diff options
author | Pieter Wuille <pieter.wuille@gmail.com> | 2015-03-27 14:03:36 -0700 |
---|---|---|
committer | Pieter Wuille <pieter.wuille@gmail.com> | 2015-03-27 14:03:36 -0700 |
commit | 9d09322b41776a0d6ecde182f731eff77d0f052b (patch) | |
tree | 1c8df9fa9ddfb2b035ac0327fe074b634e458f56 /src/tests.c | |
parent | 7873633b5752621548b8d38fc175f5a5f2f1e5d6 (diff) |
Squashed 'src/secp256k1/' changes from 50cc6ab..1897b8e
1897b8e Merge pull request #229
efc571c Add simple testcases for signing with rfc6979 extra entropy.
1573a10 Add ability to pass extra entropy to rfc6979
3087bc4 Merge pull request #228
d9b9f11 Merge pull request #218
0065a8f Eliminate multiple-returns from secp256k1.c.
354ffa3 Make secp256k1_ec_pubkey_create reject oversized secrets.
27bc131 Silence some warnings from pedantic static analysis tools, improve compatibility with C++.
3b7ea63 Merge pull request #221
f789c5b Merge pull request #215
4bc273b Merge pull request #222
137a8ec Merge pull request #216
7c3771d Disable overlength-strings warnings.
8956111 use 128-bit hex seed
02efd06 Use RFC6979 for test PRNGs
ae55e85 Use faster byteswapping and avoid alignment-increasing casts.
443cd4b Get rid of hex format and some binary conversions
0bada0e Merge #214: Improve signing API documentation & specification
8030d7c Improve signing API documentation & specification
7b2fc1c Merge #213: Removed gotos, which are hard to trace and maintain.
11690d3 Removed gotos, which are hard to trace and maintain.
122a1ec Merge pull request #205
035406d Merge pull request #206
2d4cd53 Merge pull request #161
34b898d Additional comments for the testing PRNG and a seeding fix.
6efd6e7 Some comments explaining some of the constants in the code.
ffccfd2 x86_64 assembly optimization for scalar_4x64
67cbdf0 Merge pull request #207
039723d Benchmarks for all internal operations
6cc8425 Include a comment on secp256k1_ecdsa_sign explaining low-s.
f88343f Merge pull request #203
d61e899 Add group operation counts
2473f17 Merge pull request #202
b5bbce6 Some readme updates, e.g. removal of the GMP field.
f0d851e Merge pull request #201
a0ea884 Merge pull request #200
f735446 Convert the rest of the codebase to C89.
bf2e1ac Convert tests to C89. (also fixes a use of bare "inline" in field)
fc8285f Merge pull request #199
fff412e Merge pull request #197
4be8d6f Centralize the definition of uint128_t and use it uniformly.
d9543c9 Switch scalar code to C89.
fcc48c4 Remove the non-storage cmov
55422b6 Switch ecmult_gen to use storage types
41f8455 Use group element storage type in EC multiplications
e68d720 Add group element storage type
ff889f7 Field storage type
7137be8 Merge pull request #196
0768bd5 Get rid of variable-length hex string conversions
e84e761 Merge pull request #195
792bcdb Covert several more files to C89.
45cdf44 Merge pull request #193
17db09e Merge pull request #194
402878a fix ifdef/ifndef
25b35c7 Convert field code to strict C89 (+ long long, +__int128)
3627437 C89 nits and dead code removal.
a9f350d Merge pull request #191
4732d26 Convert the field/group/ecdsa constant initialization to static consts
19f3e76 Remove unused secp256k1_fe_inner_{start, stop} functions
f1ebfe3 Convert the scalar constant initialization to static consts
git-subtree-dir: src/secp256k1
git-subtree-split: 1897b8e90bbbdcd919427c9a8ae35b420e919d8f
Diffstat (limited to 'src/tests.c')
-rw-r--r-- | src/tests.c | 651 |
1 files changed, 407 insertions, 244 deletions
diff --git a/src/tests.c b/src/tests.c index cff32f1d06..f7f1acac64 100644 --- a/src/tests.c +++ b/src/tests.c @@ -36,12 +36,12 @@ void random_field_element_test(secp256k1_fe_t *fe) { } void random_field_element_magnitude(secp256k1_fe_t *fe) { + secp256k1_fe_t zero; int n = secp256k1_rand32() % 9; secp256k1_fe_normalize(fe); if (n == 0) { return; } - secp256k1_fe_t zero; secp256k1_fe_clear(&zero); secp256k1_fe_negate(&zero, &zero, 0); secp256k1_fe_mul_int(&zero, n - 1); @@ -61,14 +61,15 @@ void random_group_element_test(secp256k1_ge_t *ge) { } void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) { + secp256k1_fe_t z2, z3; do { random_field_element_test(&gej->z); if (!secp256k1_fe_is_zero(&gej->z)) { break; } } while(1); - secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z); - secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z); + secp256k1_fe_sqr(&z2, &gej->z); + secp256k1_fe_mul(&z3, &z2, &gej->z); secp256k1_fe_mul(&gej->x, &ge->x, &z2); secp256k1_fe_mul(&gej->y, &ge->y, &z3); gej->infinity = ge->infinity; @@ -77,8 +78,8 @@ void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge void random_scalar_order_test(secp256k1_scalar_t *num) { do { unsigned char b32[32]; - secp256k1_rand256_test(b32); int overflow = 0; + secp256k1_rand256_test(b32); secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) continue; @@ -89,8 +90,8 @@ void random_scalar_order_test(secp256k1_scalar_t *num) { void random_scalar_order(secp256k1_scalar_t *num) { do { unsigned char b32[32]; - secp256k1_rand256(b32); int overflow = 0; + secp256k1_rand256(b32); secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) continue; @@ -117,16 +118,17 @@ void run_sha256_tests(void) { {0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42}, {0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8} }; - for (int i = 0; i < 8; i++) { + int i; + for (i = 0; i < 8; i++) { + unsigned char out[32]; secp256k1_sha256_t hasher; secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); - unsigned char out[32]; secp256k1_sha256_finalize(&hasher, out); CHECK(memcmp(out, outputs[i], 32) == 0); if (strlen(inputs[i]) > 0) { - secp256k1_sha256_initialize(&hasher); int split = secp256k1_rand32() % strlen(inputs[i]); + secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); secp256k1_sha256_finalize(&hasher, out); @@ -160,16 +162,17 @@ void run_hmac_sha256_tests(void) { {0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54}, {0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2} }; - for (int i = 0; i < 6; i++) { + int i; + for (i = 0; i < 6; i++) { secp256k1_hmac_sha256_t hasher; + unsigned char