aboutsummaryrefslogtreecommitdiff
path: root/src/tests.c
diff options
context:
space:
mode:
authorPieter Wuille <pieter@wuille.net>2020-10-14 11:41:15 -0700
committerPieter Wuille <pieter@wuille.net>2020-10-14 11:41:15 -0700
commit52380bf304b1c02dda23f1e2fad0159e29b2f7a2 (patch)
treec79797189781d6656eba6cb155c249c57b4f5c9a /src/tests.c
parentb9c1a7648131c5deec9704ee9acd00ec1820b9ce (diff)
Squashed 'src/secp256k1/' changes from 8ab24e8dad..c6b6b8f1bb
c6b6b8f1bb Merge #830: Rip out non-endomorphism code + dependencies c582abade1 Consistency improvements to the comments 63c6b71616 Reorder comments/function around scalar_split_lambda 2edc514c90 WNAF of lambda_split output has max size 129 4232e5b7da Rip out non-endomorphism code ebad8414b0 Check correctness of lambda split without -DVERIFY fe7fc1fda8 Make lambda constant accessible 9d2f2b44d8 Add tests to exercise lambda split near bounds 9aca2f7f07 Add secp256k1_split_lambda_verify acab934d24 Detailed comments for secp256k1_scalar_split_lambda 76ed922a5f Increase precision of g1 and g2 6173839c90 Switch to our own memcmp function 63150ab4da Merge #827: Rename testrand functions to have test in name c5257aed0b Merge #821: travis: Explicitly set --with-valgrind bb1f54280f Merge #818: Add static assertion that uint32_t is unsigned int or wider a45c1fa63c Rename testrand functions to have test in name 5006895bd6 Merge #808: Exhaustive test improvements + exhaustive schnorrsig tests 4eecb4d6ef travis: VALGRIND->RUN_VALGRIND to avoid confusion with WITH_VALGRIND 66a765c775 travis: Explicitly set --with-valgrind d7838ba6a6 Merge #813: Enable configuring Valgrind support 7ceb0b7611 Merge #819: Enable -Wundef warning 8b7dcdd955 Add exhaustive test for extrakeys and schnorrsig 08d7d89299 Make pubkey parsing test whether points are in the correct subgroup 87af00b511 Abstract out challenge computation in schnorrsig 63e1b2aa7d Disable output buffering in tests_exhaustive.c 39f67dd072 Support splitting exhaustive tests across cores e99b26fcd5 Give exhaustive_tests count and seed cmdline inputs 49e6630bca refactor: move RNG seeding to testrand b110c106fa Change exhaustive test groups so they have a point with X=1 cec7b18a34 Select exhaustive lambda in function of order 78f6cdfaae Make the curve B constant a secp256k1_fe d7f39ae4b6 Delete gej_is_valid_var: unused outside tests 8bcd78cd79 Make secp256k1_scalar_b32 detect overflow in scalar_low c498366e5b Move exhaustive tests for recovery to module be31791543 Make group order purely compile-time in exhaustive tests e73ff30922 Enable -Wundef warning c0041b5cfc Add static assertion that uint32_t is unsigned int or wider 4ad408faf3 Merge #782: Check if variable=yes instead of if var is set in travis.sh 412bf874d0 configure: Allow specifying --with[out]-valgrind explicitly 34debf7a6d Modify .travis.yml to explictly pass no in env vars instead of setting to nothing a0e99fc121 Merge #814: tests: Initialize random group elements fully 5738e8622d tests: Initialize random group elements fully c9939ba55d Merge #812: travis: run bench_schnorrsig a51f2af62b travis: run bench_schnorrsig ef37761fee Change travis.sh to check if variables are equal to yes instead of not-empty. Before this, setting `VALGRIND=wat` was considered as true, and to make it evaluate as false you had to unset the variable `VALGRIND=` but not it checks if `VALGRIND=yes` and if it's not `yes` then it's evaluated to false git-subtree-dir: src/secp256k1 git-subtree-split: c6b6b8f1bb044d7d1aa065ebb674adde98a36a8e
Diffstat (limited to 'src/tests.c')
-rw-r--r--src/tests.c555
1 files changed, 301 insertions, 254 deletions
diff --git a/src/tests.c b/src/tests.c
index 4780e9319b..bb4b5b4c07 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -54,7 +54,7 @@ static void uncounting_illegal_callback_fn(const char* str, void* data) {
void random_field_element_test(secp256k1_fe *fe) {
do {
unsigned char b32[32];
- secp256k1_rand256_test(b32);
+ secp256k1_testrand256_test(b32);
if (secp256k1_fe_set_b32(fe, b32)) {
break;
}
@@ -63,7 +63,7 @@ void random_field_element_test(secp256k1_fe *fe) {
void random_field_element_magnitude(secp256k1_fe *fe) {
secp256k1_fe zero;
- int n = secp256k1_rand_int(9);
+ int n = secp256k1_testrand_int(9);
secp256k1_fe_normalize(fe);
if (n == 0) {
return;
@@ -81,11 +81,12 @@ void random_group_element_test(secp256k1_ge *ge) {
secp256k1_fe fe;
do {
random_field_element_test(&fe);
- if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand_bits(1))) {
+ if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_testrand_bits(1))) {
secp256k1_fe_normalize(&ge->y);
break;
}
} while(1);
+ ge->infinity = 0;
}
void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) {
@@ -107,7 +108,7 @@ void random_scalar_order_test(secp256k1_scalar *num) {
do {
unsigned char b32[32];
int overflow = 0;
- secp256k1_rand256_test(b32);
+ secp256k1_testrand256_test(b32);
secp256k1_scalar_set_b32(num, b32, &overflow);
if (overflow || secp256k1_scalar_is_zero(num)) {
continue;
@@ -120,7 +121,7 @@ void random_scalar_order(secp256k1_scalar *num) {
do {
unsigned char b32[32];
int overflow = 0;
- secp256k1_rand256(b32);
+ secp256k1_testrand256(b32);
secp256k1_scalar_set_b32(num, b32, &overflow);
if (overflow || secp256k1_scalar_is_zero(num)) {
continue;
@@ -441,14 +442,14 @@ void run_sha256_tests(void) {
secp256k1_sha256_initialize(&hasher);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
secp256k1_sha256_finalize(&hasher, out);
- CHECK(memcmp(out, outputs[i], 32) == 0);
+ CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
if (strlen(inputs[i]) > 0) {
- int split = secp256k1_rand_int(strlen(inputs[i]));
+ int split = secp256k1_testrand_int(strlen(inputs[i]));
secp256k1_sha256_initialize(&hasher);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
secp256k1_sha256_finalize(&hasher, out);
- CHECK(memcmp(out, outputs[i], 32) == 0);
+ CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
}
}
}
@@ -485,14 +486,14 @@ void run_hmac_sha256_tests(void) {
secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
secp256k1_hmac_sha256_finalize(&hasher, out);
- CHECK(memcmp(out, outputs[i], 32) == 0);
+ CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
if (strlen(inputs[i]) > 0) {
- int split = secp256k1_rand_int(strlen(inputs[i]));
+ int split = secp256k1_testrand_int(strlen(inputs[i]));
secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
secp256k1_hmac_sha256_finalize(&hasher, out);
- CHECK(memcmp(out, outputs[i], 32) == 0);
+ CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
}
}
}
@@ -519,21 +520,21 @@ void run_rfc6979_hmac_sha256_tests(void) {
secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64);
for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
- CHECK(memcmp(out, out1[i], 32) == 0);
+ CHECK(secp256k1_memcmp_var(out, out1[i], 32) == 0);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65);
for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
- CHECK(memcmp(out, out1[i], 32) != 0);
+ CHECK(secp256k1_memcmp_var(out, out1[i], 32) != 0);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64);
for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
- CHECK(memcmp(out, out2[i], 32) == 0);
+ CHECK(secp256k1_memcmp_var(out, out2[i], 32) == 0);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
}
@@ -557,7 +558,7 @@ void test_rand_bits(int rand32, int bits) {
/* Multiply the output of all rand calls with the odd number m, which
should not change the uniformity of its distribution. */
for (i = 0; i < rounds[usebits]; i++) {
- uint32_t r = (rand32 ? secp256k1_rand32() : secp256k1_rand_bits(bits));
+ uint32_t r = (rand32 ? secp256k1_testrand32() : secp256k1_testrand_bits(bits));
CHECK((((uint64_t)r) >> bits) == 0);
for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) {
uint32_t rm = r * mults[m];
@@ -582,7 +583,7 @@ void test_rand_int(uint32_t range, uint32_t subrange) {
uint64_t x = 0;
CHECK((range % subrange) == 0);
for (i = 0; i < rounds; i++) {
- uint32_t r = secp256k1_rand_int(range);
+ uint32_t r = secp256k1_testrand_int(range);
CHECK(r < range);
r = r % subrange;
x |= (((uint64_t)1) << r);
@@ -614,7 +615,7 @@ void run_rand_int(void) {
#ifndef USE_NUM_NONE
void random_num_negate(secp256k1_num *num) {
- if (secp256k1_rand_bits(1)) {
+ if (secp256k1_testrand_bits(1)) {
secp256k1_num_negate(num);
}
}
@@ -658,11 +659,11 @@ void test_num_add_sub(void) {
secp256k1_num n2;
secp256k1_num n1p2, n2p1, n1m2, n2m1;
random_num_order_test(&n1); /* n1 = R1 */
- if (secp256k1_rand_bits(1)) {
+ if (secp256k1_testrand_bits(1)) {
random_num_negate(&n1);
}
random_num_order_test(&n2); /* n2 = R2 */
- if (secp256k1_rand_bits(1)) {
+ if (secp256k1_testrand_bits(1)) {
random_num_negate(&n2);
}
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
@@ -853,7 +854,7 @@ void scalar_test(void) {
while (i < 256) {
secp256k1_scalar t;
int j;
- int now = secp256k1_rand_int(15) + 1;
+ int now = secp256k1_testrand_int(15) + 1;
if (now + i > 256) {
now = 256 - i;
}
@@ -930,7 +931,7 @@ void scalar_test(void) {
secp256k1_num rnum;
secp256k1_num rnum2;
unsigned char cone[1] = {0x01};
- unsigned int shift = 256 + secp256k1_rand_int(257);
+ unsigned int shift = 256 + secp256k1_testrand_int(257);
secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
secp256k1_num_mul(&rnum, &s1num, &s2num);
secp256k1_num_shift(&rnum, shift - 1);
@@ -948,7 +949,7 @@ void scalar_test(void) {
random_scalar_order_test(&r);
for (i = 0; i < 100; ++i) {
int low;
- int shift = 1 + secp256k1_rand_int(15);
+ int shift = 1 + secp256k1_testrand_int(15);
int expected = r.d[0] % (1 << shift);
low = secp256k1_scalar_shr_int(&r, shift);
CHECK(expected == low);
@@ -996,7 +997,7 @@ void scalar_test(void) {
secp256k1_scalar b;
int i;
/* Test add_bit. */
- int bit = secp256k1_rand_bits(8);
+ int bit = secp256k1_testrand_bits(8);
secp256k1_scalar_set_int(&b, 1);
CHECK(secp256k1_scalar_is_one(&b));
for (i = 0; i < bit; i++) {
@@ -1157,7 +1158,7 @@ void run_scalar_tests(void) {
secp256k1_scalar_set_b32(&scalar, bin, &overflow);
CHECK(overflow == 0);
secp256k1_scalar_get_b32(bin_tmp, &scalar);
- CHECK(memcmp(bin, bin_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(bin, bin_tmp, 32) == 0);
/* A scalar set to all 1s should overflow. */
memset(bin, 0xFF, 32);
@@ -1767,7 +1768,7 @@ void run_scalar_tests(void) {
void random_fe(secp256k1_fe *x) {
unsigned char bin[32];
do {
- secp256k1_rand256(bin);
+ secp256k1_testrand256(bin);
if (secp256k1_fe_set_b32(x, bin)) {
return;
}
@@ -1777,7 +1778,7 @@ void random_fe(secp256k1_fe *x) {
void random_fe_test(secp256k1_fe *x) {
unsigned char bin[32];
do {
- secp256k1_rand256_test(bin);
+ secp256k1_testrand256_test(bin);
if (secp256k1_fe_set_b32(x, bin)) {
return;
}
@@ -1845,18 +1846,18 @@ void run_field_convert(void) {
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
/* Check conversion from fe. */
secp256k1_fe_get_b32(b322, &fe);
- CHECK(memcmp(b322, b32, 32) == 0);
+ CHECK(secp256k1_memcmp_var(b322, b32, 32) == 0);
secp256k1_fe_to_storage(&fes2, &fe);
- CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0);
+ CHECK(secp256k1_memcmp_var(&fes2, &fes, sizeof(fes)) == 0);
}
-int fe_memcmp(const secp256k1_fe *a, const secp256k1_fe *b) {
+int fe_secp256k1_memcmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe t = *b;
#ifdef VERIFY
t.magnitude = a->magnitude;
t.normalized = a->normalized;
#endif
- return memcmp(a, &t, sizeof(secp256k1_fe));
+ return secp256k1_memcmp_var(a, &t, sizeof(secp256k1_fe));
}
void run_field_misc(void) {
@@ -1882,13 +1883,13 @@ void run_field_misc(void) {
CHECK(x.normalized && x.magnitude == 1);
#endif
secp256k1_fe_cmov(&x, &x, 1);
- CHECK(fe_memcmp(&x, &z) != 0);
- CHECK(fe_memcmp(&x, &q) == 0);
+ CHECK(fe_secp256k1_memcmp_var(&x, &z) != 0);
+ CHECK(fe_secp256k1_memcmp_var(&x, &q) == 0);
secp256k1_fe_cmov(&q, &z, 1);
#ifdef VERIFY
CHECK(!q.normalized && q.magnitude == z.magnitude);
#endif
- CHECK(fe_memcmp(&q, &z) == 0);
+ CHECK(fe_secp256k1_memcmp_var(&q, &z) == 0);
secp256k1_fe_normalize_var(&x);
secp256k1_fe_normalize_var(&z);
CHECK(!secp256k1_fe_equal_var(&x, &z));
@@ -1912,9 +1913,9 @@ void run_field_misc(void) {
secp256k1_fe_to_storage(&zs, &z);
secp256k1_fe_storage_cmov(&zs, &xs, 0);
secp256k1_fe_storage_cmov(&zs, &zs, 1);
- CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0);
+ CHECK(secp256k1_memcmp_var(&xs, &zs, sizeof(xs)) != 0);
secp256k1_fe_storage_cmov(&ys, &xs, 1);
- CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0);
+ CHECK(secp256k1_memcmp_var(&xs, &ys, sizeof(xs)) == 0);
secp256k1_fe_from_storage(&x, &xs);
secp256k1_fe_from_storage(&y, &ys);
secp256k1_fe_from_storage(&z, &zs);
@@ -1970,7 +1971,7 @@ void run_field_inv_all_var(void) {
secp256k1_fe_inv_all_var(xi, x, 0);
for (i = 0; i < count; i++) {
size_t j;
- size_t len = secp256k1_rand_int(15) + 1;
+ size_t len = secp256k1_testrand_int(15) + 1;
for (j = 0; j < len; j++) {
random_fe_non_zero(&x[j]);
}
@@ -2101,17 +2102,12 @@ void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
void test_ge(void) {
int i, i1;
-#ifdef USE_ENDOMORPHISM
int runs = 6;
-#else
- int runs = 4;
-#endif
- /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
- * The second in each pair of identical points uses a random Z coordinate in the Jacobian form.
