/secp256k1.c +++ b/src/secp256k1/src/secp256k1.c @@ -17,6 +17,7 @@ #include "ecdsa_impl.h" #include "eckey_impl.h" #include "hash_impl.h" +#include "scratch_impl.h" #define ARG_CHECK(cond) do { \ if (EXPECT(!(cond), 0)) { \ @@ -55,6 +56,14 @@ struct secp256k1_context_struct { secp256k1_callback error_callback; }; +static const secp256k1_context secp256k1_context_no_precomp_ = { + { 0 }, + { 0 }, + { default_illegal_callback_fn, 0 }, + { default_error_callback_fn, 0 } +}; +const secp256k1_context *secp256k1_context_no_precomp = &secp256k1_context_no_precomp_; + secp256k1_context* secp256k1_context_create(unsigned int flags) { secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context)); ret->illegal_callback = default_illegal_callback; @@ -90,6 +99,7 @@ secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) { } void secp256k1_context_destroy(secp256k1_context* ctx) { + CHECK(ctx != secp256k1_context_no_precomp); if (ctx != NULL) { secp256k1_ecmult_context_clear(&ctx->ecmult_ctx); secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx); @@ -99,6 +109,7 @@ void secp256k1_context_destroy(secp256k1_context* ctx) { } void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { + CHECK(ctx != secp256k1_context_no_precomp); if (fun == NULL) { fun = default_illegal_callback_fn; } @@ -107,6 +118,7 @@ void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)( } void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { + CHECK(ctx != secp256k1_context_no_precomp); if (fun == NULL) { fun = default_error_callback_fn; } @@ -114,13 +126,22 @@ void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(co ctx->error_callback.data = data; } +secp256k1_scratch_space* secp256k1_scratch_space_create(const secp256k1_context* ctx, size_t max_size) { + VERIFY_CHECK(ctx != NULL); + return secp256k1_scratch_create(&ctx->error_callback, max_size); +} + +void secp256k1_scratch_space_destroy(secp256k1_scratch_space* scratch) { + secp256k1_scratch_destroy(scratch); +} + static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) { if (sizeof(secp256k1_ge_storage) == 64) { /* When the secp256k1_ge_storage type is exactly 64 byte, use its * representation inside secp256k1_pubkey, as conversion is very fast. * Note that secp256k1_pubkey_save must use the same representation. */ secp256k1_ge_storage s; - memcpy(&s, &pubkey->data[0], 64); + memcpy(&s, &pubkey->data[0], sizeof(s)); secp256k1_ge_from_storage(ge, &s); } else { /* Otherwise, fall back to 32-byte big endian for X and Y. */ @@ -137,7 +158,7 @@ static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) { if (sizeof(secp256k1_ge_storage) == 64) { secp256k1_ge_storage s; secp256k1_ge_to_storage(&s, ge); - memcpy(&pubkey->data[0], &s, 64); + memcpy(&pubkey->data[0], &s, sizeof(s)); } else { VERIFY_CHECK(!secp256k1_ge_is_infinity(ge)); secp256k1_fe_normalize_var(&ge->x); @@ -307,10 +328,15 @@ int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_s secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m)); } +static SECP256K1_INLINE void buffer_append(unsigned char *buf, unsigned int *offset, const void *data, unsigned int len) { + memcpy(buf + *offset, data, len); + *offset += len; +} + static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { unsigned char keydata[112]; - int keylen = 64; - secp256k1_rfc6979_hmac_sha256_t rng; + unsigned int offset = 0; + secp256k1_rfc6979_hmac_sha256 rng; unsigned int i; /* We feed a byte array to the PRNG as input, consisting of: * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d. @@ -320,17 +346,15 @@ static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *m * different argument mixtures to emulate each other and result in the same * nonces. */ - memcpy(keydata, key32, 32); - memcpy(keydata + 32, msg32, 32); + buffer_append(keydata, &offset, key32, 32); + buffer_append(keydata, &offset, msg32, 32); if (data != NULL) { - memcpy(keydata + 64, data, 32); - keylen = 96; + buffer_append(keydata, &offset, data, 32); } if (algo16 != NULL) { - memcpy(keydata + keylen, algo16, 16); - keylen += 16; + buffer_append(keydata, &offset, algo16, 16); } - secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen); + secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, offset); memset(keydata, 0, sizeof(keydata)); for (i = 0; i <= counter; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); @@ -546,8 +570,9 @@ int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) { VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); + if (secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)) { + secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); + } return 1; } diff --git a/src/secp256k1/src/testrand_impl.h b/src/secp256k1/src/testrand_impl.h index 1255574209..30a91e5296 100644 --- a/src/secp256k1/src/testrand_impl.h +++ b/src/secp256k1/src/testrand_impl.h @@ -13,7 +13,7 @@ #include "testrand.h" #include "hash.h" -static secp256k1_rfc6979_hmac_sha256_t secp256k1_test_rng; +static secp256k1_rfc6979_hmac_sha256 secp256k1_test_rng; static uint32_t secp256k1_test_rng_precomputed[8]; static int secp256k1_test_rng_precomputed_used = 8; static uint64_t secp256k1_test_rng_integer; diff --git a/src/secp256k1/src/tests.c b/src/secp256k1/src/tests.c index 3d9bd5ebb4..f1c4db929a 100644 --- a/src/secp256k1/src/tests.c +++ b/src/secp256k1/src/tests.c @@ -23,6 +23,9 @@ #include "openssl/ec.h" #include "openssl/ecdsa.h" #include "openssl/obj_mac.h" +# if OPENSSL_VERSION_NUMBER < 0x10100000L +void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {*pr = sig->r; *ps = sig->s;} +# endif #endif #include "contrib/lax_der_parsing.c" @@ -215,8 +218,12 @@ void run_context_tests(void) { CHECK(ecount == 3); CHECK(secp256k1_ec_pubkey_tweak_mul(vrfy, &pubkey, ctmp) == 1); CHECK(ecount == 3); - CHECK(secp256k1_context_randomize(vrfy, ctmp) == 0); - CHECK(ecount == 4); + CHECK(secp256k1_context_randomize(vrfy, ctmp) == 1); + CHECK(ecount == 3); + CHECK(secp256k1_context_randomize(vrfy, NULL) == 1); + CHECK(ecount == 3); + CHECK(secp256k1_context_randomize(sign, ctmp) == 1); + CHECK(ecount2 == 14); CHECK(secp256k1_context_randomize(sign, NULL) == 1); CHECK(ecount2 == 14); secp256k1_context_set_illegal_callback(vrfy, NULL, NULL); @@ -248,6 +255,44 @@ void run_context_tests(void) { secp256k1_context_destroy(NULL); } +void run_scratch_tests(void) { + int32_t ecount = 0; + secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + secp256k1_scratch_space *scratch; + + /* Test public API */ + secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); + + scratch = secp256k1_scratch_space_create(none, 1000); + CHECK(scratch != NULL); + CHECK(ecount == 0); + + /* Test internal API */ + CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); + CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 1000); + + /* Allocating 500 bytes with no frame fails */ + CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); + CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); + + /* ...but pushing a new stack frame does affect the max allocation */ + CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1 == 1)); + CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 500); /* 500 - ALIGNMENT */ + CHECK(secp256k1_scratch_alloc(scratch, 