out[32]; secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); - unsigned char out[32]; secp256k1_hmac_sha256_finalize(&hasher, out); CHECK(memcmp(out, outputs[i], 32) == 0); if (strlen(inputs[i]) > 0) { - secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); int split = secp256k1_rand32() % strlen(inputs[i]); + secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); secp256k1_hmac_sha256_finalize(&hasher, out); @@ -197,16 +200,25 @@ void run_rfc6979_hmac_sha256_tests(void) { secp256k1_rfc6979_hmac_sha256_t rng; unsigned char out[32]; + unsigned char zero[1] = {0}; + int i; - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32); - for (int i = 0; i < 3; i++) { + secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, NULL, 1); + for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out1[i], 32) == 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32); - for (int i = 0; i < 3; i++) { + secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, zero, 1); + for (i = 0; i < 3; i++) { + secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); + CHECK(memcmp(out, out1[i], 32) != 0); + } + secp256k1_rfc6979_hmac_sha256_finalize(&rng); + + secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32, zero, 0); + for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out2[i], 32) == 0); } @@ -254,9 +266,10 @@ void test_num_negate(void) { } void test_num_add_sub(void) { - int r = secp256k1_rand32(); secp256k1_num_t n1; secp256k1_num_t n2; + secp256k1_num_t n1p2, n2p1, n1m2, n2m1; + int r = secp256k1_rand32(); random_num_order_test(&n1); /* n1 = R1 */ if (r & 1) { random_num_negate(&n1); @@ -265,7 +278,6 @@ void test_num_add_sub(void) { if (r & 2) { random_num_negate(&n2); } - secp256k1_num_t n1p2, n2p1, n1m2, n2m1; secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */ secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */ secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */ @@ -283,7 +295,8 @@ void test_num_add_sub(void) { } void run_num_smalltests(void) { - for (int i=0; i<100*count; i++) { + int i; + for (i = 0; i < 100*count; i++) { test_num_negate(); test_num_add_sub(); } @@ -293,41 +306,45 @@ void run_num_smalltests(void) { /***** SCALAR TESTS *****/ void scalar_test(void) { + secp256k1_scalar_t s; + secp256k1_scalar_t s1; + secp256k1_scalar_t s2; +#ifndef USE_NUM_NONE + secp256k1_num_t snum, s1num, s2num; + secp256k1_num_t order, half_order; +#endif unsigned char c[32]; /* Set 's' to a random scalar, with value 'snum'. */ - secp256k1_scalar_t s; random_scalar_order_test(&s); /* Set 's1' to a random scalar, with value 's1num'. */ - secp256k1_scalar_t s1; random_scalar_order_test(&s1); /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */ - secp256k1_scalar_t s2; random_scalar_order_test(&s2); secp256k1_scalar_get_b32(c, &s2); #ifndef USE_NUM_NONE - secp256k1_num_t snum, s1num, s2num; secp256k1_scalar_get_num(&snum, &s); secp256k1_scalar_get_num(&s1num, &s1); secp256k1_scalar_get_num(&s2num, &s2); - secp256k1_num_t order; secp256k1_scalar_order_get_num(&order); - secp256k1_num_t half_order = order; + half_order = order; secp256k1_num_shift(&half_order, 1); #endif { + int i; /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */ secp256k1_scalar_t n; secp256k1_scalar_set_int(&n, 0); - for (int i = 0; i < 256; i += 4) { + for (i = 0; i < 256; i += 4) { secp256k1_scalar_t t; + int j; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4)); - for (int j = 0; j < 4; j++) { + for (j = 0; j < 4; j++) { secp256k1_scalar_add(&n, &n, &n); } secp256k1_scalar_add(&n, &n, &t); @@ -338,16 +355,17 @@ void scalar_test(void) { { /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */ secp256k1_scalar_t n; - secp256k1_scalar_set_int(&n, 0); int i = 0; + secp256k1_scalar_set_int(&n, 0); while (i < 256) { + secp256k1_scalar_t t; + int j; int now = (secp256k1_rand32() % 15) + 1; if (now + i > 256) { now = 256 - i; } - secp256k1_scalar_t t; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now)); - for (int j = 0; j < now; j++) { + for (j = 0; j < now; j++) { secp256k1_scalar_add(&n, &n, &n); } secp256k1_scalar_add(&n, &n, &t); @@ -360,23 +378,23 @@ void scalar_test(void) { { /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */ secp256k1_num_t rnum; + secp256k1_num_t r2num; + secp256k1_scalar_t r; secp256k1_num_add(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_t r; secp256k1_scalar_add(&r, &s, &s2); - secp256k1_num_t r2num; secp256k1_scalar_get_num(&r2num, &r); CHECK(secp256k1_num_eq(&rnum, &r2num)); } { /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */ + secp256k1_scalar_t r; + secp256k1_num_t r2num; secp256k1_num_t rnum; secp256k1_num_mul(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_t r; secp256k1_scalar_mul(&r, &s, &s2); - secp256k1_num_t r2num; secp256k1_scalar_get_num(&r2num, &r); CHECK(secp256k1_num_eq(&rnum, &r2num)); /* The result can only be zero if at least one of the factors was zero. */ @@ -387,20 +405,20 @@ void scalar_test(void) { } { + secp256k1_scalar_t neg; + secp256k1_num_t negnum; + secp256k1_num_t negnum2; /* Check that comparison with zero matches comparison with zero on the number. */ CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s)); /* Check that comparison with the half order is equal to testing for high scalar. */ CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0)); - secp256k1_scalar_t neg; secp256k1_scalar_negate(&neg, &s); - secp256k1_num_t negnum; secp256k1_num_sub(&negnum, &order, &snum); secp256k1_num_mod(&negnum, &order); /* Check that comparison with the half order is equal to testing for high scalar after negation. */ CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0)); /* Negating should change the high property, unless the value was already zero. */ CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s)); - secp256k1_num_t negnum2; secp256k1_scalar_get_num(&negnum2, &neg); /* Negating a scalar should be equal to (order - n) mod order on the number. */ CHECK(secp256k1_num_eq(&negnum, &negnum2)); @@ -415,17 +433,17 @@ void scalar_test(void) { { /* Test secp256k1_scalar_mul_shift_var. */ secp256k1_scalar_t