- * All magnitudes are randomized.
- * All 17*17 combinations of points are added to each other, using all applicable methods.
- *
- * When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well.
+ /* 25 points are used:
+ * - infinity
+ * - for each of four random points p1 p2 p3 p4, we add the point, its
+ * negation, and then those two again but with randomized Z coordinate.
+ * - The same is then done for lambda*p1 and lambda^2*p1.
*/
secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs));
secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs));
@@ -2126,14 +2122,12 @@ void test_ge(void) {
int j;
secp256k1_ge g;
random_group_element_test(&g);
-#ifdef USE_ENDOMORPHISM
if (i >= runs - 2) {
secp256k1_ge_mul_lambda(&g, &ge[1]);
}
if (i >= runs - 1) {
secp256k1_ge_mul_lambda(&g, &g);
}
-#endif
ge[1 + 4 * i] = g;
ge[2 + 4 * i] = g;
secp256k1_ge_neg(&ge[3 + 4 * i], &g);
@@ -2262,7 +2256,7 @@ void test_ge(void) {
gej_shuffled[i] = gej[i];
}
for (i = 0; i < 4 * runs + 1; i++) {
- int swap = i + secp256k1_rand_int(4 * runs + 1 - i);
+ int swap = i + secp256k1_testrand_int(4 * runs + 1 - i);
if (swap != i) {
secp256k1_gej t = gej_shuffled[i];
gej_shuffled[i] = gej_shuffled[swap];
@@ -2448,7 +2442,7 @@ void test_ec_combine(void) {
secp256k1_ge_set_gej(&Q, &Qj);
secp256k1_pubkey_save(&sd, &Q);
CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1);
- CHECK(memcmp(&sd, &sd2, sizeof(sd)) == 0);
+ CHECK(secp256k1_memcmp_var(&sd, &sd2, sizeof(sd)) == 0);
}
}
@@ -2614,7 +2608,6 @@ void test_point_times_order(const secp256k1_gej *point) {
secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
secp256k1_gej_add_var(&res1, &res1, &res2, NULL);
CHECK(secp256k1_gej_is_infinity(&res1));
- CHECK(secp256k1_gej_is_valid_var(&res1) == 0);
secp256k1_ge_set_gej(&res3, &res1);
CHECK(secp256k1_ge_is_infinity(&res3));
CHECK(secp256k1_ge_is_valid_var(&res3) == 0);
@@ -2633,6 +2626,87 @@ void test_point_times_order(const secp256k1_gej *point) {
ge_equals_ge(&res3, &secp256k1_ge_const_g);
}
+/* These scalars reach large (in absolute value) outputs when fed to secp256k1_scalar_split_lambda.
+ *
+ * They are computed as:
+ * - For a in [-2, -1, 0, 1, 2]:
+ * - For b in [-3, -1, 1, 3]:
+ * - Output (a*LAMBDA + (ORDER+b)/2) % ORDER
+ */
+static const secp256k1_scalar scalars_near_split_bounds[20] = {
+ SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fc),
+ SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fd),
+ SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fe),
+ SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6ff),
+ SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632d),
+ SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632e),
+ SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632f),
+ SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf76330),
+ SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b209f),
+ SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a0),
+ SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a1),
+ SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a2),
+ SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede11),
+ SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede12),
+ SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede13),
+ SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede14),
+ SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a42),
+ SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a43),
+ SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a44),
+ SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a45)
+};
+
+void test_ecmult_target(const secp256k1_scalar* target, int mode) {
+ /* Mode: 0=ecmult_gen, 1=ecmult, 2=ecmult_const */
+ secp256k1_scalar n1, n2;
+ secp256k1_ge p;
+ secp256k1_gej pj, p1j, p2j, ptj;
+ static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+
+ /* Generate random n1,n2 such that n1+n2 = -target. */
+ random_scalar_order_test(&n1);
+ secp256k1_scalar_add(&n2, &n1, target);
+ secp256k1_scalar_negate(&n2, &n2);
+
+ /* Generate a random input point. */
+ if (mode != 0) {
+ random_group_element_test(&p);
+ secp256k1_gej_set_ge(&pj, &p);
+ }
+
+ /* EC multiplications */
+ if (mode == 0) {
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &p1j, &n1);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &p2j, &n2);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &ptj, target);
+ } else if (mode == 1) {
+ secp256k1_ecmult(&ctx->ecmult_ctx, &p1j, &pj, &n1, &zero);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &p2j, &pj, &n2, &zero);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &ptj, &pj, target, &zero);
+ } else {
+ secp256k1_ecmult_const(&p1j, &p, &n1, 256);
+ secp256k1_ecmult_const(&p2j, &p, &n2, 256);
+ secp256k1_ecmult_const(&ptj, &p, target, 256);
+ }
+
+ /* Add them all up: n1*P + n2*P + target*P = (n1+n2+target)*P = (n1+n1-n1-n2)*P = 0. */
+ secp256k1_gej_add_var(&ptj, &ptj, &p1j, NULL);
+ secp256k1_gej_add_var(&ptj, &ptj, &p2j, NULL);
+ CHECK(secp256k1_gej_is_infinity(&ptj));
+}
+
+void run_ecmult_near_split_bound(void) {
+ int i;
+ unsigned j;
+ for (i = 0; i < 4*count; ++i) {
+ for (j = 0; j < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++j) {
+ test_ecmult_target(&scalars_near_split_bounds[j], 0);
+ test_ecmult_target(&scalars_near_split_bounds[j], 1);
+ test_ecmult_target(&scalars_near_split_bounds[j], 2);
+ }
+ }
+}
+
void run_point_times_order(void) {
int i;
secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
@@ -2646,7 +2720,6 @@ void run_point_times_order(void) {
secp256k1_gej j;
CHECK(secp256k1_ge_is_valid_var(&p));
secp256k1_gej_set_ge(&j, &p);
- CHECK(secp256k1_gej_is_valid_var(&j));
test_point_times_order(&j);
}
secp256k1_fe_sqr(&x, &x);
@@ -3042,12 +3115,10 @@ void test_secp256k1_pippenger_bucket_window_inv(void) {
CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0);
for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) {
-#ifdef USE_ENDOMORPHISM
/* Bucket_window of 8 is not used with endo */
if (i == 8) {
continue;
}
-#endif
CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i);
if (i != PIPPENGER_MAX_BUCKET_WINDOW) {
CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i);
@@ -3060,7 +3131,7 @@ void test_secp256k1_pippenger_bucket_window_inv(void) {
* for a given scratch space.
