aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorfanquake <fanquake@gmail.com>2023-10-04 16:00:06 +0100
committerfanquake <fanquake@gmail.com>2023-10-04 16:04:07 +0100
commit058488276f8dc244fe534ba45ec8dd2b4b198a2e (patch)
tree622549fc32aa55b2e6637917b728faa3ea967d71 /src
parentdb7b5dfcc502a8a81c51f56fe753990ae8b3a202 (diff)
parentce6df7df9bab2405cfe7d6e382f5682cf30de476 (diff)
Merge bitcoin/bitcoin#27598: bench: Add SHA256 implementation specific benchmarks
ce6df7df9bab2405cfe7d6e382f5682cf30de476 bench: Add SHA256 implementation specific benchmarks (Hennadii Stepanov) 5f72417176cfffece9a5aa11e97d5a6599c51e7a Add ability to specify SHA256 implementation for benchmark purposes (Hennadii Stepanov) Pull request description: On the master branch, only the best available `SHA256` implementation is being benchmarked. This PR makes `bench_bitcoin` benchmark all `SHA256` implementations that are available on the system. For example: - on Linux: ``` $ ./src/bench/bench_bitcoin -filter=SHA.* Using the 'x86_shani(1way,2way)' SHA256 implementation | ns/byte | byte/s | err% | total | benchmark |--------------------:|--------------------:|--------:|----------:|:---------- | 1.00 | 1,002,545,462.93 | 0.4% | 0.01 | `SHA1` | 2.91 | 344,117,991.18 | 0.1% | 0.03 | `SHA256 using the 'standard' SHA256 implementation` | 2.21 | 453,081,794.40 | 0.1% | 0.02 | `SHA256 using the 'sse4(1way),sse41(4way)' SHA256 implementation` | 2.21 | 453,396,506.58 | 0.1% | 0.02 | `SHA256 using the 'sse4(1way),sse41(4way),avx2(8way)' SHA256 implementation` | 0.53 | 1,870,520,687.49 | 0.1% | 0.01 | `SHA256 using the 'x86_shani(1way,2way)' SHA256 implementation` | 7.90 | 126,627,134.33 | 0.0% | 0.01 | `SHA256D64_1024 using the 'standard' SHA256 implementation` | 3.94 | 253,850,206.07 | 0.0% | 0.01 | `SHA256D64_1024 using the 'sse4(1way),sse41(4way)' SHA256 implementation` | 1.40 | 716,247,553.38 | 0.4% | 0.01 | `SHA256D64_1024 using the 'sse4(1way),sse41(4way),avx2(8way)' SHA256 implementation` | 1.26 | 792,706,270.13 | 0.9% | 0.01 | `SHA256D64_1024 using the 'x86_shani(1way,2way)' SHA256 implementation` | 6.75 | 148,172,097.64 | 0.2% | 0.01 | `SHA256_32b using the 'standard' SHA256 implementation` | 4.90 | 204,156,289.96 | 0.1% | 0.01 | `SHA256_32b using the 'sse4(1way),sse41(4way)' SHA256 implementation` | 4.90 | 204,101,274.22 | 0.1% | 0.01 | `SHA256_32b using the 'sse4(1way),sse41(4way),avx2(8way)' SHA256 implementation` | 1.70 | 589,052,595.35 | 0.4% | 0.01 | `SHA256_32b using the 'x86_shani(1way,2way)' SHA256 implementation` | 2.21 | 453,441,736.14 | 1.0% | 0.02 | `SHA3_256_1M` | 1.92 | 521,807,101.48 | 1.0% | 0.02 | `SHA512` ``` - on macOS (M1): ``` % ./src/bench/bench_bitcoin -filter=SHA.\* Using the 'arm_shani(1way,2way)' SHA256 implementation | ns/byte | byte/s | err% | total | benchmark |--------------------:|--------------------:|--------:|----------:|:---------- | 1.36 | 737,644,274.00 | 0.6% | 0.02 | `SHA1` | 3.08 | 324,556,777.15 | 0.2% | 0.03 | `SHA256 using the 'standard' SHA256 implementation` | 0.45 | 2,198,104,135.18 | 0.3% | 0.01 | `SHA256 using the 'arm_shani(1way,2way)' SHA256 implementation` | 8.84 | 113,131,299.18 | 0.0% | 0.01 | `SHA256D64_1024 using the 'standard' SHA256 implementation` | 0.94 | 1,059,406,239.36 | 0.0% | 0.01 | `SHA256D64_1024 using the 'arm_shani(1way,2way)' SHA256 implementation` | 6.17 | 162,050,659.51 | 0.2% | 0.01 | `SHA256_32b using the 'standard' SHA256 implementation` | 1.15 | 866,637,155.98 | 0.0% | 0.01 | `SHA256_32b using the 'arm_shani(1way,2way)' SHA256 implementation` | 1.69 | 592,636,491.59 | 0.2% | 0.02 | `SHA3_256_1M` | 1.89 | 528,785,775.66 | 0.0% | 0.02 | `SHA512` ``` Found it useful, while working on https://github.com/bitcoin/bitcoin/pull/24773. ACKs for top commit: martinus: ACK ce6df7df9bab2405cfe7d6e382f5682cf30de476. I would have created a helper function in the test to avoid the code duplication for each test, but that's just me nitpicking. Here are results from my Ryzen 7950X, with `./src/bench/bench_bitcoin -filter="SHA256.*" -min-time=1000`: MarcoFalke: review ACK ce6df7df9bab2405cfe7d6e382f5682cf30de476 🏵 sipa: ACK ce6df7df9bab2405cfe7d6e382f5682cf30de476 Tree-SHA512: e3de50e11b9a3a0d1e05583786041d4dc9afa2022e2115d75d6d1f63b11f62f6336f093001e53a631431d558c4dae29c596755c9e2d6aa78c382270116cc1f7f