r; + secp256k1_num_t one; + secp256k1_num_t rnum; + secp256k1_num_t rnum2; + unsigned char cone[1] = {0x01}; unsigned int shift = 256 + (secp256k1_rand32() % 257); secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift); - secp256k1_num_t rnum; secp256k1_num_mul(&rnum, &s1num, &s2num); secp256k1_num_shift(&rnum, shift - 1); - secp256k1_num_t one; - unsigned char cone[1] = {0x01}; secp256k1_num_set_bin(&one, cone, 1); secp256k1_num_add(&rnum, &rnum, &one); secp256k1_num_shift(&rnum, 1); - secp256k1_num_t rnum2; secp256k1_scalar_get_num(&rnum2, &r); CHECK(secp256k1_num_eq(&rnum, &rnum2)); } @@ -435,11 +453,13 @@ void scalar_test(void) { /* Test that scalar inverses are equal to the inverse of their number modulo the order. */ if (!secp256k1_scalar_is_zero(&s)) { secp256k1_scalar_t inv; - secp256k1_scalar_inverse(&inv, &s); #ifndef USE_NUM_NONE secp256k1_num_t invnum; - secp256k1_num_mod_inverse(&invnum, &snum, &order); secp256k1_num_t invnum2; +#endif + secp256k1_scalar_inverse(&inv, &s); +#ifndef USE_NUM_NONE + secp256k1_num_mod_inverse(&invnum, &snum, &order); secp256k1_scalar_get_num(&invnum2, &inv); CHECK(secp256k1_num_eq(&invnum, &invnum2)); #endif @@ -461,15 +481,18 @@ void scalar_test(void) { } { + secp256k1_scalar_t r1, r2; + secp256k1_scalar_t b; + int i; /* Test add_bit. */ int bit = secp256k1_rand32() % 256; - secp256k1_scalar_t b; secp256k1_scalar_set_int(&b, 1); CHECK(secp256k1_scalar_is_one(&b)); - for (int i = 0; i < bit; i++) { + for (i = 0; i < bit; i++) { secp256k1_scalar_add(&b, &b, &b); } - secp256k1_scalar_t r1 = s1, r2 = s1; + r1 = s1; + r2 = s1; if (!secp256k1_scalar_add(&r1, &r1, &b)) { /* No overflow happened. */ secp256k1_scalar_add_bit(&r2, bit); @@ -551,7 +574,8 @@ void scalar_test(void) { } void run_scalar_tests(void) { - for (int i = 0; i < 128 * count; i++) { + int i; + for (i = 0; i < 128 * count; i++) { scalar_test(); } @@ -571,11 +595,11 @@ void run_scalar_tests(void) { { /* A scalar with value of the curve order should be 0. */ secp256k1_num_t order; - secp256k1_scalar_order_get_num(&order); - unsigned char bin[32]; - secp256k1_num_get_bin(bin, 32, &order); secp256k1_scalar_t zero; + unsigned char bin[32]; int overflow = 0; + secp256k1_scalar_order_get_num(&order); + secp256k1_num_get_bin(bin, 32, &order); secp256k1_scalar_set_b32(&zero, bin, &overflow); CHECK(overflow == 1); CHECK(secp256k1_scalar_is_zero(&zero)); @@ -608,39 +632,67 @@ void random_fe_non_zero(secp256k1_fe_t *nz) { } void random_fe_non_square(secp256k1_fe_t *ns) { - random_fe_non_zero(ns); secp256k1_fe_t r; + random_fe_non_zero(ns); if (secp256k1_fe_sqrt_var(&r, ns)) { secp256k1_fe_negate(ns, ns, 1); } } int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { - secp256k1_fe_t an = *a; secp256k1_fe_normalize_weak(&an); - secp256k1_fe_t bn = *b; secp256k1_fe_normalize_var(&bn); + secp256k1_fe_t an = *a; + secp256k1_fe_t bn = *b; + secp256k1_fe_normalize_weak(&an); + secp256k1_fe_normalize_var(&bn); return secp256k1_fe_equal_var(&an, &bn); } int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) { - secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai); - secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1); + secp256k1_fe_t x; + secp256k1_fe_t one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); + secp256k1_fe_mul(&x, a, ai); return check_fe_equal(&x, &one); } -void run_field_misc(void) { - const unsigned char f32_5[32] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, +void run_field_convert(void) { + static const unsigned char b32[32] = { + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, + 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, + 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40 }; + static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST( + 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, + 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL + ); + static const secp256k1_fe_t fe = SECP256K1_FE_CONST( + 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, + 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL + ); + secp256k1_fe_t fe2; + unsigned char b322[32]; + secp256k1_fe_storage_t fes2; + /* Check conversions to fe. */ + CHECK(secp256k1_fe_set_b32(&fe2, b32)); + CHECK(secp256k1_fe_equal_var(&fe, &fe2)); + secp256k1_fe_from_storage(&fe2, &fes); + CHECK(secp256k1_fe_equal_var(&fe, &fe2)); + /* Check conversion from fe. */ + secp256k1_fe_get_b32(b322, &fe); + CHECK(memcmp(b322, b32, 32) == 0); + secp256k1_fe_to_storage(&fes2, &fe); + CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0); +} + +void run_field_misc(void) { secp256k1_fe_t x; secp256k1_fe_t y; secp256k1_fe_t z; secp256k1_fe_t q; - secp256k1_fe_t fe5; - CHECK(secp256k1_fe_set_b32(&fe5, f32_5)); - for (int i=0; i<5*count; i++) { + secp256k1_fe_t fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5); + int i; + for (i = 0; i < 5*count; i++) { + secp256k1_fe_storage_t xs, ys, zs; random_fe(&x); random_fe_non_zero(&y); /* Test the fe equality and comparison operations. */ @@ -649,12 +701,17 @@ void run_field_misc(void) { z = x; secp256k1_fe_add(&z,&y); secp256k1_fe_normalize(&z); - /* Test the conditional move. */ - secp256k1_fe_cmov(&z, &x, 0); - CHECK(secp256k1_fe_equal_var(&x, &z) == 0); - CHECK(secp256k1_fe_cmp_var(&x, &z) != 0); - secp256k1_fe_cmov(&y, &x, 1); - CHECK(secp256k1_fe_equal_var(&x, &y)); + /* Test storage conversion and conditional moves. */ + secp256k1_fe_to_storage(&xs, &x); + secp256k1_fe_to_storage(&ys, &y); + secp256k1_fe_to_storage(&zs, &z); + secp256k1_fe_storage_cmov(&zs, &xs, 0); + CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0); + secp256k1_fe_storage_cmov(&ys, &xs, 1); + CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0); + secp256k1_fe_from_storage(&x, &xs); + secp256k1_fe_from_storage(&y, &ys); + secp256k1_fe_from_storage(&z, &zs); /* Test that mul_int, mul, and add agree. */ secp256k1_fe_add(&y, &x); secp256k1_fe_add(&y, &x); @@ -678,7 +735,8 @@ void run_field_misc(void) { void run_field_inv(void) { secp256k1_fe_t x, xi, xii; - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { random_fe_non_zero(&x); secp256k1_fe_inv(&xi, &x); CHECK(check_fe_inverse(&x, &xi)); @@ -689,7 +747,8 @@ void run_field_inv(void) { void run_field_inv_var(void) { secp256k1_fe_t x, xi, xii; - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { random_fe_non_zero(&x); secp256k1_fe_inv_var(&xi, &x); CHECK(check_fe_inverse(&x, &xi)); @@ -700,17 +759,19 @@ void run_field_inv_var(void) { void run_field_inv_all_var(void) { secp256k1_fe_t x[16], xi[16], xii[16]; + int i; /* Check it's safe to call for 0 elements */ secp256k1_fe_inv_all_var(0, xi, x); - for (int i=0; i<count; i++) { + for (i = 0; i < count; i++) { + size_t j; size_t len = (secp256k1_rand32() & 15) + 1; - for (size_t j=0; j<len; j++) + for (j = 0; j < len; j++) random_fe_non_zero(&x[j]); secp256k1_fe_inv_all_var(len, xi, x); - for (size_t j=0; j<len; j++) + for (j = 0; j < len; j++) CHECK(check_fe_inverse(&x[j], &xi[j])); secp256k1_fe_inv_all_var(len, xii, xi); - for (size_t j=0; j<len; j++) + for (j = 0; j < len; j++) CHECK(check_fe_equal(&x[j], &xii[j])); } } @@ -719,10 +780,11 @@ void run_sqr(void) { secp256k1_fe_t x, s; { + int i; secp256k1_fe_set_int(&x, 1); secp256k1_fe_negate(&x, &x, 1); - for (int i=1; i<=512; ++i) { + for (i = 1; i <= 512; ++i) { secp256k1_fe_mul_int(&x, 2); secp256k1_fe_normalize(&x); secp256k1_fe_sqr(&s, &x); @@ -746,6 +808,7 @@ void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) { void run_sqrt(void) { secp256k1_fe_t ns, x, s, t; + int i; /* Check sqrt(0) is 0 */ secp256k1_fe_set_int(&x, 0); @@ -753,7 +816,7 @@ void run_sqrt(void) { test_sqrt(&s, &x); /* Check sqrt of small squares (and their negatives) */ - for (int i=1; i<=100; i++) { + for (i = 1; i <= 100; i++) { secp256k1_fe_set_int(&x, i); secp256k1_fe_sqr(&s, &x); test_sqrt(&s, &x); @@ -762,9 +825,10 @@ void run_sqrt(void) { } /* Consistency checks for large random values */ - for (int i=0; i<10; i++) { + for (i = 0; i < 10; i++) { + int j; random_fe_non_square(&ns); - for (int j=0; j<count; j++) { + for (j = 0; j < count; j++) { random_fe(&x); secp256k1_fe_sqr(&s, &x); test_sqrt(&s, &x); @@ -787,13 +851,13 @@ void ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) { } void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) { + secp256k1_fe_t z2s; + secp256k1_fe_t u1, u2, s1, s2; CHECK(a->infinity == b->infinity); if (a->infinity) return; /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */ - secp256k1_fe_t z2s; secp256k1_fe_sqr(&z2s, &b->z); - secp256k1_fe_t u1, u2, s1, s2; secp256k1_fe_mul(&u1, &a->x, &z2s); u2 = b->x; secp256k1_fe_normalize_weak(&u2); secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z); @@ -803,6 +867,7 @@ void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) { } void test_ge(void) { + int i, i1; int runs = 4; /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4). * The second in each pair of identical points uses a random Z coordinate in the Jacobian form. @@ -814,7 +879,8 @@ void test_ge(void) { secp256k1_gej_set_infinity(&gej[0]); secp256k1_ge_clear(&ge[0]); secp256k1_ge_set_gej_var(&ge[0], &gej[0]); - for (int i = 0; i < runs; i++) { + for (i = 0; i < runs; i++) { + int j; secp256k1_ge_t g; random_group_element_test(&g); ge[1 + 4 * i] = g; @@ -825,7 +891,7 @@ void test_ge(void) { random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]); secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]); random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]); - for (int j = 0; j < 4; j++) { + for (j = 0; j < 4; j++) { random_field_element_magnitude(&ge[1 + j + 4 * i].x); random_field_element_magnitude(&ge[1 + j + 4 * i].y); random_field_element_magnitude(&gej[1 + j + 4 * i].x); @@ -834,8 +900,9 @@ void test_ge(void) { } } - for (int i1 = 0; i1 < 1 + 4 * runs; i1++) { - for (int i2 = 0; i2 < 1 + 4 * runs; i2++) { + for (i1 = 0; i1 < 1 + 4 * runs; i1++) { + int i2; + for (i2 = 0; i2 < 1 + 4 * runs; i2++) { /* Compute reference result using gej + gej (var). */ secp256k1_gej_t refj, resj; secp256k1_ge_t ref; @@ -883,11 +950,12 @@ void test_ge(void) { /* Test adding all points together in random order equals infinity. */ { + secp256k1_gej_t sum = SECP256K1_GEJ_CONST_INFINITY; secp256k1_gej_t *gej_shuffled = malloc((4 * runs + 1) * sizeof(secp256k1_gej_t)); - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { gej_shuffled[i] = gej[i]; } - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { int swap = i + secp256k1_rand32() % (4 * runs + 1 - i); if (swap != i) { secp256k1_gej_t t = gej_shuffled[i]; @@ -895,9 +963,7 @@ void test_ge(void) { gej_shuffled[swap] = t; } } - secp256k1_gej_t sum; - secp256k1_gej_set_infinity(&sum); - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]); } CHECK(secp256k1_gej_is_infinity(&sum)); @@ -908,7 +974,7 @@ void test_ge(void) { { secp256k1_ge_t *ge_set_all = malloc((4 * runs + 1) * sizeof(secp256k1_ge_t)); secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej); - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { ge_equals_gej(&ge_set_all[i], &gej[i]); } free(ge_set_all); @@ -919,7 +985,8 @@ void test_ge(void) { } void run_ge(void) { - for (int i = 0; i < count * 32; i++) { + int i; + for (i = 0; i < count * 32; i++) { test_ge(); } } @@ -928,41 +995,35 @@ void run_ge(void) { void run_ecmult_chain(void) { /* random starting point A (on the curve) */ - secp256k1_fe_t ax; VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64)); - secp256k1_fe_t ay; VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64)); - secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay); + secp256k1_gej_t a = SECP256K1_GEJ_CONST( + 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3, + 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004, + 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f, + 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f + ); /* two random initial factors xn and gn */ - static const unsigned char xni[32] = { - 0x84, 0xcc, 0x54, 0x52, 0xf7, 0xfd, 0xe1, 0xed, - 0xb4, 0xd3, 0x8a, 0x8c, 0xe9, 0xb1, 0xb8, 0x4c, - 0xce, 0xf3, 0x1f, 0x14, 0x6e, 0x56, 0x9b, 0xe9, - 0x70, 0x5d, 0x35, 0x7a, 0x42, 0x98, 0x54, 0x07 - }; - secp256k1_scalar_t