*/
void test_ecmult_multi_pippenger_max_points(void) {
- size_t scratch_size = secp256k1_rand_int(256);
+ size_t scratch_size = secp256k1_testrand_int(256);
size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12);
secp256k1_scratch *scratch;
size_t n_points_supported;
@@ -3290,13 +3361,10 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
secp256k1_scalar_set_int(&x, 0);
secp256k1_scalar_set_int(&shift, 1 << w);
- /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */
-#ifdef USE_ENDOMORPHISM
for (i = 0; i < 16; ++i) {
secp256k1_scalar_shr_int(&num, 8);
}
bits = 128;
-#endif
skew = secp256k1_wnaf_const(wnaf, &num, w, bits);
for (i = WNAF_SIZE_BITS(bits, w); i >= 0; --i) {
@@ -3331,12 +3399,9 @@ void test_fixed_wnaf(const secp256k1_scalar *number, int w) {
secp256k1_scalar_set_int(&x, 0);
secp256k1_scalar_set_int(&shift, 1 << w);
- /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */
-#ifdef USE_ENDOMORPHISM
for (i = 0; i < 16; ++i) {
secp256k1_scalar_shr_int(&num, 8);
}
-#endif
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
@@ -3520,7 +3585,7 @@ void test_ecmult_gen_blind(void) {
secp256k1_ge pge;
random_scalar_order_test(&key);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key);
- secp256k1_rand256(seed32);
+ secp256k1_testrand256(seed32);
b = ctx->ecmult_gen_ctx.blind;
i = ctx->ecmult_gen_ctx.initial;
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
@@ -3552,16 +3617,18 @@ void run_ecmult_gen_blind(void) {
}
}
-#ifdef USE_ENDOMORPHISM
/***** ENDOMORPHISH TESTS *****/
-void test_scalar_split(void) {
- secp256k1_scalar full;
- secp256k1_scalar s1, slam;
+void test_scalar_split(const secp256k1_scalar* full) {
+ secp256k1_scalar s, s1, slam;
const unsigned char zero[32] = {0};
unsigned char tmp[32];
- random_scalar_order_test(&full);
- secp256k1_scalar_split_lambda(&s1, &slam, &full);
+ secp256k1_scalar_split_lambda(&s1, &slam, full);
+
+ /* check slam*lambda + s1 == full */
+ secp256k1_scalar_mul(&s, &secp256k1_const_lambda, &slam);
+ secp256k1_scalar_add(&s, &s, &s1);
+ CHECK(secp256k1_scalar_eq(&s, full));
/* check that both are <= 128 bits in size */
if (secp256k1_scalar_is_high(&s1)) {
@@ -3572,15 +3639,32 @@ void test_scalar_split(void) {
}
secp256k1_scalar_get_b32(tmp, &s1);
- CHECK(memcmp(zero, tmp, 16) == 0);
+ CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0);
secp256k1_scalar_get_b32(tmp, &slam);
- CHECK(memcmp(zero, tmp, 16) == 0);
+ CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0);
}
+
void run_endomorphism_tests(void) {
- test_scalar_split();
+ unsigned i;
+ static secp256k1_scalar s;
+ test_scalar_split(&secp256k1_scalar_zero);
+ test_scalar_split(&secp256k1_scalar_one);
+ secp256k1_scalar_negate(&s,&secp256k1_scalar_one);
+ test_scalar_split(&s);
+ test_scalar_split(&secp256k1_const_lambda);
+ secp256k1_scalar_add(&s, &secp256k1_const_lambda, &secp256k1_scalar_one);
+ test_scalar_split(&s);
+
+ for (i = 0; i < 100U * count; ++i) {
+ secp256k1_scalar full;
+ random_scalar_order_test(&full);
+ test_scalar_split(&full);
+ }
+ for (i = 0; i < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++i) {
+ test_scalar_split(&scalars_near_split_bounds[i]);
+ }
}
-#endif
void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvalid) {
unsigned char pubkeyc[65];
@@ -3622,7 +3706,7 @@ void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvali
CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
VG_CHECK(pubkeyo, outl);
CHECK(outl == 33);
- CHECK(memcmp(&pubkeyo[1], &pubkeyc[1], 32) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkeyo[1], &pubkeyc[1], 32) == 0);
CHECK((pubkeyclen != 33) || (pubkeyo[0] == pubkeyc[0]));
if (ypass) {
/* This test isn't always done because we decode with alternative signs, so the y won't match. */
@@ -3638,7 +3722,7 @@ void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvali
VG_CHECK(pubkeyo, outl);
CHECK(outl == 65);
CHECK(pubkeyo[0] == 4);
- CHECK(memcmp(&pubkeyo[1], input, 64) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkeyo[1], input, 64) == 0);
}
CHECK(ecount == 0);
} else {
@@ -4007,7 +4091,7 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, orderc) == 0);
VG_CHECK(&pubkey, sizeof(pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
/* Maximum value is too large, reject. */
memset(ctmp, 255, 32);
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
@@ -4015,7 +4099,7 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
VG_CHECK(&pubkey, sizeof(pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
/* Zero is too small, reject. */
memset(ctmp, 0, 32);
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
@@ -4023,7 +4107,7 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
VG_CHECK(&pubkey, sizeof(pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
/* One must be accepted. */
ctmp[31] = 0x01;
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
@@ -4031,7 +4115,7 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1);
VG_CHECK(&pubkey, sizeof(pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
pubkey_one = pubkey;
/* Group order + 1 is too large, reject. */
memcpy(ctmp, orderc, 32);
@@ -4041,7 +4125,7 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
VG_CHECK(&pubkey, sizeof(pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
/* -1 must be accepted. */
ctmp[31] = 0x40;
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
@@ -4049,20 +4133,20 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1);
VG_CHECK(&pubkey, sizeof(pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
pubkey_negone = pubkey;
/* Tweak of zero leaves the value unchanged. */
memset(ctmp2, 0, 32);
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 1);
- CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40);
+ CHECK(secp256k1_memcmp_var(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40);
memcpy(&pubkey2, &pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
- CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
/* Multiply tweak of zero zeroizes the output. */
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0);
- CHECK(memcmp(zeros, ctmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, ctmp2) == 0);
- CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
/* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing
seckey, the seckey is zeroized. */
@@ -4072,29 +4156,29 @@ void run_eckey_edge_case_test(void) {
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp2) == 1);
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 0);
- CHECK(memcmp(zeros, ctmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
memcpy(ctmp, orderc, 32);
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0);
- CHECK(memcmp(zeros, ctmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
/* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing
tweak, the seckey is zeroized. */
memcpy(ctmp, orderc, 32);
ctmp[31] = 0x40;
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, orderc) == 0);
- CHECK(memcmp(zeros, ctmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
memcpy(ctmp, orderc, 32);
ctmp[31] = 0x40;
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, orderc) == 0);
- CHECK(memcmp(zeros, ctmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
memcpy(ctmp, orderc, 32);
ctmp[31] = 0x40;
/* If pubkey_tweak_add or pubkey_tweak_mul are called with an overflowing
tweak, the pubkey is zeroized. */