Diffstat (limited to 'src')
-rw-r--r--src/bench/crypto_hash.cpp127
-rw-r--r--src/crypto/sha256.cpp45
-rw-r--r--src/crypto/sha256.h14
3 files changed, 163 insertions, 23 deletions
diff --git a/src/bench/crypto_hash.cpp b/src/bench/crypto_hash.cpp
index cf8d807d7b..1685a120b4 100644
--- a/src/bench/crypto_hash.cpp
+++ b/src/bench/crypto_hash.cpp
@@ -13,6 +13,7 @@
#include <crypto/siphash.h>
#include <hash.h>
#include <random.h>
+#include <tinyformat.h>
#include <uint256.h>
/* Number of bytes to hash per iteration */
@@ -36,13 +37,48 @@ static void SHA1(benchmark::Bench& bench)
});
}
-static void SHA256(benchmark::Bench& bench)
+static void SHA256_STANDARD(benchmark::Bench& bench)
{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
+ SHA256AutoDetect();
+}
+
+static void SHA256_SSE4(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
+ uint8_t hash[CSHA256::OUTPUT_SIZE];
+ std::vector<uint8_t> in(BUFFER_SIZE,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ CSHA256().Write(in.data(), in.size()).Finalize(hash);
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256_AVX2(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
+ uint8_t hash[CSHA256::OUTPUT_SIZE];
+ std::vector<uint8_t> in(BUFFER_SIZE,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ CSHA256().Write(in.data(), in.size()).Finalize(hash);
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256_SHANI(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
+ uint8_t hash[CSHA256::OUTPUT_SIZE];
+ std::vector<uint8_t> in(BUFFER_SIZE,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ CSHA256().Write(in.data(), in.size()).Finalize(hash);
+ });
+ SHA256AutoDetect();
}
static void SHA3_256_1M(benchmark::Bench& bench)
@@ -54,22 +90,92 @@ static void SHA3_256_1M(benchmark::Bench& bench)
});
}
-static void SHA256_32b(benchmark::Bench& bench)
+static void SHA256_32b_STANDARD(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
+ std::vector<uint8_t> in(32,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ CSHA256()
+ .Write(in.data(), in.size())
+ .Finalize(in.data());
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256_32b_SSE4(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
+ std::vector<uint8_t> in(32,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ CSHA256()
+ .Write(in.data(), in.size())
+ .Finalize(in.data());
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256_32b_AVX2(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
+ std::vector<uint8_t> in(32,0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ CSHA256()
+ .Write(in.data(), in.size())
+ .Finalize(in.data());
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256_32b_SHANI(benchmark::Bench& bench)
{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
+ SHA256AutoDetect();
+}
+
+static void SHA256D64_1024_STANDARD(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
+ std::vector<uint8_t> in(64 * 1024, 0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ SHA256D64(in.data(), in.data(), 1024);
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256D64_1024_SSE4(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
+ std::vector<uint8_t> in(64 * 1024, 0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ SHA256D64(in.data(), in.data(), 1024);
+ });
+ SHA256AutoDetect();
+}
+
+static void SHA256D64_1024_AVX2(benchmark::Bench& bench)
+{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
+ std::vector<uint8_t> in(64 * 1024, 0);
+ bench.batch(in.size()).unit("byte").run([&] {
+ SHA256D64(in.data(), in.data(), 1024);
+ });
+ SHA256AutoDetect();
}
-static void SHA256D64_1024(benchmark::Bench& bench)
+static void SHA256D64_1024_SHANI(benchmark::Bench& bench)
{
+ bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
+ SHA256AutoDetect();
}
static void SHA512(benchmark::Bench& bench)
@@ -152,13 +258,22 @@ static void MuHashPrecompute(benchmark::Bench& bench)
BENCHMARK(BenchRIPEMD160, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA1, benchmark::PriorityLevel::HIGH);