xn; - secp256k1_scalar_set_b32(&xn, xni, NULL); - static const unsigned char gni[32] = { - 0xa1, 0xe5, 0x8d, 0x22, 0x55, 0x3d, 0xcd, 0x42, - 0xb2, 0x39, 0x80, 0x62, 0x5d, 0x4c, 0x57, 0xa9, - 0x6e, 0x93, 0x23, 0xd4, 0x2b, 0x31, 0x52, 0xe5, - 0xca, 0x2c, 0x39, 0x90, 0xed, 0xc7, 0xc9, 0xde - }; - secp256k1_scalar_t gn; - secp256k1_scalar_set_b32(&gn, gni, NULL); + secp256k1_scalar_t xn = SECP256K1_SCALAR_CONST( + 0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c, + 0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407 + ); + secp256k1_scalar_t gn = SECP256K1_SCALAR_CONST( + 0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9, + 0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de + ); /* two small multipliers to be applied to xn and gn in every iteration: */ - static const unsigned char xfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x13,0x37}; - secp256k1_scalar_t xf; - secp256k1_scalar_set_b32(&xf, xfi, NULL); - static const unsigned char gfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x71,0x13}; - secp256k1_scalar_t gf; - secp256k1_scalar_set_b32(&gf, gfi, NULL); + static const secp256k1_scalar_t xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337); + static const secp256k1_scalar_t gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113); /* accumulators with the resulting coefficients to A and G */ - secp256k1_scalar_t ae; - secp256k1_scalar_set_int(&ae, 1); - secp256k1_scalar_t ge; - secp256k1_scalar_set_int(&ge, 0); - /* the point being computed */ + secp256k1_scalar_t ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); + secp256k1_scalar_t ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + /* actual points */ secp256k1_gej_t x = a; - for (int i=0; i<200*count; i++) { + secp256k1_gej_t x2; + int i; + + /* the point being computed */ + x = a; + for (i = 0; i < 200*count; i++) { /* in each iteration, compute X = xn*X + gn*G; */ secp256k1_ecmult(&x, &x, &xn, &gn); /* also compute ae and ge: the actual accumulated factors for A and G */ @@ -976,78 +1037,84 @@ void run_ecmult_chain(void) { /* verify */ if (i == 19999) { - char res[132]; int resl = 132; - secp256k1_gej_get_hex(res, &resl, &x); - CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0); + /* expected result after 19999 iterations */ + secp256k1_gej_t rp = SECP256K1_GEJ_CONST( + 0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE, + 0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830, + 0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D, + 0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88 + ); + + secp256k1_gej_neg(&rp, &rp); + secp256k1_gej_add_var(&rp, &rp, &x); + CHECK(secp256k1_gej_is_infinity(&rp)); } } /* redo the computation, but directly with the resulting ae and ge coefficients: */ - secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge); - char res[132]; int resl = 132; - char res2[132]; int resl2 = 132; - secp256k1_gej_get_hex(res, &resl, &x); - secp256k1_gej_get_hex(res2, &resl2, &x2); - CHECK(strcmp(res, res2) == 0); - CHECK(strlen(res) == 131); + secp256k1_ecmult(&x2, &a, &ae, &ge); + secp256k1_gej_neg(&x2, &x2); + secp256k1_gej_add_var(&x2, &x2, &x); + CHECK(secp256k1_gej_is_infinity(&x2)); } void test_point_times_order(const secp256k1_gej_t *point) { - unsigned char pub[65]; /* X * (point + G) + (order-X) * (pointer + G) = 0 */ secp256k1_scalar_t x; - random_scalar_order_test(&x); secp256k1_scalar_t nx; - secp256k1_scalar_negate(&nx, &x); secp256k1_gej_t res1, res2; + secp256k1_ge_t res3; + unsigned char pub[65]; + int psize = 65; + random_scalar_order_test(&x); + secp256k1_scalar_negate(&nx, &x); secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */ secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ secp256k1_gej_add_var(&res1, &res1, &res2); CHECK(secp256k1_gej_is_infinity(&res1)); CHECK(secp256k1_gej_is_valid_var(&res1) == 0); - secp256k1_ge_t res3; secp256k1_ge_set_gej(&res3, &res1); CHECK(secp256k1_ge_is_infinity(&res3)); CHECK(secp256k1_ge_is_valid_var(&res3) == 0); - int psize = 65; CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0); psize = 65; CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0); } void run_point_times_order(void) { - secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2)); - for (int i=0; i<500; i++) { + int i; + secp256k1_fe_t x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2); + static const secp256k1_fe_t xr = SECP256K1_FE_CONST( + 0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C, + 0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45 + ); + for (i = 0; i < 500; i++) { secp256k1_ge_t p; if (secp256k1_ge_set_xo_var(&p, &x, 1)) { - CHECK(secp256k1_ge_is_valid_var(&p)); secp256k1_gej_t j; + CHECK(secp256k1_ge_is_valid_var(&p)); secp256k1_gej_set_ge(&j, &p); CHECK(secp256k1_gej_is_valid_var(&j)); test_point_times_order(&j); } secp256k1_fe_sqr(&x, &x); } - char c[65]; - int cl = 1; - c[1] = 123; - secp256k1_fe_get_hex(c, &cl, &x); /* Check that fe_get_hex handles a too short input. */ - CHECK(c[1] == 123); - cl = 65; - secp256k1_fe_get_hex(c, &cl, &x); - CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0); + secp256k1_fe_normalize_var(&x); + CHECK(secp256k1_fe_equal_var(&x, &xr)); } void test_wnaf(const secp256k1_scalar_t *number, int w) { secp256k1_scalar_t x, two, t; + int wnaf[256]; + int zeroes = -1; + int i; + int bits; secp256k1_scalar_set_int(&x, 0); secp256k1_scalar_set_int(&two, 2); - int wnaf[256]; - int bits = secp256k1_ecmult_wnaf(wnaf, number, w); + bits = secp256k1_ecmult_wnaf(wnaf, number, w); CHECK(bits <= 256); - int zeroes = -1; - for (int i=bits-1; i>=0; i--) { - secp256k1_scalar_mul(&x, &x, &two); + for (i = bits-1; i >= 0; i--) { int v = wnaf[i]; + secp256k1_scalar_mul(&x, &x, &two); if (v) { CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */ zeroes=0; @@ -1070,8 +1137,9 @@ void test_wnaf(const secp256k1_scalar_t *number, int w) { } void run_wnaf(void) { + int i; secp256k1_scalar_t n; - for (int i=0; i<count; i++) { + for (i = 0; i < count; i++) { random_scalar_order(&n); if (i % 1) secp256k1_scalar_negate(&n, &n); @@ -1087,26 +1155,29 @@ void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, cons } void test_ecdsa_sign_verify(void) { + secp256k1_gej_t pubj; + secp256k1_ge_t pub; + secp256k1_scalar_t one; + secp256k1_scalar_t msg, key; + secp256k1_ecdsa_sig_t sig; int recid; int getrec; - secp256k1_scalar_t msg, key; random_scalar_order_test(&msg); random_scalar_order_test(&key); - secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key); - secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj); - secp256k1_ecdsa_sig_t sig; + secp256k1_ecmult_gen(&pubj, &key); + secp256k1_ge_set_gej(&pub, &pubj); getrec = secp256k1_rand32()&1; random_sign(&sig, &key, &msg, getrec?