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, orderc) == 0);
- CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, orderc) == 0);
- CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
/* If the resulting key in secp256k1_ec_seckey_tweak_add and
* secp256k1_ec_pubkey_tweak_add is 0 the functions fail and in the latter
@@ -4104,25 +4188,25 @@ void run_eckey_edge_case_test(void) {
memset(ctmp2, 0, 32);
ctmp2[31] = 1;
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 0);
- CHECK(memcmp(zeros, ctmp2, 32) == 0);
+ CHECK(secp256k1_memcmp_var(zeros, ctmp2, 32) == 0);
ctmp2[31] = 1;
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
- CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
/* Tweak computation wraps and results in a key of 1. */
ctmp2[31] = 2;
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 1);
- CHECK(memcmp(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1);
+ CHECK(secp256k1_memcmp_var(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1);
ctmp2[31] = 2;
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
ctmp2[31] = 1;
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, ctmp2) == 1);
- CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
/* Tweak mul * 2 = 1+1. */
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
ctmp2[31] = 2;
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 1);
- CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
/* Test argument errors. */
ecount = 0;
secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
@@ -4131,12 +4215,12 @@ void run_eckey_edge_case_test(void) {
memset(&pubkey, 0, 32);
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
CHECK(ecount == 1);
- CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
memset(&pubkey2, 0, 32);
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 0);
CHECK(ecount == 2);
- CHECK(memcmp(&pubkey2, zeros, sizeof(pubkey2)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey2, zeros, sizeof(pubkey2)) == 0);
/* Plain argument errors. */
ecount = 0;
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
@@ -4176,7 +4260,7 @@ void run_eckey_edge_case_test(void) {
memset(&pubkey, 1, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0);
CHECK(ecount == 2);
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
/* secp256k1_ec_pubkey_combine tests. */
ecount = 0;
pubkeys[0] = &pubkey_one;
@@ -4187,28 +4271,28 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 0) == 0);
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ec_pubkey_combine(ctx, NULL, pubkeys, 1) == 0);
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
CHECK(ecount == 2);
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, NULL, 1) == 0);
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
CHECK(ecount == 3);
pubkeys[0] = &pubkey_negone;
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 1) == 1);
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
CHECK(ecount == 3);
len = 33;
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_negone, SECP256K1_EC_COMPRESSED) == 1);
- CHECK(memcmp(ctmp, ctmp2, 33) == 0);
+ CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0);
/* Result is infinity. */
pubkeys[0] = &pubkey_one;
pubkeys[1] = &pubkey_negone;
@@ -4216,7 +4300,7 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 0);
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
CHECK(ecount == 3);
/* Passes through infinity but comes out one. */
pubkeys[2] = &pubkey_one;
@@ -4224,19 +4308,19 @@ void run_eckey_edge_case_test(void) {
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 3) == 1);
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
CHECK(ecount == 3);
len = 33;
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_one, SECP256K1_EC_COMPRESSED) == 1);
- CHECK(memcmp(ctmp, ctmp2, 33) == 0);
+ CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0);
/* Adds to two. */
pubkeys[1] = &pubkey_one;
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 1);
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
- CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
CHECK(ecount == 3);
secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
}
@@ -4250,21 +4334,21 @@ void run_eckey_negate_test(void) {
/* Verify negation changes the key and changes it back */
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
- CHECK(memcmp(seckey, seckey_tmp, 32) != 0);
+ CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) != 0);
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
- CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
/* Check that privkey alias gives same result */
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
CHECK(secp256k1_ec_privkey_negate(ctx, seckey_tmp) == 1);
- CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
/* Negating all 0s fails */
memset(seckey, 0, 32);
memset(seckey_tmp, 0, 32);
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0);
/* Check that seckey is not modified */
- CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
/* Negating an overflowing seckey fails and the seckey is zeroed. In this
* test, the seckey has 16 random bytes to ensure that ec_seckey_negate
@@ -4273,7 +4357,7 @@ void run_eckey_negate_test(void) {
memset(seckey, 0xFF, 16);
memset(seckey_tmp, 0, 32);
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0);
- CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
}
void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) {
@@ -4295,7 +4379,7 @@ void test_ecdsa_sign_verify(void) {
random_scalar_order_test(&key);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key);
secp256k1_ge_set_gej(&pub, &pubj);
- getrec = secp256k1_rand_bits(1);
+ getrec = secp256k1_testrand_bits(1);
random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL);
if (getrec) {
CHECK(recid >= 0 && recid < 4);
@@ -4362,7 +4446,7 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char
int is_empty_signature(const secp256k1_ecdsa_signature *sig) {
static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0};
- return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0;
+ return secp256k1_memcmp_var(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0;
}
void test_ecdsa_end_to_end(void) {
@@ -4395,31 +4479,31 @@ void test_ecdsa_end_to_end(void) {
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
/* Verify exporting and importing public key. */
- CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED));
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_testrand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED));
memset(&pubkey, 0, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
/* Verify negation changes the key and changes it back */
memcpy(&pubkey_tmp, &pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1);
- CHECK(memcmp(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0);
+ CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0);
CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1);
- CHECK(memcmp(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0);
/* Verify private key import and export. */
- CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_rand_bits(1) == 1));
+ CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_testrand_bits(1) == 1));
CHECK(ec_privkey_import_der(ctx, privkey2, seckey, seckeylen) == 1);
- CHECK(memcmp(privkey, privkey2, 32) == 0);
+ CHECK(secp256k1_memcmp_var(privkey, privkey2, 32) == 0);
