aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/bloom.cpp83
-rw-r--r--src/bloom.h28
-rw-r--r--src/test/bloom_tests.cpp78
3 files changed, 173 insertions, 16 deletions
diff --git a/src/bloom.cpp b/src/bloom.cpp
index e60576f4b4..36cba491c4 100644
--- a/src/bloom.cpp
+++ b/src/bloom.cpp
@@ -21,22 +21,33 @@
using namespace std;
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn, unsigned char nFlagsIn) :
-/**
- * The ideal size for a bloom filter with a given number of elements and false positive rate is:
- * - nElements * log(fp rate) / ln(2)^2
- * We ignore filter parameters which will create a bloom filter larger than the protocol limits
- */
-vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
-/**
- * The ideal number of hash functions is filter size * ln(2) / number of elements
- * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
- * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
- */
-isFull(false),
-isEmpty(false),
-nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
-nTweak(nTweakIn),
-nFlags(nFlagsIn)
+ /**
+ * The ideal size for a bloom filter with a given number of elements and false positive rate is:
+ * - nElements * log(fp rate) / ln(2)^2
+ * We ignore filter parameters which will create a bloom filter larger than the protocol limits
+ */
+ vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
+ /**
+ * The ideal number of hash functions is filter size * ln(2) / number of elements
+ * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
+ * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
+ */
+ isFull(false),
+ isEmpty(false),
+ nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
+ nTweak(nTweakIn),
+ nFlags(nFlagsIn)
+{
+}
+
+// Private constructor used by CRollingBloomFilter
+CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn) :
+ vData((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)) / 8),
+ isFull(false),
+ isEmpty(true),
+ nHashFuncs((unsigned int)(vData.size() * 8 / nElements * LN2)),
+ nTweak(nTweakIn),
+ nFlags(BLOOM_UPDATE_NONE)
{
}
@@ -197,3 +208,43 @@ void CBloomFilter::UpdateEmptyFull()
isFull = full;
isEmpty = empty;
}
+
+CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate, unsigned int nTweak) :
+ b1(nElements * 2, fpRate, nTweak), b2(nElements * 2, fpRate, nTweak)
+{
+ // Implemented using two bloom filters of 2 * nElements each.
+ // We fill them up, and clear them, staggered, every nElements
+ // inserted, so at least one always contains the last nElements
+ // inserted.
+ nBloomSize = nElements * 2;
+ nInsertions = 0;
+}
+
+void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
+{
+ if (nInsertions == 0) {
+ b1.clear();
+ } else if (nInsertions == nBloomSize / 2) {
+ b2.clear();
+ }
+ b1.insert(vKey);
+ b2.insert(vKey);
+ if (++nInsertions == nBloomSize) {
+ nInsertions = 0;
+ }
+}
+
+bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
+{
+ if (nInsertions < nBloomSize / 2) {
+ return b2.contains(vKey);
+ }
+ return b1.contains(vKey);
+}
+
+void CRollingBloomFilter::clear()
+{
+ b1.clear();
+ b2.clear();
+ nInsertions = 0;
+}
diff --git a/src/bloom.h b/src/bloom.h
index 191ffa19b3..7bab379a39 100644
--- a/src/bloom.h
+++ b/src/bloom.h
@@ -53,6 +53,10 @@ private:
unsigned int Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const;
+ // Private constructor for CRollingBloomFilter, no restrictions on size
+ CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweak);
+ friend class CRollingBloomFilter;
+
public:
/**
* Creates a new bloom filter which will provide the given fp rate when filled with the given number of elements
@@ -97,4 +101,28 @@ public:
void UpdateEmptyFull();
};
+/**
+ * RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
+ * Construct it with the number of items to keep track of, and a false-positive rate.
+ *
+ * contains(item) will always return true if item was one of the last N things
+ * insert()'ed ... but may also return true for items that were not inserted.