&recid:NULL); if (getrec) CHECK(recid >= 0 && recid < 4); CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); - secp256k1_scalar_t one; secp256k1_scalar_set_int(&one, 1); secp256k1_scalar_add(&msg, &msg, &one); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); } void run_ecdsa_sign_verify(void) { - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { test_ecdsa_sign_verify(); } } @@ -1149,9 +1220,32 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char return nonce_function_rfc6979(nonce32, msg32, key32, counter - 5, data); } +int is_empty_compact_signature(const unsigned char *sig64) { + static const unsigned char res[64] = {0}; + return memcmp(sig64, res, 64) == 0; +} + void test_ecdsa_end_to_end(void) { + unsigned char extra[32] = {0x00}; unsigned char privkey[32]; unsigned char message[32]; + unsigned char privkey2[32]; + unsigned char csignature[64]; + unsigned char signature[72]; + unsigned char signature2[72]; + unsigned char signature3[72]; + unsigned char signature4[72]; + unsigned char pubkey[65]; + unsigned char recpubkey[65]; + unsigned char seckey[300]; + int signaturelen = 72; + int signaturelen2 = 72; + int signaturelen3 = 72; + int signaturelen4 = 72; + int recid = 0; + int recpubkeylen = 0; + int pubkeylen = 65; + int seckeylen = 300; /* Generate a random key and message. */ { @@ -1164,7 +1258,6 @@ void test_ecdsa_end_to_end(void) { /* Construct and verify corresponding public key. */ CHECK(secp256k1_ec_seckey_verify(privkey) == 1); - unsigned char pubkey[65]; int pubkeylen = 65; CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1); if (secp256k1_rand32() & 1) { CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen)); @@ -1172,52 +1265,73 @@ void test_ecdsa_end_to_end(void) { CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen)); /* Verify private key import and export. */ - unsigned char seckey[300]; int seckeylen = 300; CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1); - unsigned char privkey2[32]; CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1); CHECK(memcmp(privkey, privkey2, 32) == 0); /* Optionally tweak the keys using addition. */ if (secp256k1_rand32() % 3 == 0) { + int ret1; + int ret2; unsigned char rnd[32]; + unsigned char pubkey2[65]; + int pubkeylen2 = 65; secp256k1_rand256_test(rnd); - int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd); - int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd); + ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd); + ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd); CHECK(ret1 == ret2); if (ret1 == 0) return; - unsigned char pubkey2[65]; int pubkeylen2 = 65; CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); } /* Optionally tweak the keys using multiplication. */ if (secp256k1_rand32() % 3 == 0) { + int ret1; + int ret2; unsigned char rnd[32]; + unsigned char pubkey2[65]; + int pubkeylen2 = 65; secp256k1_rand256_test(rnd); - int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd); - int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd); + ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd); + ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd); CHECK(ret1 == ret2); if (ret1 == 0) return; - unsigned char pubkey2[65]; int pubkeylen2 = 65; CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); } /* Sign. */ - unsigned char signature[72]; int signaturelen = 72; CHECK(secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, NULL, NULL) == 1); + CHECK(signaturelen > 0); + CHECK(secp256k1_ecdsa_sign(message, signature2, &signaturelen2, privkey, NULL, extra) == 1); + CHECK(signaturelen2 > 0); + extra[31] = 1; + CHECK(secp256k1_ecdsa_sign(message, signature3, &signaturelen3, privkey, NULL, extra) == 1); + CHECK(signaturelen3 > 0); + extra[31] = 0; + extra[0] = 1; + CHECK(secp256k1_ecdsa_sign(message, signature4, &signaturelen4, privkey, NULL, extra) == 1); + CHECK(signaturelen3 > 0); + CHECK((signaturelen != signaturelen2) || (memcmp(signature, signature2, signaturelen) != 0)); + CHECK((signaturelen != signaturelen3) || (memcmp(signature, signature3, signaturelen) != 0)); + CHECK((signaturelen3 != signaturelen2) || (memcmp(signature3, signature2, signaturelen3) != 0)); + CHECK((signaturelen4 != signaturelen3) || (memcmp(signature4, signature3, signaturelen4) != 0)); + CHECK((signaturelen4 != signaturelen2) || (memcmp(signature4, signature2, signaturelen4) != 0)); + CHECK((signaturelen4 != signaturelen) || (memcmp(signature4, signature, signaturelen4) != 0)); /* Verify. */ CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1); + CHECK(secp256k1_ecdsa_verify(message, signature2, signaturelen2, pubkey, pubkeylen) == 1); + CHECK(secp256k1_ecdsa_verify(message, signature3, signaturelen3, pubkey, pubkeylen) == 1); + CHECK(secp256k1_ecdsa_verify(message, signature4, signaturelen4, pubkey, pubkeylen) == 1); /* Destroy signature and verify again. */ signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255); CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1); /* Compact sign. */ - unsigned char csignature[64]; int recid = 0; CHECK(secp256k1_ecdsa_sign_compact(message, csignature, privkey, NULL, NULL, &recid) == 1); + CHECK(!is_empty_compact_signature(csignature)); /* Recover. */ - unsigned char recpubkey[65]; int recpubkeylen = 0; CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1); CHECK(recpubkeylen == pubkeylen); CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0); @@ -1230,6 +1344,8 @@ void