/* Optionally tweak the keys using addition. */
- if (secp256k1_rand_int(3) == 0) {
+ if (secp256k1_testrand_int(3) == 0) {
int ret1;
int ret2;
int ret3;
unsigned char rnd[32];
unsigned char privkey_tmp[32];
secp256k1_pubkey pubkey2;
- secp256k1_rand256_test(rnd);
+ secp256k1_testrand256_test(rnd);
memcpy(privkey_tmp, privkey, 32);
ret1 = secp256k1_ec_seckey_tweak_add(ctx, privkey, rnd);
ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd);
@@ -4430,20 +4514,20 @@ void test_ecdsa_end_to_end(void) {
if (ret1 == 0) {
return;
}
- CHECK(memcmp(privkey, privkey_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(privkey, privkey_tmp, 32) == 0);
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
- CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
}
/* Optionally tweak the keys using multiplication. */
- if (secp256k1_rand_int(3) == 0) {
+ if (secp256k1_testrand_int(3) == 0) {
int ret1;
int ret2;
int ret3;
unsigned char rnd[32];
unsigned char privkey_tmp[32];
secp256k1_pubkey pubkey2;
- secp256k1_rand256_test(rnd);
+ secp256k1_testrand256_test(rnd);
memcpy(privkey_tmp, privkey, 32);
ret1 = secp256k1_ec_seckey_tweak_mul(ctx, privkey, rnd);
ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd);
@@ -4454,9 +4538,9 @@ void test_ecdsa_end_to_end(void) {
if (ret1 == 0) {
return;
}
- CHECK(memcmp(privkey, privkey_tmp, 32) == 0);
+ CHECK(secp256k1_memcmp_var(privkey, privkey_tmp, 32) == 0);
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
- CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
}
/* Sign. */
@@ -4468,13 +4552,13 @@ void test_ecdsa_end_to_end(void) {
extra[31] = 0;
extra[0] = 1;
CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1);
- CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0);
- CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0);
- CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0);
- CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0);
- CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0);
- CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0);
- CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(secp256k1_memcmp_var(&signature[0], &signature[4], sizeof(signature[0])) == 0);
+ CHECK(secp256k1_memcmp_var(&signature[0], &signature[1], sizeof(signature[0])) != 0);
+ CHECK(secp256k1_memcmp_var(&signature[0], &signature[2], sizeof(signature[0])) != 0);
+ CHECK(secp256k1_memcmp_var(&signature[0], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(secp256k1_memcmp_var(&signature[1], &signature[2], sizeof(signature[0])) != 0);
+ CHECK(secp256k1_memcmp_var(&signature[1], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(secp256k1_memcmp_var(&signature[2], &signature[3], sizeof(signature[0])) != 0);
/* Verify. */
CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1);
@@ -4495,7 +4579,7 @@ void test_ecdsa_end_to_end(void) {
secp256k1_ecdsa_signature_save(&signature[5], &r, &s);
CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1);
- CHECK(memcmp(&signature[5], &signature[0], 64) == 0);
+ CHECK(secp256k1_memcmp_var(&signature[5], &signature[0], 64) == 0);
/* Serialize/parse DER and verify again */
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
@@ -4505,7 +4589,7 @@ void test_ecdsa_end_to_end(void) {
/* Serialize/destroy/parse DER and verify again. */
siglen = 74;
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
- sig[secp256k1_rand_int(siglen)] += 1 + secp256k1_rand_int(255);
+ sig[secp256k1_testrand_int(siglen)] += 1 + secp256k1_testrand_int(255);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 ||
secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0);
}
@@ -4515,23 +4599,23 @@ void test_random_pubkeys(void) {
secp256k1_ge elem2;
unsigned char in[65];
/* Generate some randomly sized pubkeys. */
- size_t len = secp256k1_rand_bits(2) == 0 ? 65 : 33;
- if (secp256k1_rand_bits(2) == 0) {
- len = secp256k1_rand_bits(6);
+ size_t len = secp256k1_testrand_bits(2) == 0 ? 65 : 33;
+ if (secp256k1_testrand_bits(2) == 0) {
+ len = secp256k1_testrand_bits(6);
}
if (len == 65) {
- in[0] = secp256k1_rand_bits(1) ? 4 : (secp256k1_rand_bits(1) ? 6 : 7);
+ in[0] = secp256k1_testrand_bits(1) ? 4 : (secp256k1_testrand_bits(1) ? 6 : 7);
} else {
- in[0] = secp256k1_rand_bits(1) ? 2 : 3;
+ in[0] = secp256k1_testrand_bits(1) ? 2 : 3;
}
- if (secp256k1_rand_bits(3) == 0) {
- in[0] = secp256k1_rand_bits(8);
+ if (secp256k1_testrand_bits(3) == 0) {
+ in[0] = secp256k1_testrand_bits(8);
}
if (len > 1) {
- secp256k1_rand256(&in[1]);
+ secp256k1_testrand256(&in[1]);
}
if (len > 33) {
- secp256k1_rand256(&in[33]);
+ secp256k1_testrand256(&in[33]);
}
if (secp256k1_eckey_pubkey_parse(&elem, in, len)) {
unsigned char out[65];
@@ -4542,7 +4626,7 @@ void test_random_pubkeys(void) {
/* If the pubkey can be parsed, it should round-trip... */
CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33));
CHECK(size == len);
- CHECK(memcmp(&in[1], &out[1], len-1) == 0);
+ CHECK(secp256k1_memcmp_var(&in[1], &out[1], len-1) == 0);
/* ... except for the type of hybrid inputs. */
if ((in[0] != 6) && (in[0] != 7)) {
CHECK(in[0] == out[0]);
@@ -4553,7 +4637,7 @@ void test_random_pubkeys(void) {
CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size));
ge_equals_ge(&elem,&elem2);
/* Check that the X9.62 hybrid type is checked. */
- in[0] = secp256k1_rand_bits(1) ? 6 : 7;
+ in[0] = secp256k1_testrand_bits(1) ? 6 : 7;
res = secp256k1_eckey_pubkey_parse(&elem2, in, size);
if (firstb == 2 || firstb == 3) {
if (in[0] == firstb + 4) {
@@ -4565,7 +4649,7 @@ void test_random_pubkeys(void) {
if (res) {
ge_equals_ge(&elem,&elem2);
CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0));
- CHECK(memcmp(&in[1], &out[1], 64) == 0);
+ CHECK(secp256k1_memcmp_var(&in[1], &out[1], 64) == 0);
}
}
}
@@ -4621,21 +4705,21 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_
parsed_der = secp256k1_ecdsa_signature_parse_der(ctx, &sig_der, sig, siglen);
if (parsed_der) {
ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der, &sig_der)) << 0;
- valid_der = (memcmp(compact_der, zeroes, 32) != 0) && (memcmp(compact_der + 32, zeroes, 32) != 0);
+ valid_der = (secp256k1_memcmp_var(compact_der, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der + 32, zeroes, 32) != 0);
}
if (valid_der) {
ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der, &len_der, &sig_der)) << 1;
- roundtrips_der = (len_der == siglen) && memcmp(roundtrip_der, sig, siglen) == 0;
+ roundtrips_der = (len_der == siglen) && secp256k1_memcmp_var(roundtrip_der, sig, siglen) == 0;
}
parsed_der_lax = ecdsa_signature_parse_der_lax(ctx, &sig_der_lax, sig, siglen);
if (parsed_der_lax) {
ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der_lax, &sig_der_lax)) << 10;
- valid_der_lax = (memcmp(compact_der_lax, zeroes, 32) != 0) && (memcmp(compact_der_lax + 32, zeroes, 32) != 0);
+ valid_der_lax = (secp256k1_memcmp_var(compact_der_lax, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der_lax + 32, zeroes, 32) != 0);
}
if (valid_der_lax) {
ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der_lax, &len_der_lax, &sig_der_lax)) << 11;
- roundtrips_der_lax = (len_der_lax == siglen) && memcmp(roundtrip_der_lax, sig, siglen) == 0;
+ roundtrips_der_lax = (len_der_lax == siglen) && secp256k1_memcmp_var(roundtrip_der_lax, sig, siglen) == 0;
}
if (certainly_der) {
@@ -4651,7 +4735,7 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_
if (valid_der) {