500) != NULL); + CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); + + CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1) == 0); + + /* ...and this effect is undone by popping the frame */ + secp256k1_scratch_deallocate_frame(scratch); + CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); + CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); + + /* cleanup */ + secp256k1_scratch_space_destroy(scratch); + secp256k1_context_destroy(none); +} + /***** HASH TESTS *****/ void run_sha256_tests(void) { @@ -270,7 +315,7 @@ void run_sha256_tests(void) { int i; for (i = 0; i < 8; i++) { unsigned char out[32]; - secp256k1_sha256_t hasher; + secp256k1_sha256 hasher; secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); secp256k1_sha256_finalize(&hasher, out); @@ -313,7 +358,7 @@ void run_hmac_sha256_tests(void) { }; int i; for (i = 0; i < 6; i++) { - secp256k1_hmac_sha256_t hasher; + secp256k1_hmac_sha256 hasher; unsigned char out[32]; secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); @@ -345,7 +390,7 @@ void run_rfc6979_hmac_sha256_tests(void) { {0x75, 0x97, 0x88, 0x7c, 0xbd, 0x76, 0x32, 0x1f, 0x32, 0xe3, 0x04, 0x40, 0x67, 0x9a, 0x22, 0xcf, 0x7f, 0x8d, 0x9d, 0x2e, 0xac, 0x39, 0x0e, 0x58, 0x1f, 0xea, 0x09, 0x1c, 0xe2, 0x02, 0xba, 0x94} }; - secp256k1_rfc6979_hmac_sha256_t rng; + secp256k1_rfc6979_hmac_sha256 rng; unsigned char out[32]; int i; @@ -2054,7 +2099,6 @@ void test_ge(void) { /* Test batch gej -> ge conversion with and without known z ratios. */ { secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe)); - secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); for (i = 0; i < 4 * runs + 1; i++) { /* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */ @@ -2062,20 +2106,33 @@ void test_ge(void) { secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z); } } - secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1); - secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback); + secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1); for (i = 0; i < 4 * runs + 1; i++) { secp256k1_fe s; random_fe_non_zero(&s); secp256k1_gej_rescale(&gej[i], &s); - ge_equals_gej(&ge_set_table[i], &gej[i]); ge_equals_gej(&ge_set_all[i], &gej[i]); } - free(ge_set_table); free(ge_set_all); free(zr); } + /* Test batch gej -> ge conversion with many infinities. */ + for (i = 0; i < 4 * runs + 1; i++) { + random_group_element_test(&ge[i]); + /* randomly set half the points to infinitiy */ + if(secp256k1_fe_is_odd(&ge[i].x)) { + secp256k1_ge_set_infinity(&ge[i]); + } + secp256k1_gej_set_ge(&gej[i], &ge[i]); + } + /* batch invert */ + secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1); + /* check result */ + for (i = 0; i < 4 * runs + 1; i++) { + ge_equals_gej(&ge[i], &gej[i]); + } + free(ge); free(gej); free(zinv); @@ -2405,7 +2462,7 @@ void ecmult_const_random_mult(void) { 0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956 ); secp256k1_gej b; - secp256k1_ecmult_const(&b, &a, &xn); + secp256k1_ecmult_const(&b, &a, &xn, 256); CHECK(secp256k1_ge_is_valid_var(&a)); ge_equals_gej(&expected_b, &b); @@ -2421,12 +2478,12 @@ void ecmult_const_commutativity(void) { random_scalar_order_test(&a); random_scalar_order_test(&b); - secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a); - secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b); + secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a, 256); + secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b, 256); secp256k1_ge_set_gej(&mid1, &res1); secp256k1_ge_set_gej(&mid2, &res2); - secp256k1_ecmult_const(&res1, &mid1, &b); - secp256k1_ecmult_const(&res2, &mid2, &a); + secp256k1_ecmult_const(&res1, &mid1, &b, 256); + secp256k1_ecmult_const(&res2, &mid2, &a, 256); secp256k1_ge_set_gej(&mid1, &res1); secp256k1_ge_set_gej(&mid2, &res2); ge_equals_ge(&mid1, &mid2); @@ -2442,13 +2499,13 @@ void ecmult_const_mult_zero_one(void) { secp256k1_scalar_negate(&negone, &one); random_group_element_test(&point); - secp256k1_ecmult_const(&res1, &point, &zero); + secp256k1_ecmult_const(&res1, &point, &zero, 3); secp256k1_ge_set_gej(&res2, &res1); CHECK(secp256k1_ge_is_infinity(&res2)); - secp256k1_ecmult_const(&res1, &point, &one); + secp256k1_ecmult_const(&res1, &point, &one, 2); secp256k1_ge_set_gej(&res2, &res1); ge_equals_ge(&res2, &point); - secp256k1_ecmult_const(&res1, &point, &negone); + secp256k1_ecmult_const(&res1, &point, &negone, 256); secp256k1_gej_neg(&res1, &res1); secp256k1_ge_set_gej(&res2, &res1); ge_equals_ge(&res2, &point); @@ -2474,7 +2531,7 @@ void ecmult_const_chain_multiply(void) { for (i = 0; i < 100; ++i) { secp256k1_ge tmp; secp256k1_ge_set_gej(&tmp, &point); - secp256k1_ecmult_const(&point, &tmp, &scalar); + secp256k1_ecmult_const(&point, &tmp, &scalar, 256); } secp256k1_ge_set_gej(&res, &point); ge_equals_gej(&res, &expected_point); @@ -2487,6 +2544,446 @@ void run_ecmult_const_tests(void) { ecmult_const_chain_multiply(); } +typedef struct { + secp256k1_scalar *sc; + secp256k1_ge *pt; +} ecmult_multi_data; + +static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { + ecmult_multi_data *data = (ecmult_multi_data*) cbdata; + *sc = data->sc[idx]; + *pt = data->pt[idx]; + return 1; +} + +static int ecmult_multi_false_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { + (void)sc; + (void)pt; + (void)idx; + (void)cbdata; + return 0; +} + +void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func ecmult_multi) { + int ncount; + secp256k1_scalar szero; + secp256k1_scalar sc[32]; + secp256k1_ge pt[32]; + secp256k1_gej r; + secp256k1_gej r2; + ecmult_multi_data data; + secp256k1_scratch *scratch_empty; + + data.sc = sc; + data.pt = pt; + secp256k1_scalar_set_int(&szero, 0); + + /* No points to multiply */ + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0)); + + /* Check 1- and 2-point multiplies against ecmult */ + for (ncount = 0; ncount < count; ncount++) { + secp256k1_ge ptg; + secp256k1_gej ptgj; + random_scalar_order(&sc[0]); + random_scalar_order(&sc[1]); + + random_group_element_test(&ptg); + secp256k1_gej_set_ge(&ptgj, &ptg); + pt[0] = ptg; + pt[1] = secp256k1_ge_const_g; + + /* only G scalar */ + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &szero, &sc[0]); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0)); + secp256k1_gej_neg(&r2, &r2); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + + /* 1-point */ + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &szero); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1)); + secp256k1_gej_neg(&r2, &r2); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + + /* Try to multiply 1 point, but scratch space is empty */ + scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0); + CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1)); + secp256k1_scratch_destroy(scratch_empty); + + /* Try to multiply 1 point, but callback returns false */ + CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1)); + + /* 2-point */ + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2)); + secp256k1_gej_neg(&r2, &r2); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + + /* 2-point with G scalar */ + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1)); + secp256k1_gej_neg(&r2, &r2); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + /* Check infinite outputs of various forms */ + for (ncount = 0; ncount < count; ncount++) { + secp256k1_ge ptg; + size_t i, j; + size_t sizes[] = { 2, 10, 32 }; + + for (j = 0; j < 3; j++) { + for (i = 0; i < 32; i++) { + random_scalar_order(&sc[i]); + secp256k1_ge_set_infinity(&pt[i]); + } + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + for (j = 0; j < 3; j++) { + for (i = 0; i < 32; i++) { + random_group_element_test(&ptg); + pt[i] = ptg; + secp256k1_scalar_set_int(&sc[i], 0); + } + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + for (j = 0; j < 3; j++) { + random_group_element_test(&ptg); + for (i = 0; i < 16; i++) { + random_scalar_order(&sc[2*i]); + secp256k1_scalar_negate(&sc[2*i + 1], &sc[2*i]); + pt[2 * i] = ptg; + pt[2 * i + 1] = ptg; + } + + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(secp256k1_gej_is_infinity(&r)); + + random_scalar_order(&sc[0]); + for (i = 0; i < 16; i++) { + random_group_element_test(&ptg); + + sc[2*i] = sc[0]; + sc[2*i+1] = sc[0]; + pt[2 * i] = ptg; + secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]); + } + + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + random_group_element_test(&ptg); + secp256k1_scalar_set_int(&sc[0], 0); + pt[0] = ptg; + for (i = 1; i < 32; i++) { + pt[i] = ptg; + + random_scalar_order(&sc[i]); + secp256k1_scalar_add(&sc[0], &sc[0], &sc[i]); + secp256k1_scalar_negate(&sc[i], &sc[i]); + } + + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32)); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + /* Check random points, constant scalar */ + for (ncount = 0; ncount < count; ncount++) { + size_t i; + secp256k1_gej_set_infinity(&r); + + random_scalar_order(&sc[0]); + for (i = 0; i < 20; i++) { + secp256k1_ge ptg; + sc[i] = sc[0]; + random_group_element_test(&ptg); + pt[i] = ptg; + secp256k1_gej_add_ge_var(&r, &r, &pt[i], NULL); + } + + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r, &sc[0], &szero); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); + secp256k1_gej_neg(&r2, &r2); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + /* Check random scalars, constant point */ + for (ncount = 0; ncount < count; ncount++) { + size_t i; + secp256k1_ge ptg; + secp256k1_gej p0j; + secp256k1_scalar rs; + secp256k1_scalar_set_int(&rs, 0); + + random_group_element_test(&ptg); + for (i = 0; i < 20; i++) { + random_scalar_order(&sc[i]); + pt[i] = ptg; + secp256k1_scalar_add(&rs, &rs, &sc[i]); + } + + secp256k1_gej_set_ge(&p0j, &pt[0]); + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &p0j, &rs, &szero); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); + secp256k1_gej_neg(&r2, &r2); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + } + + /* Sanity check that zero scalars don't cause problems */ + for (ncount = 0; ncount < 20; ncount++) { + random_scalar_order(&sc[ncount]); + random_group_element_test(&pt[ncount]); + } + + secp256k1_scalar_clear(&sc[0]); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); + secp256k1_scalar_clear(&sc[1]); + secp256k1_scalar_clear(&sc[2]); + secp256k1_scalar_clear(&sc[3]); + secp256k1_scalar_clear(&sc[4]); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6)); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5)); + CHECK(secp256k1_gej_is_infinity(&r)); + + /* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */ + { + const size_t TOP = 8; + size_t s0i, s1i; + size_t t0i, t1i; + secp256k1_ge ptg; + secp256k1_gej ptgj; + + random_group_element_test(&ptg); + secp256k1_gej_set_ge(&ptgj, &ptg); + + for(t0i = 0; t0i < TOP; t0i++) { + for(t1i = 0; t1i < TOP; t1i++) { + secp256k1_gej t0p, t1p; + secp256k1_scalar t0, t1; + + secp256k1_scalar_set_int(&t0, (t0i + 1) / 2); + secp256k1_scalar_cond_negate(&t0, t0i & 1); + secp256k1_scalar_set_int(&t1, (t1i + 1) / 2); + secp256k1_scalar_cond_negate(&t1, t1i & 1); + + secp256k1_ecmult(&ctx->ecmult_ctx, &t0p, &ptgj, &t0, &szero); + secp256k1_ecmult(&ctx->ecmult_ctx, &t1p, &ptgj, &t1, &szero); + + for(s0i = 0; s0i < TOP; s0i++) { + for(s1i = 0; s1i < TOP; s1i++) { + secp256k1_scalar tmp1, tmp2; + secp256k1_gej expected, actual; + + secp256k1_ge_set_gej(&pt[0], &t0p); + secp256k1_ge_set_gej(&pt[1], &t1p); + + secp256k1_scalar_set_int(&sc[0], (s0i + 1) / 2); + secp256k1_scalar_cond_negate(&sc[0], s0i & 1); + secp256k1_scalar_set_int(&sc[1], (s1i + 1) / 2); + secp256k1_scalar_cond_negate(&sc[1], s1i & 1); + + secp256k1_scalar_mul(&tmp1, &t0, &sc[0]); + secp256k1_scalar_mul(&tmp2, &t1, &sc[1]); + secp256k1_scalar_add(&tmp1, &tmp1, &tmp2); + + secp256k1_ecmult(&ctx->ecmult_ctx, &expected, &ptgj, &tmp1, &szero); + CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2)); + secp256k1_gej_neg(&expected, &expected); + secp256k1_gej_add_var(&actual, &actual, &expected, NULL); + CHECK(secp256k1_gej_is_infinity(&actual)); + } + } + } + } + } +} + +void test_secp256k1_pippenger_bucket_window_inv(void) { + int i; + + CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0); + for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) { +#ifdef USE_ENDOMORPHISM + /* Bucket_window of 8 is not used with endo */ + if (i == 8) { + continue; + } +#endif + CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i); + if (i != PIPPENGER_MAX_BUCKET_WINDOW) { + CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i); + } + } +} + +/** + * Probabilistically test the function returning the maximum number of possible points + * for a given scratch space. + */ +void test_ecmult_multi_pippenger_max_points(void) { + size_t scratch_size = secp256k1_rand_int(256); + size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12); + secp256k1_scratch *scratch; + size_t n_points_supported; + int bucket_window = 0; + + for(; scratch_size < max_size; scratch_size+=256) { + scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size); + CHECK(scratch != NULL); + n_points_supported = secp256k1_pippenger_max_points(scratch); + if (n_points_supported == 0) { + secp256k1_scratch_destroy(scratch); + continue; + } + bucket_window = secp256k1_pippenger_bucket_window(n_points_supported); + CHECK(secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS)); + secp256k1_scratch_deallocate_frame(scratch); + secp256k1_scratch_destroy(scratch); + } + CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW); +} + +void test_ecmult_multi_batch_size_helper(void) { + size_t n_batches, n_batch_points, max_n_batch_points, n; + + max_n_batch_points = 0; + n = 1; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 0); + + max_n_batch_points = 1; + n = 0; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 0); + CHECK(n_batch_points == 0); + + max_n_batch_points = 2; + n = 5; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 3); + CHECK(n_batch_points == 2); + + max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH; + n = ECMULT_MAX_POINTS_PER_BATCH; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 1); + CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH); + + max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH + 1; + n = ECMULT_MAX_POINTS_PER_BATCH + 1; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 2); + CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH/2 + 1); + + max_n_batch_points = 1; + n = SIZE_MAX; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == SIZE_MAX); + CHECK(n_batch_points == 1); + + max_n_batch_points = 2; + n = SIZE_MAX; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == SIZE_MAX/2 + 1); + CHECK(n_batch_points == 2); +} + +/** + * Run secp256k1_ecmult_multi_var with num points and a scratch space restricted to + * 1 <= i <= num points. + */ +void test_ecmult_multi_batching(void) { + static const int n_points = 2*ECMULT_PIPPENGER_THRESHOLD; + secp256k1_scalar scG; + secp256k1_scalar szero; + secp256k1_scalar *sc = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_scalar) * n_points); + secp256k1_ge *pt = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * n_points); + secp256k1_gej r; + secp256k1_gej r2; + ecmult_multi_data data; + int i; + secp256k1_scratch *scratch; + + secp256k1_gej_set_infinity(&r2); + secp256k1_scalar_set_int(&szero, 0); + + /* Get random scalars and group elements and compute result */ + random_scalar_order(&scG); + secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r2, &szero, &scG); + for(i = 0; i < n_points; i++) { + secp256k1_ge ptg; + secp256k1_gej ptgj; + random_group_element_test(&ptg); + secp256k1_gej_set_ge(&ptgj, &ptg); + pt[i] = ptg; + random_scalar_order(&sc[i]); + secp256k1_ecmult(&ctx->ecmult_ctx, &ptgj, &ptgj, &sc[i], NULL); + secp256k1_gej_add_var(&r2, &r2, &ptgj, NULL); + } + data.sc = sc; + data.pt = pt; + + /* Test with empty scratch space */ + scratch = secp256k1_scratch_create(&ctx->error_callback, 0); + CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1)); + secp256k1_scratch_destroy(scratch); + + /* Test with space for 1 point in pippenger. That's not enough because + * ecmult_multi selects strauss which requires more memory. */ + scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); + CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1)); + secp256k1_scratch_destroy(scratch); + + secp256k1_gej_neg(&r2, &r2); + for(i = 1; i <= n_points; i++) { + if (i > ECMULT_PIPPENGER_THRESHOLD) { + int bucket_window = secp256k1_pippenger_bucket_window(i); + size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window); + scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); + } else { + size_t scratch_size = secp256k1_strauss_scratch_size(i); + scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); + } + CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + secp256k1_scratch_destroy(scratch); + } + free(sc); + free(pt); +} + +void run_ecmult_multi_tests(void) { + secp256k1_scratch *scratch; + + test_secp256k1_pippenger_bucket_window_inv(); + test_ecmult_multi_pippenger_max_points(); + scratch = secp256k1_scratch_create(&ctx->error_callback, 819200); + test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); + test_ecmult_multi(NULL, secp256k1_ecmult_multi_var); + test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single); + test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single); + secp256k1_scratch_destroy(scratch); + + /* Run test_ecmult_multi with space for exactly one point */ + scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); + test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); + secp256k1_scratch_destroy(scratch); + + test_ecmult_multi_batch_size_helper(); + test_ecmult_multi_batching(); +} + void test_wnaf(const secp256k1_scalar *number, int w) { secp256k1_scalar x, two, t; int wnaf[256]; @@ -2541,6 +3038,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { int wnaf[256] = {0}; int i; int skew; + int bits = 256; secp256k1_scalar num = *number; secp256k1_scalar_set_int(&x, 0); @@ -2550,10 +3048,11 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { for (i = 0; i < 16; ++i) { secp256k1_scalar_shr_int(&num, 8); } + bits = 128; #endif - skew = secp256k1_wnaf_const(wnaf, num, w); + skew = secp256k1_wnaf_const(wnaf, num, w, bits); - for (i = WNAF_SIZE(w); i >= 0; --i) { + for (i = WNAF_SIZE_BITS(bits, w); i >= 0; --i) { secp256k1_scalar t; int v = wnaf[i]; CHECK(v != 0); /* check nonzero */ @@ -2575,6 +3074,110 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { CHECK(secp256k1_scalar_eq(&x, &num)); } +void test_fixed_wnaf(const secp256k1_scalar *number, int w) { + secp256k1_scalar x, shift; + int wnaf[256] = {0}; + int i; + int skew; + secp256k1_scalar num = *number; + + secp256k1_scalar_set_int(&x, 0); + secp256k1_scalar_set_int(&shift, 1 << w); + /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */ +#ifdef USE_ENDOMORPHISM + for (i = 0; i < 16; ++i) { + secp256k1_scalar_shr_int(&num, 8); + } +#endif + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + + for (i = WNAF_SIZE(w)-1; i >= 0; --i) { + secp256k1_scalar t; + int v = wnaf[i]; + CHECK(v == 0 || v & 1); /* check parity */ + CHECK(v > -(1 << w)); /* check range above */ + CHECK(v < (1 << w)); /* check range below */ + + secp256k1_scalar_mul(&x, &x, &shift); + if (v >= 0) { + secp256k1_scalar_set_int(&t, v); + } else { + secp256k1_scalar_set_int(&t, -v); + secp256k1_scalar_negate(&t, &t); + } + secp256k1_scalar_add(&x, &x, &t); + } + /* If skew is 1 then add 1 to num */ + secp256k1_scalar_cadd_bit(&num, 0, skew == 1); + CHECK(secp256k1_scalar_eq(&x, &num)); +} + +/* Checks that the first 8 elements of wnaf are equal to wnaf_expected and the + * rest is 0.*/ +void test_fixed_wnaf_small_helper(int *wnaf, int *wnaf_expected, int w) { + int i; + for (i = WNAF_SIZE(w)-1; i >= 8; --i) { + CHECK(wnaf[i] == 0); + } + for (i = 7; i >= 0; --i) { + CHECK(wnaf[i] == wnaf_expected[i]); + } +} + +void test_fixed_wnaf_small(void) { + int w = 4; + int wnaf[256] = {0}; + int i; + int skew; + secp256k1_scalar num; + + secp256k1_scalar_set_int(&num, 0); + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + for (i = WNAF_SIZE(w)-1; i >= 0; --i) { + int v = wnaf[i]; + CHECK(v == 0); + } + CHECK(skew == 0); + + secp256k1_scalar_set_int(&num, 1); + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + for (i = WNAF_SIZE(w)-1; i >= 1; --i) { + int v = wnaf[i]; + CHECK(v == 0); + } + CHECK(wnaf[0] == 1); + CHECK(skew == 0); + + { + int wnaf_expected[8] = { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf }; + secp256k1_scalar_set_int(&num, 0xffffffff); + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); + CHECK(skew == 0); + } + { + int wnaf_expected[8] = { -1, -1, -1, -1, -1, -1, -1, 0xf }; + secp256k1_scalar_set_int(&num, 0xeeeeeeee); + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); + CHECK(skew == 1); + } + { + int wnaf_expected[8] = { 1, 0, 1, 0, 1, 0, 1, 0 }; + secp256k1_scalar_set_int(&num, 0x01010101); + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); + CHECK(skew == 0); + } + { + int wnaf_expected[8] = { -0xf, 0, 0xf, -0xf, 0, 0xf, 1, 0 }; + secp256k1_scalar_set_int(&num, 0x01ef1ef1); + skew = secp256k1_wnaf_fixed(wnaf, &num, w); + test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); + CHECK(skew == 0); + } +} + void run_wnaf(void) { int i; secp256k1_scalar n = {{0}}; @@ -2585,12 +3188,15 @@ void run_wnaf(void) { test_constant_wnaf(&n, 4); n.d[0] = 2; test_constant_wnaf(&n, 4); + /* Test 0 */ + test_fixed_wnaf_small(); /* Random tests */ for (i = 0; i < count; i++) { random_scalar_order(&n); test_wnaf(&n, 