test_ecdsa_end_to_end(void) { } void test_random_pubkeys(void) { + secp256k1_ge_t elem; + secp256k1_ge_t elem2; unsigned char in[65]; /* Generate some randomly sized pubkeys. */ uint32_t r = secp256k1_rand32(); @@ -1247,8 +1363,6 @@ void test_random_pubkeys(void) { r>>=11; if (len > 1) secp256k1_rand256(&in[1]); if (len > 33) secp256k1_rand256(&in[33]); - secp256k1_ge_t elem; - secp256k1_ge_t elem2; if (secp256k1_eckey_pubkey_parse(&elem, in, len)) { unsigned char out[65]; unsigned char firstb; @@ -1282,13 +1396,15 @@ void test_random_pubkeys(void) { } void run_random_pubkeys(void) { - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { test_random_pubkeys(); } } void run_ecdsa_end_to_end(void) { - for (int i=0; i<64*count; i++) { + int i; + for (i = 0; i < 64*count; i++) { test_ecdsa_end_to_end(); } } @@ -1314,12 +1430,8 @@ void test_ecdsa_edge_cases(void) { 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57 }; unsigned char pubkey[65]; + int t; int pubkeylen = 65; - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0)); - CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1)); - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2)); - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3)); - /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ const unsigned char sigb64[64] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, @@ -1333,7 +1445,16 @@ void test_ecdsa_edge_cases(void) { }; unsigned char pubkeyb[33]; int pubkeyblen = 33; - for (int recid = 0; recid < 4; recid++) { + int recid; + + CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0)); + CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1)); + CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2)); + CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3)); + + for (recid = 0; recid < 4; recid++) { + int i; + int recid2; /* (4,4) encoded in DER. */ unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01}; @@ -1376,7 +1497,7 @@ void test_ecdsa_edge_cases(void) { }; CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid)); CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1); - for (int recid2 = 0; recid2 < 4; recid2++) { + for (recid2 = 0; recid2 < 4; recid2++) { unsigned char pubkey2b[33]; int pubkey2blen = 33; CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2)); @@ -1402,10 +1523,11 @@ void test_ecdsa_edge_cases(void) { sigbder[7]--; CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2); CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2); - for(int i = 0; i<8; i++) { + for(i = 0; i < 8; i++) { + int c; unsigned char orig = sigbder[i]; /*Try every single-byte change.*/ - for (int c=0; c<256; c++) { + for (c = 0; c < 256; c++) { if (c == orig ) continue; sigbder[i] = c; CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == @@ -1417,16 +1539,17 @@ void test_ecdsa_edge_cases(void) { /* Test the case where ECDSA recomputes a point that is infinity. */ { + secp256k1_gej_t keyj; + secp256k1_ge_t key; + secp256k1_scalar_t msg; secp256k1_ecdsa_sig_t sig; secp256k1_scalar_set_int(&sig.s, 1); secp256k1_scalar_negate(&sig.s, &sig.s); secp256k1_scalar_inverse(&sig.s, &sig.s); secp256k1_scalar_set_int(&sig.r, 1); - secp256k1_gej_t keyj; secp256k1_ecmult_gen(&keyj, &sig.r); - secp256k1_ge_t key; secp256k1_ge_set_gej(&key, &keyj); - secp256k1_scalar_t msg = sig.s; + msg = sig.s; CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0); } @@ -1489,69 +1612,97 @@ void test_ecdsa_edge_cases(void) { unsigned char sig[72]; int siglen = 72; CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 0); + CHECK(siglen == 0); CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 0); + CHECK(siglen == 0); msg[31] = 0xaa; siglen = 72; CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 1); + CHECK(siglen > 0); CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 1); + CHECK(siglen > 0); siglen = 10; CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) != 1); + CHECK(siglen == 0); } /* Nonce function corner cases. */ - { + for (t = 0; t < 2; t++) { + static const unsigned char zero[32] = {0x00}; + int i; unsigned char key[32]; unsigned char msg[32]; unsigned char sig[72]; - memset(key, 0, 32); + unsigned char sig2[72]; + secp256k1_ecdsa_sig_t s[512]; + int siglen = 72; + int siglen2 = 72; + int recid2; + const unsigned char *extra; + extra = t == 0 ? NULL : zero; memset(msg, 0, 32); - key[31] = 1; msg[31] = 1; - int siglen = 72; - int recid; + /* High key results in signature failure. */ + memset(key, 0xFF, 32); + CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0); + CHECK(siglen == 0); + /* Zero key results in signature failure. */ + memset(key, 0, 32); + CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0); + CHECK(siglen == 0); /* Nonce function failure results in signature failure. */ - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, NULL) == 0); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, NULL, &recid) == 0); + key[31] = 1; + CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, extra) == 0); + CHECK(siglen == 0); + CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, extra, &recid) == 0); + CHECK(is_empty_compact_signature(sig)); /* The retry loop successfully makes its way to the first good value. */ - unsigned char sig2[72]; - int siglen2 = 72; siglen = 72; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, NULL) == 1); - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, NULL) == 1); + CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, extra) == 1); + CHECK(siglen > 0); + CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, extra) == 1); + CHECK(siglen > 0); CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0)); - int recid2; - CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, NULL, &recid) == 1); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, NULL, &recid2) == 1); + CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, extra, &recid) == 1); + CHECK(!is_empty_compact_signature(sig)); + CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, extra, &recid2) == 1); + CHECK(!is_empty_compact_signature(sig2)); CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0)); /* The