ret |= (!roundtrips_der_lax) << 12;
ret |= (len_der != len_der_lax) << 13;
- ret |= ((len_der != len_der_lax) || (memcmp(roundtrip_der_lax, roundtrip_der, len_der) != 0)) << 14;
+ ret |= ((len_der != len_der_lax) || (secp256k1_memcmp_var(roundtrip_der_lax, roundtrip_der, len_der) != 0)) << 14;
}
ret |= (roundtrips_der != roundtrips_der_lax) << 15;
if (parsed_der) {
@@ -4668,19 +4752,19 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_
if (valid_openssl) {
unsigned char tmp[32] = {0};
BN_bn2bin(r, tmp + 32 - BN_num_bytes(r));
- valid_openssl = memcmp(tmp, max_scalar, 32) < 0;
+ valid_openssl = secp256k1_memcmp_var(tmp, max_scalar, 32) < 0;
}
if (valid_openssl) {
unsigned char tmp[32] = {0};
BN_bn2bin(s, tmp + 32 - BN_num_bytes(s));
- valid_openssl = memcmp(tmp, max_scalar, 32) < 0;
+ valid_openssl = secp256k1_memcmp_var(tmp, max_scalar, 32) < 0;
}
}
len_openssl = i2d_ECDSA_SIG(sig_openssl, NULL);
if (len_openssl <= 2048) {
unsigned char *ptr = roundtrip_openssl;
CHECK(i2d_ECDSA_SIG(sig_openssl, &ptr) == len_openssl);
- roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (memcmp(roundtrip_openssl, sig, siglen) == 0);
+ roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (secp256k1_memcmp_var(roundtrip_openssl, sig, siglen) == 0);
} else {
len_openssl = 0;
}
@@ -4692,7 +4776,7 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_
ret |= (roundtrips_der != roundtrips_openssl) << 7;
if (roundtrips_openssl) {
ret |= (len_der != (size_t)len_openssl) << 8;
- ret |= ((len_der != (size_t)len_openssl) || (memcmp(roundtrip_der, roundtrip_openssl, len_der) != 0)) << 9;
+ ret |= ((len_der != (size_t)len_openssl) || (secp256k1_memcmp_var(roundtrip_der, roundtrip_openssl, len_der) != 0)) << 9;
}
#endif
return ret;
@@ -4712,27 +4796,27 @@ static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) {
static void damage_array(unsigned char *sig, size_t *len) {
int pos;
- int action = secp256k1_rand_bits(3);
+ int action = secp256k1_testrand_bits(3);
if (action < 1 && *len > 3) {
/* Delete a byte. */
- pos = secp256k1_rand_int(*len);
+ pos = secp256k1_testrand_int(*len);
memmove(sig + pos, sig + pos + 1, *len - pos - 1);
(*len)--;
return;
} else if (action < 2 && *len < 2048) {
/* Insert a byte. */
- pos = secp256k1_rand_int(1 + *len);
+ pos = secp256k1_testrand_int(1 + *len);
memmove(sig + pos + 1, sig + pos, *len - pos);
- sig[pos] = secp256k1_rand_bits(8);
+ sig[pos] = secp256k1_testrand_bits(8);
(*len)++;
return;
} else if (action < 4) {
/* Modify a byte. */
- sig[secp256k1_rand_int(*len)] += 1 + secp256k1_rand_int(255);
+ sig[secp256k1_testrand_int(*len)] += 1 + secp256k1_testrand_int(255);
return;
} else { /* action < 8 */
/* Modify a bit. */
- sig[secp256k1_rand_int(*len)] ^= 1 << secp256k1_rand_bits(3);
+ sig[secp256k1_testrand_int(*len)] ^= 1 << secp256k1_testrand_bits(3);
return;
}
}
@@ -4745,23 +4829,23 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
int n;
*len = 0;
- der = secp256k1_rand_bits(2) == 0;
+ der = secp256k1_testrand_bits(2) == 0;
*certainly_der = der;
*certainly_not_der = 0;
- indet = der ? 0 : secp256k1_rand_int(10) == 0;
+ indet = der ? 0 : secp256k1_testrand_int(10) == 0;
for (n = 0; n < 2; n++) {
/* We generate two classes of numbers: nlow==1 "low" ones (up to 32 bytes), nlow==0 "high" ones (32 bytes with 129 top bits set, or larger than 32 bytes) */
- nlow[n] = der ? 1 : (secp256k1_rand_bits(3) != 0);
+ nlow[n] = der ? 1 : (secp256k1_testrand_bits(3) != 0);
/* The length of the number in bytes (the first byte of which will always be nonzero) */
- nlen[n] = nlow[n] ? secp256k1_rand_int(33) : 32 + secp256k1_rand_int(200) * secp256k1_rand_int(8) / 8;
+ nlen[n] = nlow[n] ? secp256k1_testrand_int(33) : 32 + secp256k1_testrand_int(200) * secp256k1_testrand_int(8) / 8;
CHECK(nlen[n] <= 232);
/* The top bit of the number. */
- nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_rand_bits(1));
+ nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_testrand_bits(1));
/* The top byte of the number (after the potential hardcoded 16 0xFF characters for "high" 32 bytes numbers) */
- nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_rand_bits(7) : 1 + secp256k1_rand_int(127));
+ nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_testrand_bits(7) : 1 + secp256k1_testrand_int(127));
/* The number of zero bytes in front of the number (which is 0 or 1 in case of DER, otherwise we extend up to 300 bytes) */
- nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_rand_int(3) : secp256k1_rand_int(300 - nlen[n]) * secp256k1_rand_int(8) / 8);
+ nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_testrand_int(3) : secp256k1_testrand_int(300 - nlen[n]) * secp256k1_testrand_int(8) / 8);
if (nzlen[n] > ((nlen[n] == 0 || nhbit[n]) ? 1 : 0)) {
*certainly_not_der = 1;
}
@@ -4770,7 +4854,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
nlenlen[n] = nlen[n] + nzlen[n] < 128 ? 0 : (nlen[n] + nzlen[n] < 256 ? 1 : 2);
if (!der) {
/* nlenlen[n] max 127 bytes */
- int add = secp256k1_rand_int(127 - nlenlen[n]) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256;
+ int add = secp256k1_testrand_int(127 - nlenlen[n]) * secp256k1_testrand_int(16) * secp256k1_testrand_int(16) / 256;
nlenlen[n] += add;
if (add != 0) {
*certainly_not_der = 1;
@@ -4784,7 +4868,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
CHECK(tlen <= 856);
/* The length of the garbage inside the tuple. */
- elen = (der || indet) ? 0 : secp256k1_rand_int(980 - tlen) * secp256k1_rand_int(8) / 8;
+ elen = (der || indet) ? 0 : secp256k1_testrand_int(980 - tlen) * secp256k1_testrand_int(8) / 8;
if (elen != 0) {
*certainly_not_der = 1;
}
@@ -4792,7 +4876,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
CHECK(tlen <= 980);
/* The length of the garbage after the end of the tuple. */
- glen = der ? 0 : secp256k1_rand_int(990 - tlen) * secp256k1_rand_int(8) / 8;
+ glen = der ? 0 : secp256k1_testrand_int(990 - tlen) * secp256k1_testrand_int(8) / 8;
if (glen != 0) {
*certainly_not_der = 1;
}
@@ -4807,7 +4891,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
} else {
int tlenlen = tlen < 128 ? 0 : (tlen < 256 ? 1 : 2);
if (!der) {
- int add = secp256k1_rand_int(127 - tlenlen) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256;
+ int add = secp256k1_testrand_int(127 - tlenlen) * secp256k1_testrand_int(16) * secp256k1_testrand_int(16) / 256;
tlenlen += add;
if (add != 0) {
*certainly_not_der = 1;
@@ -4858,13 +4942,13 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
nlen[n]--;
}
/* Generate remaining random bytes of number */
- secp256k1_rand_bytes_test(sig + *len, nlen[n]);
+ secp256k1_testrand_bytes_test(sig + *len, nlen[n]);
*len += nlen[n];
nlen[n] = 0;
}
/* Generate random garbage inside tuple. */
- secp256k1_rand_bytes_test(sig + *len, elen);
+ secp256k1_testrand_bytes_test(sig + *len, elen);
*len += elen;
/* Generate end-of-contents bytes. */
@@ -4876,7 +4960,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly
CHECK(tlen + glen <= 1121);
/* Generate random garbage outside tuple. */
- secp256k1_rand_bytes_test(sig + *len, glen);
+ secp256k1_testrand_bytes_test(sig + *len, glen);
*len += glen;
tlen += glen;
CHECK(tlen <= 1121);
@@ -5208,11 +5292,11 @@ void test_ecdsa_edge_cases(void) {
CHECK(!is_empty_signature(&sig));
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1);
CHECK(!is_empty_signature(&sig2));
- CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
+ CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0);
/* The default nonce function is deterministic. */
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
CHECK(!is_empty_signature(&sig2));
- CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
+ CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0);
/* The default nonce function changes output with different messages. */
for(i = 0; i < 256; i++) {
int j;
@@ -5259,12 +5343,12 @@ void test_ecdsa_edge_cases(void) {
VG_CHECK(nonce3,32);
CHECK(nonce_function_rfc6979(nonce4, zeros, zeros, zeros, (void *)zeros, 0) == 1);
VG_CHECK(nonce4,32);
- CHECK(memcmp(nonce, nonce2, 32) != 0);
- CHECK(memcmp(nonce, nonce3, 32) != 0);
- CHECK(memcmp(nonce, nonce4, 32) != 0);
- CHECK(memcmp(nonce2, nonce3, 32) != 0);
- CHECK(memcmp(nonce2, nonce4, 32) != 0);
- CHECK(memcmp(nonce3, nonce4, 32) != 0);
+ CHECK(secp256k1_memcmp_var(nonce, nonce2, 32) != 0);
+ CHECK(secp256k1_memcmp_var(nonce, nonce3, 32) != 0);
+ CHECK(secp256k1_memcmp_var(nonce, nonce4, 32) != 0);
+ CHECK(secp256k1_memcmp_var(nonce2, nonce3, 32) != 0);
+ CHECK(secp256k1_memcmp_var(nonce2, nonce4, 32) != 0);
+ CHECK(secp256k1_memcmp_var(nonce3, nonce4, 32) != 0);
}
@@ -5293,7 +5377,7 @@ EC_KEY *get_openssl_key(const unsigned char *key32) {
unsigned char privkey[300];
size_t privkeylen;
const unsigned char* pbegin = privkey;
- int compr = secp256k1_rand_bits(1);
+ int compr = secp256k1_testrand_bits(1);
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
CHECK(ec_privkey_export_der(ctx, privkey, &privkeylen, key32, compr));
CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
@@ -5314,7 +5398,7 @@ void test_ecdsa_openssl(void) {
unsigned char message[32];
unsigned char signature[80];
unsigned char key32[32];
- secp256k1_rand256_test(message);
+ secp256k1_testrand256_test(message);
secp256k1_scalar_set_b32(&msg, message, NULL);
random_scalar_order_test(&key);
secp256k1_scalar_get_b32(key32, &key);
@@ -5367,12 +5451,12 @@ void run_memczero_test(void) {
/* memczero(..., ..., 0) is a noop. */
memcpy(buf2, buf1, sizeof(buf1));
memczero(buf1, sizeof(buf1), 0);
- CHECK(memcmp(buf1, buf2, sizeof(buf1)) == 0);
+ CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0);
/* memczero(..., ..., 1) zeros the buffer. */
memset(buf2, 0, sizeof(buf2));
memczero(buf1, sizeof(buf1) , 1);
- CHECK(memcmp(buf1, buf2, sizeof(buf1)) == 0);
+ CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0);
}
void int_cmov_test(void) {
@@ -5411,23 +5495,23 @@ void fe_cmov_test(void) {
secp256k1_fe a = zero;
secp256k1_fe_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
r = zero; a = max;
secp256k1_fe_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
a = zero;
secp256k1_fe_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
a = one;
secp256k1_fe_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
r = one; a = zero;
secp256k1_fe_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
}
void fe_storage_cmov_test(void) {
@@ -5441,23 +5525,23 @@ void fe_storage_cmov_test(void) {
secp256k1_fe_storage a = zero;
secp256k1_fe_storage_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
r = zero; a = max;
secp256k1_fe_storage_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
a = zero;
secp256k1_fe_storage_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
a = one;
secp256k1_fe_storage_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
r = one; a = zero;
secp256k1_fe_storage_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
}
void scalar_cmov_test(void) {
@@ -5471,23 +5555,23 @@ void scalar_cmov_test(void) {
secp256k1_scalar a = zero;
secp256k1_scalar_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
r = zero; a = max;
secp256k1_scalar_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
a = zero;
secp256k1_scalar_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
a = one;
secp256k1_scalar_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
r = one; a = zero;
secp256k1_scalar_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
}
void ge_storage_cmov_test(void) {
@@ -5503,23 +5587,23 @@ void ge_storage_cmov_test(void) {
secp256k1_ge_storage a = zero;
secp256k1_ge_storage_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
r = zero; a = max;
secp256k1_ge_storage_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
a = zero;
secp256k1_ge_storage_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
a = one;
secp256k1_ge_storage_cmov(&r, &a, 1);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
r = one; a = zero;
secp256k1_ge_storage_cmov(&r, &a, 0);
- CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+ CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
}
void run_cmov_tests(void) {
@@ -5531,9 +5615,6 @@ void run_cmov_tests(void) {
}
int main(int argc, char **argv) {
- unsigned char seed16[16] = {0};
- unsigned char run32[32] = {0};
-
/* Disable buffering for stdout to improve reliability of getting
* diagnostic information. Happens right at the start of main because
* setbuf must be used before any other operation on the stream. */
@@ -5546,52 +5627,20 @@ int main(int argc, char **argv) {
if (argc > 1) {
count = strtol(argv[1], NULL, 0);
}
+ printf("test count = %i\n", count);
/* find random seed */
- if (argc > 2) {
- int pos = 0;
- const char* ch = argv[2];
- while (pos < 16 && ch[0] != 0 && ch[1] != 0) {
- unsigned short sh;
- if ((sscanf(ch, "%2hx", &sh)) == 1) {
- seed16[pos] = sh;
- } else {
- break;
- }
- ch += 2;
- pos++;
- }
- } else {
- FILE *frand = fopen("/dev/urandom", "r");
- if ((frand == NULL) || fread(&seed16, 1, sizeof(seed16), frand) != sizeof(seed16)) {
- uint64_t t = time(NULL) * (uint64_t)1337;
- fprintf(stderr, "WARNING: could not read 16 bytes from /dev/urandom; falling back to insecure PRNG\n");
- seed16[0] ^= t;
- seed16[1] ^= t >> 8;
- seed16[2] ^= t >> 16;
- seed16[3] ^= t >> 24;
- seed16[4] ^= t >> 32;
- seed16[5] ^= t >> 40;
- seed16[6] ^= t >> 48;
- seed16[7] ^= t >> 56;
- }
- if (frand) {
- fclose(frand);
- }
- }
- secp256k1_rand_seed(seed16);
-
- printf("test count = %i\n", count);
- printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
+ secp256k1_testrand_init(argc > 2 ? argv[2] : NULL);
/* initialize */
run_context_tests(0);
run_context_tests(1);
run_scratch_tests();
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
- if (secp256k1_rand_bits(1)) {
- secp256k1_rand256(run32);
- CHECK(secp256k1_context_randomize(ctx, secp256k1_rand_bits(1) ? run32 : NULL));
+ if (secp256k1_testrand_bits(1)) {
+ unsigned char rand32[32];
+ secp256k1_testrand256(rand32);
+ CHECK(secp256k1_context_randomize(ctx, secp256k1_testrand_bits(1) ? rand32 : NULL));
}
run_rand_bits();
@@ -5625,6 +5674,7 @@ int main(int argc, char **argv) {
/* ecmult tests */
run_wnaf();
run_point_times_order();
+ run_ecmult_near_split_bound();
run_ecmult_chain();
run_ecmult_constants();
run_ecmult_gen_blind();
@@ -5633,9 +5683,7 @@ int main(int argc, char **argv) {
run_ec_combine();
/* endomorphism tests */
-#ifdef USE_ENDOMORPHISM
run_endomorphism_tests();
-#endif
/* EC point parser test */
run_ec_pubkey_parse_test();
@@ -5679,8 +5727,7 @@ int main(int argc, char **argv) {
run_cmov_tests();
- secp256k1_rand256(run32);
- printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);
+ secp256k1_testrand_finish();
/* shutdown */
secp256k1_context_destroy(ctx);