4+(i%10)); test_constant_wnaf_negate(&n); test_constant_wnaf(&n, 4 + (i % 10)); + test_fixed_wnaf(&n, 4 + (i % 10)); } secp256k1_scalar_set_int(&n, 0); CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1); @@ -3055,6 +3661,7 @@ void run_ec_pubkey_parse_test(void) { ecount = 0; VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 65) == 1); + CHECK(secp256k1_ec_pubkey_parse(secp256k1_context_no_precomp, &pubkey, pubkeyc, 65) == 1); VG_CHECK(&pubkey, sizeof(pubkey)); CHECK(ecount == 0); VG_UNDEF(&ge, sizeof(ge)); @@ -3177,7 +3784,7 @@ void run_eckey_edge_case_test(void) { VG_CHECK(&pubkey, sizeof(pubkey)); CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); pubkey_negone = pubkey; - /* Tweak of zero leaves the value changed. */ + /* Tweak of zero leaves the value unchanged. */ memset(ctmp2, 0, 32); CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, ctmp2) == 1); CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40); @@ -3668,6 +4275,7 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_ #ifdef ENABLE_OPENSSL_TESTS ECDSA_SIG *sig_openssl; + const BIGNUM *r = NULL, *s = NULL; const unsigned char *sigptr; unsigned char roundtrip_openssl[2048]; int len_openssl = 2048; @@ -3719,15 +4327,16 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_ sigptr = sig; parsed_openssl = (d2i_ECDSA_SIG(&sig_openssl, &sigptr, siglen) != NULL); if (parsed_openssl) { - valid_openssl = !BN_is_negative(sig_openssl->r) && !BN_is_negative(sig_openssl->s) && BN_num_bits(sig_openssl->r) > 0 && BN_num_bits(sig_openssl->r) <= 256 && BN_num_bits(sig_openssl->s) > 0 && BN_num_bits(sig_openssl->s) <= 256; + ECDSA_SIG_get0(sig_openssl, &r, &s); + valid_openssl = !BN_is_negative(r) && !BN_is_negative(s) && BN_num_bits(r) > 0 && BN_num_bits(r) <= 256 && BN_num_bits(s) > 0 && BN_num_bits(s) <= 256; if (valid_openssl) { unsigned char tmp[32] = {0}; - BN_bn2bin(sig_openssl->r, tmp + 32 - BN_num_bytes(sig_openssl->r)); + BN_bn2bin(r, tmp + 32 - BN_num_bytes(r)); valid_openssl = memcmp(tmp, max_scalar, 32) < 0; } if (valid_openssl) { unsigned char tmp[32] = {0}; - BN_bn2bin(sig_openssl->s, tmp + 32 - BN_num_bytes(sig_openssl->s)); + BN_bn2bin(s, tmp + 32 - BN_num_bytes(s)); valid_openssl = memcmp(tmp, max_scalar, 32) < 0; } } @@ -4431,8 +5040,9 @@ int main(int argc, char **argv) { } } else { FILE *frand = fopen("/dev/urandom", "r"); - if ((frand == NULL) || !fread(&seed16, sizeof(seed16), 1, frand)) { + if ((frand == NULL) || fread(&seed16, 1, sizeof(seed16), frand) != sizeof(seed16)) { uint64_t t = time(NULL) * (uint64_t)1337; + fprintf(stderr, "WARNING: could not read 16 bytes from /dev/urandom; falling back to insecure PRNG\n"); seed16[0] ^= t; seed16[1] ^= t >> 8; seed16[2] ^= t >> 16; @@ -4442,7 +5052,9 @@ int main(int argc, char **argv) { seed16[6] ^= t >> 48; seed16[7] ^= t >> 56; } - fclose(frand); + if (frand) { + fclose(frand); + } } secp256k1_rand_seed(seed16); @@ -4451,6 +5063,7 @@ int main(int argc, char **argv) { /* initialize */ run_context_tests(); + run_scratch_tests(); ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); if (secp256k1_rand_bits(1)) { secp256k1_rand256(run32); @@ -4492,6 +5105,7 @@ int main(int argc, char **argv) { run_ecmult_constants(); run_ecmult_gen_blind(); run_ecmult_const_tests(); + run_ecmult_multi_tests(); run_ec_combine(); /* endomorphism tests */ diff --git a/src/secp256k1/src/tests_exhaustive.c b/src/secp256k1/src/tests_exhaustive.c index b040bb0733..ab9779b02f 100644 --- a/src/secp256k1/src/tests_exhaustive.c +++ b/src/secp256k1/src/tests_exhaustive.c @@ -174,7 +174,7 @@ void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *gr ge_equals_gej(&group[(i * r_log + j) % order], &tmp); if (i > 0) { - secp256k1_ecmult_const(&tmp, &group[i], &ng); + secp256k1_ecmult_const(&tmp, &group[i], &ng, 256); ge_equals_gej(&group[(i * j) % order], &tmp); } } @@ -182,6 +182,46 @@ void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *gr } } +typedef struct { + secp256k1_scalar sc[2]; + secp256k1_ge pt[2]; +} ecmult_multi_data; + +static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { + ecmult_multi_data *data = (ecmult_multi_data*) cbdata; + *sc = data->sc[idx]; + *pt = data->pt[idx]; + return 1; +} + +void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { + int i, j, k, x, y; + secp256k1_scratch *scratch = secp256k1_scratch_create(&ctx->error_callback, 4096); + for (i = 0; i < order; i++) { + for (j = 0; j < order; j++) { + for (k = 0; k < order; k++) { + for (x = 0; x < order; x++) { + for (y = 0; y < order; y++) { + secp256k1_gej tmp; + secp256k1_scalar g_sc; + ecmult_multi_data data; + + secp256k1_scalar_set_int(&data.sc[0], i); + secp256k1_scalar_set_int(&data.sc[1], j); + secp256k1_scalar_set_int(&g_sc, k); + data.pt[0] = group[x]; + data.pt[1] = group[y]; + + secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2); + ge_equals_gej(&group[(i * x + j * y + k) % order], &tmp); + } + } + } + } + } + secp256k1_scratch_destroy(scratch); +} + void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) { secp256k1_fe x; unsigned char x_bin[32]; @@ -456,6 +496,7 @@ int main(void) { #endif test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER); test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER); + test_exhaustive_ecmult_multi(ctx, group, EXHAUSTIVE_TEST_ORDER); test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER); test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER); diff --git a/src/secp256k1/src/util.h b/src/secp256k1/src/util.h index b0441d8e30..e1f5b76452 100644 --- a/src/secp256k1/src/util.h +++ b/src/secp256k1/src/util.h @@ -36,7 +36,7 @@ static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * } while(0) #endif -#ifdef HAVE_BUILTIN_EXPECT +#if SECP256K1_GNUC_PREREQ(3, 0) #define EXPECT(x,c) __builtin_expect((x),(c)) #else #define EXPECT(x,c) (x) @@ -76,6 +76,14 @@ static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_ return ret; } +static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void *ptr, size_t size) { + void *ret = realloc(ptr, size); + if (ret == NULL) { + secp256k1_callback_call(cb, "Out of memory"); + } + return ret; +} + /* Macro for restrict, when available and not in a VERIFY build. */ #if defined(SECP256K1_BUILD) && defined(VERIFY) # define SECP256K1_RESTRICT diff --git a/src/test/util_tests.cpp b/src/test/util_tests.cpp index 51dd25ed1c..8fee66d6c3 100644 --- a/src/test/util_tests.cpp +++ b/src/test/util_tests.cpp @@ -1068,6 +1068,27 @@ BOOST_AUTO_TEST_CASE(gettime) BOOST_CHECK((GetTime() & ~0xFFFFFFFFLL) == 0); } +BOOST_AUTO_TEST_CASE(util_time_GetTime) +{ + SetMockTime(111); + // Check that mock time does not change after a sleep + for (const auto& num_sleep : {0, 1}) { + MilliSleep(num_sleep); + BOOST_CHECK_EQUAL(111, GetTime()); // Deprecated time getter + BOOST_CHECK_EQUAL(111, GetTime<std::chrono::seconds>().count()); + BOOST_CHECK_EQUAL(111000, GetTime<std::chrono::milliseconds>().count()); + BOOST_CHECK_EQUAL(111000000, GetTime<std::chrono::microseconds>().count()); + } + + SetMockTime(0); + // Check that system time changes after a sleep + const auto ms_0 = GetTime<std::chrono::milliseconds>(); + const auto us_0 = GetTime<std::chrono::microseconds>(); + MilliSleep(1); + BOOST_CHECK(ms_0 < GetTime<std::chrono::milliseconds>()); + BOOST_CHECK(us_0 < GetTime<std::chrono::microseconds>()); +} + BOOST_AUTO_TEST_CASE(test_IsDigit) { BOOST_CHECK_EQUAL(IsDigit('0'), true); diff --git a/src/txmempool.cpp b/src/txmempool.cpp index 90b28227a0..80dbd9c19d 100644 --- a/src/txmempool.cpp +++ b/src/txmempool.cpp @@ -601,7 +601,7 @@ static void CheckInputsAndUpdateCoins(const CTransaction& tx, CCoinsViewCache& m CAmount txfee = 0; bool fCheckResult = tx.IsCoinBase() || Consensus::CheckTxInputs(tx, state, mempoolDuplicate, spendheight, txfee); assert(fCheckResult); - UpdateCoins(tx, mempoolDuplicate, 1000000); + UpdateCoins(tx, mempoolDuplicate, std::numeric_limits<int>::max()); } void CTxMemPool::check(const CCoinsViewCache *pcoins) const diff --git a/src/util/time.cpp b/src/util/time.cpp index c0ede98701..2b202ae95f 100644 --- a/src/util/time.cpp +++ b/src/util/time.cpp @@ -1,5 +1,5 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto -// Copyright (c) 2009-2018 The Bitcoin Core developers +// Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. @@ -27,6 +27,20 @@ int64_t GetTime() return now; } +template <typename T> +T GetTime() +{ + const std::chrono::seconds mocktime{nMockTime.load(std::memory_order_relaxed)}; + + return std::chrono::duration_cast<T>( + mocktime.count() ? + mocktime : + std::chrono::microseconds{GetTimeMicros()}); +} +template std::chrono::seconds GetTime(); +template std::chrono::milliseconds GetTime(); +template std::chrono::microseconds GetTime(); + void SetMockTime(int64_t nMockTimeIn) { nMockTime.store(nMockTimeIn, std::memory_order_relaxed); diff --git a/src/util/time.h b/src/util/time.h index 68de1c156e..e4f9996777 100644 --- a/src/util/time.h +++ b/src/util/time.h @@ -1,5 +1,5 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto -// Copyright (c) 2009-2018 The Bitcoin Core developers +// Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. @@ -8,27 +8,34 @@ #include <stdint.h> #include <string> +#include <chrono> /** - * GetTimeMicros() and GetTimeMillis() both return the system time, but in - * different units. GetTime() returns the system time in seconds, but also - * supports mocktime, where the time can be specified by the user, eg for - * testing (eg with the setmocktime rpc, or -mocktime argument). - * - * TODO: Rework these functions to be type-safe (so that we don't inadvertently - * compare numbers with different units, or compare a mocktime to system time). + * DEPRECATED + * Use either GetSystemTimeInSeconds (not mockable) or GetTime<T> (mockable) */ - int64_t GetTime(); + +/** Returns the system time (not mockable) */ int64_t GetTimeMillis(); +/** Returns the system time (not mockable) */ int64_t GetTimeMicros(); +/** Returns the system time (not mockable) */ int64_t GetSystemTimeInSeconds(); // Like GetTime(), but not mockable + +/** For testing. Set e.g. with the setmocktime rpc, or -mocktime argument */ void SetMockTime(int64_t nMockTimeIn); +/** For testing */ int64_t GetMockTime(); + void MilliSleep(int64_t n); +/** Return system time (or mocked time, if set) */ +template <typename T> +T GetTime(); + /** - * ISO 8601 formatting is preferred. Use the FormatISO8601{DateTime,Date,Time} + * ISO 8601 formatting is preferred. Use the FormatISO8601{DateTime,Date} * helper functions if possible. */ std::string FormatISO8601DateTime(int64_t nTime); diff --git a/src/wallet/db.cpp b/src/wallet/db.cpp index 546e3d54eb..8633d8701b 100644 --- a/src/wallet/db.cpp +++ b/src/wallet/db.cpp @@ -607,7 +607,9 @@ void BerkeleyBatch::Flush() if (fReadOnly) nMinutes = 1; - env->dbenv->txn_checkpoint(nMinutes ? gArgs.GetArg("-dblogsize", DEFAULT_WALLET_DBLOGSIZE) * 1024 : 0, nMinutes, 0); + if (env) { // env is nullptr for dummy databases (i.e. in tests). Don't actually flush if env is nullptr so we don't segfault + env->dbenv->txn_checkpoint(nMinutes ? gArgs.GetArg("-dblogsize", DEFAULT_WALLET_DBLOGSIZE) * 1024 : 0, nMinutes, 0); + } } void BerkeleyDatabase::IncrementUpdateCounter() diff --git a/src/wallet/rpcdump.cpp b/src/wallet/rpcdump.cpp index d428fac728..ee1b792f9b 100644 --- a/src/wallet/rpcdump.cpp +++ b/src/wallet/rpcdump.cpp @@ -1273,55 +1273,17 @@ static UniValue ProcessImport(CWallet * const pwallet, const UniValue& data, con // All good, time to import pwallet->MarkDirty(); - for (const auto& entry : import_data.import_scripts) { - if (!pwallet->HaveCScript(CScriptID(entry)) && !pwallet->AddCScript(entry)) { - throw JSONRPCError(RPC_WALLET_ERROR, "Error adding script to wallet"); - } - } - for (const auto& entry : privkey_map) { - const CKey& key = entry.second; - CPubKey pubkey = key.GetPubKey(); - const CKeyID& id = entry.first; - assert(key.VerifyPubKey(pubkey)); - pwallet->mapKeyMetadata[id].nCreateTime = timestamp; - // If the private key is not present in the wallet, insert it. - if (!pwallet->HaveKey(id) && !pwallet->AddKeyPubKey(key, pubkey)) { - throw JSONRPCError(RPC_WALLET_ERROR, "Error adding key to wallet"); - } - pwallet->UpdateTimeFirstKey(timestamp); + if (!pwallet->ImportScripts(import_data.import_scripts)) { + throw JSONRPCError(RPC_WALLET_ERROR, "Error adding script to wallet"); } - for (const auto& entry : import_data.key_origins) { - pwallet->AddKeyOrigin(entry.second.first, entry.second.second); + if (!pwallet->ImportPrivKeys(privkey_map, timestamp)) { + throw JSONRPCError(RPC_WALLET_ERROR, "Error adding key to wallet"); } - for (const CKeyID& id : ordered_pubkeys) { - auto entry = pubkey_map.find(id); - if (entry == pubkey_map.end()) { - continue; - } - const CPubKey& pubkey = entry->second; - CPubKey temp; - if (!pwallet->GetPubKey(id, temp) && !pwallet->AddWatchOnly(GetScriptForRawPubKey(pubkey), timestamp)) { - throw JSONRPCError(RPC_WALLET_ERROR, "Error adding address to wallet"); - } - pwallet->mapKeyMetadata[id].nCreateTime = timestamp; - - // Add to keypool only works with pubkeys - if (add_keypool) { - pwallet->AddKeypoolPubkey(pubkey, internal); - } + if (!pwallet->ImportPubKeys(ordered_pubkeys, pubkey_map, import_data.key_origins, add_keypool, internal, timestamp)) { + throw JSONRPCError(RPC_WALLET_ERROR, "Error adding address to wallet"); } - - for (const CScript& script : script_pub_keys) { - if (!have_solving_data || !::IsMine(*pwallet, script)) { // Always call AddWatchOnly for non-solvable watch-only, so that watch timestamp gets updated - if (!pwallet->AddWatchOnly(script, timestamp)) { - throw JSONRPCError(RPC_WALLET_ERROR, "Error adding address to wallet"); - } - } - CTxDestination dest; - ExtractDestination(script, dest); - if (!internal && IsValidDestination(dest)) { - pwallet->SetAddressBook(dest, label, "receive"); - } + if (!pwallet->ImportScriptPubKeys(label, script_pub_keys, have_solving_data, internal, timestamp)) { + throw JSONRPCError(RPC_WALLET_ERROR, "Error adding address to wallet"); } result.pushKV("success", UniValue(true)); diff --git a/src/wallet/wallet.cpp b/src/wallet/wallet.cpp index 260617c666..e86147b5d0 100644 --- a/src/wallet/wallet.cpp +++ b/src/wallet/wallet.cpp @@ -320,7 +320,7 @@ bool CWallet::AddKeyPubKeyWithDB(WalletBatch& batch, const CKey& secret, const C