-BENCHMARK(SHA256, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_STANDARD, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_SSE4, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_AVX2, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA512, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA3_256_1M, benchmark::PriorityLevel::HIGH);
-BENCHMARK(SHA256_32b, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_32b_STANDARD, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_32b_SSE4, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH);
-BENCHMARK(SHA256D64_1024, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH);
+BENCHMARK(SHA256D64_1024_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(FastRandom_32bit, benchmark::PriorityLevel::HIGH);
BENCHMARK(FastRandom_1bit, benchmark::PriorityLevel::HIGH);
diff --git a/src/crypto/sha256.cpp b/src/crypto/sha256.cpp
index a4eef36480..5eacaa44e1 100644
--- a/src/crypto/sha256.cpp
+++ b/src/crypto/sha256.cpp
@@ -579,9 +579,15 @@ bool AVXEnabled()
} // namespace
-std::string SHA256AutoDetect()
+std::string SHA256AutoDetect(sha256_implementation::UseImplementation use_implementation)
{
std::string ret = "standard";
+ Transform = sha256::Transform;
+ TransformD64 = sha256::TransformD64;
+ TransformD64_2way = nullptr;
+ TransformD64_4way = nullptr;
+ TransformD64_8way = nullptr;
+
#if defined(USE_ASM) && defined(HAVE_GETCPUID)
bool have_sse4 = false;
bool have_xsave = false;
@@ -592,7 +598,9 @@ std::string SHA256AutoDetect()
uint32_t eax, ebx, ecx, edx;
GetCPUID(1, 0, eax, ebx, ecx, edx);
- have_sse4 = (ecx >> 19) & 1;
+ if (use_implementation & sha256_implementation::USE_SSE4) {
+ have_sse4 = (ecx >> 19) & 1;
+ }
have_xsave = (ecx >> 27) & 1;
have_avx = (ecx >> 28) & 1;
if (have_xsave && have_avx) {
@@ -600,8 +608,12 @@ std::string SHA256AutoDetect()
}
if (have_sse4) {
GetCPUID(7, 0, eax, ebx, ecx, edx);
- have_avx2 = (ebx >> 5) & 1;
- have_x86_shani = (ebx >> 29) & 1;
+ if (use_implementation & sha256_implementation::USE_AVX2) {
+ have_avx2 = (ebx >> 5) & 1;
+ }
+ if (use_implementation & sha256_implementation::USE_SHANI) {
+ have_x86_shani = (ebx >> 29) & 1;
+ }
}
#if defined(ENABLE_X86_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
@@ -637,27 +649,28 @@ std::string SHA256AutoDetect()
#if defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
bool have_arm_shani = false;
-
+ if (use_implementation & sha256_implementation::USE_SHANI) {
#if defined(__linux__)
#if defined(__arm__) // 32-bit
- if (getauxval(AT_HWCAP2) & HWCAP2_SHA2) {
- have_arm_shani = true;
- }
+ if (getauxval(AT_HWCAP2) & HWCAP2_SHA2) {
+ have_arm_shani = true;
+ }
#endif
#if defined(__aarch64__) // 64-bit
- if (getauxval(AT_HWCAP) & HWCAP_SHA2) {
- have_arm_shani = true;
- }
+ if (getauxval(AT_HWCAP) & HWCAP_SHA2) {
+ have_arm_shani = true;
+ }
#endif
#endif
#if defined(MAC_OSX)
- int val = 0;
- size_t len = sizeof(val);
- if (sysctlbyname("hw.optional.arm.FEAT_SHA256", &val, &len, nullptr, 0) == 0) {
- have_arm_shani = val != 0;
- }
+ int val = 0;
+ size_t len = sizeof(val);
+ if (sysctlbyname("hw.optional.arm.FEAT_SHA256", &val, &len, nullptr, 0) == 0) {
+ have_arm_shani = val != 0;
+ }
#endif
+ }
if (have_arm_shani) {
Transform = sha256_arm_shani::Transform;
diff --git a/src/crypto/sha256.h b/src/crypto/sha256.h
index 7625508665..b1348631d3 100644
--- a/src/crypto/sha256.h
+++ b/src/crypto/sha256.h
@@ -26,10 +26,22 @@ public:
CSHA256& Reset();
};
+namespace sha256_implementation {
+enum UseImplementation : uint8_t {
+ STANDARD = 0,
+ USE_SSE4 = 1 << 0,
+ USE_AVX2 = 1 << 1,
+ USE_SHANI = 1 << 2,
+ USE_SSE4_AND_AVX2 = USE_SSE4 | USE_AVX2,
+ USE_SSE4_AND_SHANI = USE_SSE4 | USE_SHANI,
+ USE_ALL = USE_SSE4 | USE_AVX2 | USE_SHANI,
+};
+}
+
/** Autodetect the best available SHA256 implementation.
* Returns the name of the implementation.
*/
-std::string SHA256AutoDetect();
+std::string SHA256AutoDetect(sha256_implementation::UseImplementation use_implementation = sha256_implementation::USE_ALL);
/** Compute multiple double-SHA256's of 64-byte blobs.
* output: pointer to a blocks*32 byte output buffer