+ */
+class CRollingBloomFilter
+{
+public:
+ CRollingBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweak);
+
+ void insert(const std::vector<unsigned char>& vKey);
+ bool contains(const std::vector<unsigned char>& vKey) const;
+
+ void clear();
+
+private:
+ unsigned int nBloomSize;
+ unsigned int nInsertions;
+ CBloomFilter b1, b2;
+};
+
+
#endif // BITCOIN_BLOOM_H
diff --git a/src/test/bloom_tests.cpp b/src/test/bloom_tests.cpp
index 73a146f05c..1bda8a7ea1 100644
--- a/src/test/bloom_tests.cpp
+++ b/src/test/bloom_tests.cpp
@@ -8,6 +8,7 @@
#include "clientversion.h"
#include "key.h"
#include "merkleblock.h"
+#include "random.h"
#include "serialize.h"
#include "streams.h"
#include "uint256.h"
@@ -459,4 +460,81 @@ BOOST_AUTO_TEST_CASE(merkle_block_4_test_update_none)
BOOST_CHECK(!filter.contains(COutPoint(uint256S("0x02981fa052f0481dbc5868f4fc2166035a10f27a03cfd2de67326471df5bc041"), 0)));
}
+static std::vector<unsigned char> RandomData()
+{
+ uint256 r = GetRandHash();
+ return std::vector<unsigned char>(r.begin(), r.end());
+}
+
+BOOST_AUTO_TEST_CASE(rolling_bloom)
+{
+ // last-100-entry, 1% false positive:
+ CRollingBloomFilter rb1(100, 0.01, 0);
+
+ // Overfill:
+ static const int DATASIZE=399;
+ std::vector<unsigned char> data[DATASIZE];
+ for (int i = 0; i < DATASIZE; i++) {
+ data[i] = RandomData();
+ rb1.insert(data[i]);
+ }
+ // Last 100 guaranteed to be remembered:
+ for (int i = 299; i < DATASIZE; i++) {
+ BOOST_CHECK(rb1.contains(data[i]));
+ }
+
+ // false positive rate is 1%, so we should get about 100 hits if
+ // testing 10,000 random keys. We get worst-case false positive
+ // behavior when the filter is as full as possible, which is
+ // when we've inserted one minus an integer multiple of nElement*2.
+ unsigned int nHits = 0;
+ for (int i = 0; i < 10000; i++) {
+ if (rb1.contains(RandomData()))
+ ++nHits;
+ }
+ // Run test_bitcoin with --log_level=message to see BOOST_TEST_MESSAGEs:
+ BOOST_TEST_MESSAGE("RollingBloomFilter got " << nHits << " false positives (~100 expected)");
+
+ // Insanely unlikely to get a fp count outside this range:
+ BOOST_CHECK(nHits > 25);
+ BOOST_CHECK(nHits < 175);
+
+ BOOST_CHECK(rb1.contains(data[DATASIZE-1]));
+ rb1.clear();
+ BOOST_CHECK(!rb1.contains(data[DATASIZE-1]));
+
+ // Now roll through data, make sure last 100 entries
+ // are always remembered:
+ for (int i = 0; i < DATASIZE; i++) {
+ if (i >= 100)
+ BOOST_CHECK(rb1.contains(data[i-100]));
+ rb1.insert(data[i]);
+ }
+
+ // Insert 999 more random entries:
+ for (int i = 0; i < 999; i++) {
+ rb1.insert(RandomData());
+ }
+ // Sanity check to make sure the filter isn't just filling up:
+ nHits = 0;
+ for (int i = 0; i < DATASIZE; i++) {
+ if (rb1.contains(data[i]))
+ ++nHits;
+ }
+ // Expect about 5 false positives, more than 100 means
+ // something is definitely broken.
+ BOOST_TEST_MESSAGE("RollingBloomFilter got " << nHits << " false positives (~5 expected)");
+ BOOST_CHECK(nHits < 100);
+
+ // last-1000-entry, 0.01% false positive:
+ CRollingBloomFilter rb2(1000, 0.001, 0);
+ for (int i = 0; i < DATASIZE; i++) {
+ rb2.insert(data[i]);
+ }
+ // ... room for all of them:
+ for (int i = 0; i < DATASIZE; i++) {
+ BOOST_CHECK(rb2.contains(data[i]));
+ }
+}
+
BOOST_AUTO_TEST_SUITE_END()