secret.GetPrivKey(), mapKeyMetadata[pubkey.GetID()]); } - UnsetWalletFlag(WALLET_FLAG_BLANK_WALLET); + UnsetWalletFlagWithDB(batch, WALLET_FLAG_BLANK_WALLET); return true; } @@ -362,12 +362,6 @@ void CWallet::LoadScriptMetadata(const CScriptID& script_id, const CKeyMetadata& m_script_metadata[script_id] = meta; } -// Writes a keymetadata for a public key. overwrite specifies whether to overwrite an existing metadata for that key if there exists one. -bool CWallet::WriteKeyMetadata(const CKeyMetadata& meta, const CPubKey& pubkey, const bool overwrite) -{ - return WalletBatch(*database).WriteKeyMetadata(meta, pubkey, overwrite); -} - void CWallet::UpgradeKeyMetadata() { AssertLockHeld(cs_wallet); @@ -376,7 +370,6 @@ void CWallet::UpgradeKeyMetadata() } std::unique_ptr<WalletBatch> batch = MakeUnique<WalletBatch>(*database); - size_t cnt = 0; for (auto& meta_pair : mapKeyMetadata) { CKeyMetadata& meta = meta_pair.second; if (!meta.hd_seed_id.IsNull() && !meta.has_key_origin && meta.hdKeypath != "s") { // If the hdKeypath is "s", that's the seed and it doesn't have a key origin @@ -399,10 +392,6 @@ void CWallet::UpgradeKeyMetadata() CPubKey pubkey; if (GetPubKey(meta_pair.first, pubkey)) { batch->WriteKeyMetadata(meta, pubkey, true); - if (++cnt % 1000 == 0) { - // avoid creating overlarge in-memory batches in case the wallet contains large amounts of keys - batch.reset(new WalletBatch(*database)); - } } } } @@ -433,10 +422,16 @@ void CWallet::UpdateTimeFirstKey(int64_t nCreateTime) bool CWallet::AddCScript(const CScript& redeemScript) { + WalletBatch batch(*database); + return AddCScriptWithDB(batch, redeemScript); +} + +bool CWallet::AddCScriptWithDB(WalletBatch& batch, const CScript& redeemScript) +{ if (!CCryptoKeyStore::AddCScript(redeemScript)) return false; - if (WalletBatch(*database).WriteCScript(Hash160(redeemScript), redeemScript)) { - UnsetWalletFlag(WALLET_FLAG_BLANK_WALLET); + if (batch.WriteCScript(Hash160(redeemScript), redeemScript)) { + UnsetWalletFlagWithDB(batch, WALLET_FLAG_BLANK_WALLET); return true; } return false; @@ -457,20 +452,32 @@ bool CWallet::LoadCScript(const CScript& redeemScript) return CCryptoKeyStore::AddCScript(redeemScript); } -bool CWallet::AddWatchOnly(const CScript& dest) +bool CWallet::AddWatchOnlyWithDB(WalletBatch &batch, const CScript& dest) { if (!CCryptoKeyStore::AddWatchOnly(dest)) return false; const CKeyMetadata& meta = m_script_metadata[CScriptID(dest)]; UpdateTimeFirstKey(meta.nCreateTime); NotifyWatchonlyChanged(true); - if (WalletBatch(*database).WriteWatchOnly(dest, meta)) { - UnsetWalletFlag(WALLET_FLAG_BLANK_WALLET); + if (batch.WriteWatchOnly(dest, meta)) { + UnsetWalletFlagWithDB(batch, WALLET_FLAG_BLANK_WALLET); return true; } return false; } +bool CWallet::AddWatchOnlyWithDB(WalletBatch &batch, const CScript& dest, int64_t create_time) +{ + m_script_metadata[CScriptID(dest)].nCreateTime = create_time; + return AddWatchOnlyWithDB(batch, dest); +} + +bool CWallet::AddWatchOnly(const CScript& dest) +{ + WalletBatch batch(*database); + return AddWatchOnlyWithDB(batch, dest); +} + bool CWallet::AddWatchOnly(const CScript& dest, int64_t nCreateTime) { m_script_metadata[CScriptID(dest)].nCreateTime = nCreateTime; @@ -1543,9 +1550,15 @@ void CWallet::SetWalletFlag(uint64_t flags) void CWallet::UnsetWalletFlag(uint64_t flag) { + WalletBatch batch(*database); + UnsetWalletFlagWithDB(batch, flag); +} + +void CWallet::UnsetWalletFlagWithDB(WalletBatch& batch, uint64_t flag) +{ LOCK(cs_wallet); m_wallet_flags &= ~flag; - if (!WalletBatch(*database).WriteWalletFlags(m_wallet_flags)) + if (!batch.WriteWalletFlags(m_wallet_flags)) throw std::runtime_error(std::string(__func__) + ": writing wallet flags failed"); } @@ -1606,6 +1619,80 @@ bool CWallet::DummySignTx(CMutableTransaction &txNew, const std::vector<CTxOut> return true; } +bool CWallet::ImportScripts(const std::set<CScript> scripts) +{ + WalletBatch batch(*database); + for (const auto& entry : scripts) { + if (!HaveCScript(CScriptID(entry)) && !AddCScriptWithDB(batch, entry)) { + return false; + } + } + return true; +} + +bool CWallet::ImportPrivKeys(const std::map<CKeyID, CKey>& privkey_map, const int64_t timestamp) +{ + WalletBatch batch(*database); + for (const auto& entry : privkey_map) { + const CKey& key = entry.second; + CPubKey pubkey = key.GetPubKey(); + const CKeyID& id = entry.first; + assert(key.VerifyPubKey(pubkey)); + mapKeyMetadata[id].nCreateTime = timestamp; + // If the private key is not present in the wallet, insert it. + if (!HaveKey(id) && !AddKeyPubKeyWithDB(batch, key, pubkey)) { + return false; + } + UpdateTimeFirstKey(timestamp); + } + return true; +} + +bool CWallet::ImportPubKeys(const std::vector<CKeyID>& ordered_pubkeys, const std::map<CKeyID, CPubKey>& pubkey_map, const std::map<CKeyID, std::pair<CPubKey, KeyOriginInfo>>& key_origins, const bool add_keypool, const bool internal, const int64_t timestamp) +{ + WalletBatch batch(*database); + for (const auto& entry : key_origins) { + AddKeyOriginWithDB(batch, entry.second.first, entry.second.second); + } + for (const CKeyID& id : ordered_pubkeys) { + auto entry = pubkey_map.find(id); + if (entry == pubkey_map.end()) { + continue; + } + const CPubKey& pubkey = entry->second; + CPubKey temp; + if (!GetPubKey(id, temp) && !AddWatchOnlyWithDB(batch, GetScriptForRawPubKey(pubkey), timestamp)) { + return false; + } + mapKeyMetadata[id].nCreateTime = timestamp; + + // Add to keypool only works with pubkeys + if (add_keypool) { + AddKeypoolPubkeyWithDB(pubkey, internal, batch); + NotifyCanGetAddressesChanged(); + } + } + return true; +} + +bool CWallet::ImportScriptPubKeys(const std::string& label, const std::set<CScript>& script_pub_keys, const bool have_solving_data, const bool internal, const int64_t timestamp) +{ + WalletBatch batch(*database); + for (const CScript& script : script_pub_keys) { + if (!have_solving_data || !::IsMine(*this, script)) { // Always call AddWatchOnly for non-solvable watch-only, so that watch timestamp gets updated + if (!AddWatchOnlyWithDB(batch, script, timestamp)) { + return false; + } + } + CTxDestination dest; + ExtractDestination(script, dest); + if (!internal && IsValidDestination(dest)) { + SetAddressBookWithDB(batch, dest, label, "receive"); + } + } + return true; +} + int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, bool use_max_sig) { std::vector<CTxOut> txouts; @@ -3149,8 +3236,7 @@ DBErrors CWallet::ZapWalletTx(std::vector<CWalletTx>& vWtx) return DBErrors::LOAD_OK; } - -bool CWallet::SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& strPurpose) +bool CWallet::SetAddressBookWithDB(WalletBatch& batch, const CTxDestination& address, const std::string& strName, const std::string& strPurpose) { bool fUpdated = false; { @@ -3163,9 +3249,15 @@ bool CWallet::SetAddressBook(const CTxDestination& address, const std::string& s } NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO, strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) ); - if (!strPurpose.empty() && !WalletBatch(*database).WritePurpose(EncodeDestination(address), strPurpose)) + if (!strPurpose.empty() && !batch.WritePurpose(EncodeDestination(address), strPurpose)) return false; - return