default nonce function is determinstic. */ siglen = 72; siglen2 = 72; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, NULL) == 1); - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 1); + CHECK(siglen > 0); + CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1); + CHECK(siglen2 > 0); CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0)); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, NULL, &recid) == 1); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, NULL, &recid2) == 1); + CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, extra, &recid) == 1); + CHECK(!is_empty_compact_signature(sig)); + CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, extra, &recid2) == 1); + CHECK(!is_empty_compact_signature(sig)); CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0)); /* The default nonce function changes output with different messages. */ - secp256k1_ecdsa_sig_t s[512]; - for(int i=0; i<256; i++) { + for(i = 0; i < 256; i++) { + int j; siglen2 = 72; msg[0] = i; - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1); + CHECK(!is_empty_compact_signature(sig)); CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2)); - for (int j=0; j<i; j++) { + for (j = 0; j < i; j++) { CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r)); } } msg[0] = 0; msg[31] = 2; /* The default nonce function changes output with different keys. */ - for(int i=256; i<512; i++) { + for(i = 256; i < 512; i++) { + int j; siglen2 = 72; key[0] = i - 256; - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1); CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2)); - for (int j=0; j<i; j++) { + for (j = 0; j < i; j++) { CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r)); } } @@ -1581,8 +1732,8 @@ void run_ecdsa_edge_cases(void) { EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) { unsigned char privkey[300]; int privkeylen; - int compr = secp256k1_rand32() & 1; const unsigned char* pbegin = privkey; + int compr = secp256k1_rand32() & 1; EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr)); CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); @@ -1591,31 +1742,32 @@ EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) { } void test_ecdsa_openssl(void) { + secp256k1_gej_t qj; + secp256k1_ge_t q; + secp256k1_ecdsa_sig_t sig; + secp256k1_scalar_t one; + secp256k1_scalar_t msg2; secp256k1_scalar_t key, msg; + EC_KEY *ec_key; + unsigned int sigsize = 80; + int secp_sigsize = 80; unsigned char message[32]; + unsigned char signature[80]; secp256k1_rand256_test(message); secp256k1_scalar_set_b32(&msg, message, NULL); random_scalar_order_test(&key); - secp256k1_gej_t qj; secp256k1_ecmult_gen(&qj, &key); - secp256k1_ge_t q; secp256k1_ge_set_gej(&q, &qj); - EC_KEY *ec_key = get_openssl_key(&key); + ec_key = get_openssl_key(&key); CHECK(ec_key); - unsigned char signature[80]; - unsigned int sigsize = 80; CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); - secp256k1_ecdsa_sig_t sig; CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize)); CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); - secp256k1_scalar_t one; secp256k1_scalar_set_int(&one, 1); - secp256k1_scalar_t msg2; secp256k1_scalar_add(&msg2, &msg, &one); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2)); random_sign(&sig, &key, &msg, NULL); - int secp_sigsize = 80; CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig)); CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1); @@ -1623,33 +1775,54 @@ void test_ecdsa_openssl(void) { } void run_ecdsa_openssl(void) { - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { test_ecdsa_openssl(); } } #endif int main(int argc, char **argv) { + unsigned char seed16[16] = {0}; + unsigned char run32[32] = {0}; /* find iteration count */ if (argc > 1) { count = strtol(argv[1], NULL, 0); } /* find random seed */ - uint64_t seed; if (argc > 2) { - seed = strtoull(argv[2], NULL, 0); + int pos = 0; + const char* ch = argv[2]; + while (pos < 16 && ch[0] != 0 && ch[1] != 0) { + unsigned short sh; + if (sscanf(ch, "%2hx", &sh)) { + seed16[pos] = sh; + } else { + break; + } + ch += 2; + pos++; + } } else { FILE *frand = fopen("/dev/urandom", "r"); - if (!frand || !fread(&seed, sizeof(seed), 1, frand)) { - seed = time(NULL) * 1337; + if (!frand || !fread(&seed16, sizeof(seed16), 1, frand)) { + uint64_t t = time(NULL) * (uint64_t)1337; + seed16[0] ^= t; + seed16[1] ^= t >> 8; + seed16[2] ^= t >> 16; + seed16[3] ^= t >> 24; + seed16[4] ^= t >> 32; + seed16[5] ^= t >> 40; + seed16[6] ^= t >> 48; + seed16[7] ^= t >> 56; } fclose(frand); } - secp256k1_rand_seed(seed); + secp256k1_rand_seed(seed16); printf("test count = %i\n", count); - printf("random seed = %llu\n", (unsigned long long)seed); + printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]); /* initialize */ secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); @@ -1657,12 +1830,6 @@ int main(int argc, char **argv) { /* initializing a second time shouldn't cause any harm or memory leaks. */ secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); - /* Likewise, re-running the internal init functions should be harmless. */ - secp256k1_fe_start(); - secp256k1_ge_start(); - secp256k1_scalar_start(); - secp256k1_ecdsa_start(); - run_sha256_tests(); run_hmac_sha256_tests(); run_rfc6979_hmac_sha256_tests(); @@ -1680,6 +1847,7 @@ int main(int argc, char **argv) { run_field_inv_var(); run_field_inv_all_var(); run_field_misc(); + run_field_convert(); run_sqr(); run_sqrt(); @@ -1700,18 +1868,13 @@ int main(int argc, char **argv) { run_ecdsa_openssl(); #endif - printf("random run = %llu\n", (unsigned long long)secp256k1_rand32() + ((unsigned long long)secp256k1_rand32() << 32)); + secp256k1_rand256(run32); + printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]); /* shutdown */ secp256k1_stop(); /* shutting down twice shouldn't cause any double frees. */ secp256k1_stop(); - - /* Same for the internal shutdown functions. */ - secp256k1_fe_stop(); - secp256k1_ge_stop(); - secp256k1_scalar_stop(); - secp256k1_ecdsa_stop(); return 0; } |