WalletBatch(*database).WriteName(EncodeDestination(address), strName); + return batch.WriteName(EncodeDestination(address), strName); +} + +bool CWallet::SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& strPurpose) +{ + WalletBatch batch(*database); + return SetAddressBookWithDB(batch, address, strName, strPurpose); } bool CWallet::DelAddressBook(const CTxDestination& address) @@ -3315,13 +3407,6 @@ bool CWallet::TopUpKeyPool(unsigned int kpSize) return true; } -void CWallet::AddKeypoolPubkey(const CPubKey& pubkey, const bool internal) -{ - WalletBatch batch(*database); - AddKeypoolPubkeyWithDB(pubkey, internal, batch); - NotifyCanGetAddressesChanged(); -} - void CWallet::AddKeypoolPubkeyWithDB(const CPubKey& pubkey, const bool internal, WalletBatch& batch) { LOCK(cs_wallet); @@ -4443,12 +4528,12 @@ bool CWallet::GetKeyOrigin(const CKeyID& keyID, KeyOriginInfo& info) const return true; } -bool CWallet::AddKeyOrigin(const CPubKey& pubkey, const KeyOriginInfo& info) +bool CWallet::AddKeyOriginWithDB(WalletBatch& batch, const CPubKey& pubkey, const KeyOriginInfo& info) { LOCK(cs_wallet); std::copy(info.fingerprint, info.fingerprint + 4, mapKeyMetadata[pubkey.GetID()].key_origin.fingerprint); mapKeyMetadata[pubkey.GetID()].key_origin.path = info.path; mapKeyMetadata[pubkey.GetID()].has_key_origin = true; mapKeyMetadata[pubkey.GetID()].hdKeypath = WriteHDKeypath(info.path); - return WriteKeyMetadata(mapKeyMetadata[pubkey.GetID()], pubkey, true); + return batch.WriteKeyMetadata(mapKeyMetadata[pubkey.GetID()], pubkey, true); } diff --git a/src/wallet/wallet.h b/src/wallet/wallet.h index 5e3bbe2f37..87aff09039 100644 --- a/src/wallet/wallet.h +++ b/src/wallet/wallet.h @@ -775,6 +775,26 @@ private: * nTimeFirstKey more intelligently for more efficient rescans. */ bool AddWatchOnly(const CScript& dest) override EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + bool AddWatchOnlyWithDB(WalletBatch &batch, const CScript& dest) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + + /** Add a KeyOriginInfo to the wallet */ + bool AddKeyOriginWithDB(WalletBatch& batch, const CPubKey& pubkey, const KeyOriginInfo& info); + + //! Adds a key to the store, and saves it to disk. + bool AddKeyPubKeyWithDB(WalletBatch &batch,const CKey& key, const CPubKey &pubkey) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + + //! Adds a watch-only address to the store, and saves it to disk. + bool AddWatchOnlyWithDB(WalletBatch &batch, const CScript& dest, int64_t create_time) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + + void AddKeypoolPubkeyWithDB(const CPubKey& pubkey, const bool internal, WalletBatch& batch); + + bool SetAddressBookWithDB(WalletBatch& batch, const CTxDestination& address, const std::string& strName, const std::string& strPurpose); + + //! Adds a script to the store and saves it to disk + bool AddCScriptWithDB(WalletBatch& batch, const CScript& script); + + //! Unsets a wallet flag and saves it to disk + void UnsetWalletFlagWithDB(WalletBatch& batch, uint64_t flag); /** Interface for accessing chain state. */ interfaces::Chain* m_chain; @@ -833,8 +853,6 @@ public: // Map from Script ID to key metadata (for watch-only keys). std::map<CScriptID, CKeyMetadata> m_script_metadata GUARDED_BY(cs_wallet); - bool WriteKeyMetadata(const CKeyMetadata& meta, const CPubKey& pubkey, bool overwrite); - typedef std::map<unsigned int, CMasterKey> MasterKeyMap; MasterKeyMap mapMasterKeys; unsigned int nMasterKeyMaxID = 0; @@ -930,7 +948,6 @@ public: CPubKey GenerateNewKey(WalletBatch& batch, bool internal = false) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Adds a key to the store, and saves it to disk. bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey) override EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); - bool AddKeyPubKeyWithDB(WalletBatch &batch,const CKey& key, const CPubKey &pubkey) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Adds a key to the store, without saving it to disk (used by LoadWallet) bool LoadKey(const CKey& key, const CPubKey &pubkey) { return CCryptoKeyStore::AddKeyPubKey(key, pubkey); } //! Load metadata (used by LoadWallet) @@ -1049,6 +1066,11 @@ public: bool DummySignTx(CMutableTransaction &txNew, const std::vector<CTxOut> &txouts, bool use_max_sig = false) const; bool DummySignInput(CTxIn &tx_in, const CTxOut &txout, bool use_max_sig = false) const; + bool ImportScripts(const std::set<CScript> scripts) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + bool ImportPrivKeys(const std::map<CKeyID, CKey>& privkey_map, const int64_t timestamp) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + bool ImportPubKeys(const std::vector<CKeyID>& ordered_pubkeys, const std::map<CKeyID, CPubKey>& pubkey_map, const std::map<CKeyID, std::pair<CPubKey, KeyOriginInfo>>& key_origins, const bool add_keypool, const bool internal, const int64_t timestamp) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + bool ImportScriptPubKeys(const std::string& label, const std::set<CScript>& script_pub_keys, const bool have_solving_data, const bool internal, const int64_t timestamp) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); + CFeeRate m_pay_tx_fee{DEFAULT_PAY_TX_FEE}; unsigned int m_confirm_target{DEFAULT_TX_CONFIRM_TARGET}; bool m_spend_zero_conf_change{DEFAULT_SPEND_ZEROCONF_CHANGE}; @@ -1070,8 +1092,6 @@ public: bool NewKeyPool(); size_t KeypoolCountExternalKeys() EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool TopUpKeyPool(unsigned int kpSize = 0); - void AddKeypoolPubkey(const CPubKey& pubkey, const bool internal); - void AddKeypoolPubkeyWithDB(const CPubKey& pubkey, const bool internal, WalletBatch& batch); /** * Reserves a key from the keypool and sets nIndex to its index @@ -1288,9 +1308,6 @@ public: /** Implement lookup of key origin information through wallet key metadata. */ bool GetKeyOrigin(const CKeyID& keyid, KeyOriginInfo& info) const override; - - /** Add a KeyOriginInfo to the wallet */ - bool AddKeyOrigin(const CPubKey& pubkey, const KeyOriginInfo& info); }; /** diff --git a/src/wallet/walletdb.h b/src/wallet/walletdb.h index 0532a55ff5..d4a3bba97a 100644 --- a/src/wallet/walletdb.h +++ b/src/wallet/walletdb.h @@ -143,9 +143,11 @@ public: }; /** Access to the wallet database. - * This represents a single transaction at the - * database. It will be committed when the object goes out of scope. - * Optionally (on by default) it will flush to disk as well. + * Opens the database and provides read and write access to it. Each read and write is its own transaction. + * Multiple operation transactions can be started using TxnBegin() and committed using TxnCommit() + * Otherwise the transaction will be committed when the object goes out of scope. + * Optionally (on by default) it will flush to disk on close. + * Every 1000 writes will automatically trigger a flush to disk. */ class WalletBatch { @@ -157,6 +159,9 @@ private: return false; } m_database.IncrementUpdateCounter(); + if (m_database.nUpdateCounter % 1000 == 0) { + m_batch.Flush(); + } return true; } @@ -167,6 +172,9 @@ private: return false; } m_database.IncrementUpdateCounter(); + if (m_database.nUpdateCounter % 1000 == 0) { + m_batch.Flush(); + } return true; } |