diff options
author | Antoine Poinsot <darosior@protonmail.com> | 2021-08-24 15:39:47 +0200 |
---|---|---|
committer | Antoine Poinsot <darosior@protonmail.com> | 2023-02-11 14:12:09 +0100 |
commit | 22c5b00345063bdeb8b6d3da8b5692d18f92bfb7 (patch) | |
tree | fe2b395a2da1b3bc93d0ab2bcc140d73713e1480 /src/test | |
parent | d0b1f613c2a20b2de2878be2de19f827347dcc24 (diff) |
miniscript: satisfaction support
This introduces the logic to "sign for" a Miniscript.
Co-Authored-By: Pieter Wuille <pieter.wuille@gmail.com>
Diffstat (limited to 'src/test')
-rw-r--r-- | src/test/miniscript_tests.cpp | 232 |
1 files changed, 230 insertions, 2 deletions
diff --git a/src/test/miniscript_tests.cpp b/src/test/miniscript_tests.cpp index 9387c01e73..99893cc7d1 100644 --- a/src/test/miniscript_tests.cpp +++ b/src/test/miniscript_tests.cpp @@ -2,18 +2,23 @@ // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. - +#include <stdint.h> #include <string> +#include <vector> #include <test/util/setup_common.h> #include <boost/test/unit_test.hpp> +#include <core_io.h> #include <hash.h> #include <pubkey.h> #include <uint256.h> #include <crypto/ripemd160.h> #include <crypto/sha256.h> +#include <script/interpreter.h> #include <script/miniscript.h> +#include <script/standard.h> +#include <script/script_error.h> namespace { @@ -24,15 +29,22 @@ struct TestData { //! A map from the public keys to their CKeyIDs (faster than hashing every time). std::map<CPubKey, CKeyID> pkhashes; std::map<CKeyID, CPubKey> pkmap; + std::map<CPubKey, std::vector<unsigned char>> signatures; // Various precomputed hashes std::vector<std::vector<unsigned char>> sha256; std::vector<std::vector<unsigned char>> ripemd160; std::vector<std::vector<unsigned char>> hash256; std::vector<std::vector<unsigned char>> hash160; + std::map<std::vector<unsigned char>, std::vector<unsigned char>> sha256_preimages; + std::map<std::vector<unsigned char>, std::vector<unsigned char>> ripemd160_preimages; + std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash256_preimages; + std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash160_preimages; TestData() { + // All our signatures sign (and are required to sign) this constant message. + auto const MESSAGE_HASH = uint256S("f5cd94e18b6fe77dd7aca9e35c2b0c9cbd86356c80a71065"); // We generate 255 public keys and 255 hashes of each type. for (int i = 1; i <= 255; ++i) { // This 32-byte array functions as both private key data and hash preimage (31 zero bytes plus any nonzero byte). @@ -48,18 +60,28 @@ struct TestData { pkhashes.emplace(pubkey, keyid); pkmap.emplace(keyid, pubkey); + // Compute ECDSA signatures on MESSAGE_HASH with the private keys. + std::vector<unsigned char> sig; + BOOST_CHECK(key.Sign(MESSAGE_HASH, sig)); + sig.push_back(1); // sighash byte + signatures.emplace(pubkey, sig); + // Compute various hashes std::vector<unsigned char> hash; hash.resize(32); CSHA256().Write(keydata, 32).Finalize(hash.data()); sha256.push_back(hash); + sha256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); CHash256().Write(keydata).Finalize(hash); hash256.push_back(hash); + hash256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); hash.resize(20); CRIPEMD160().Write(keydata, 32).Finalize(hash.data()); ripemd160.push_back(hash); + ripemd160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); CHash160().Write(keydata).Finalize(hash); hash160.push_back(hash); + hash160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); } } }; @@ -67,7 +89,27 @@ struct TestData { //! Global TestData object std::unique_ptr<const TestData> g_testdata; -/** A class encapsulating conversion routing for CPubKey. */ +//! A classification of leaf conditions in miniscripts (excluding true/false). +enum class ChallengeType { + SHA256, + RIPEMD160, + HASH256, + HASH160, + OLDER, + AFTER, + PK +}; + +/* With each leaf condition we associate a challenge number. + * For hashes it's just the first 4 bytes of the hash. For pubkeys, it's the last 4 bytes. + */ +uint32_t ChallengeNumber(const CPubKey& pubkey) { return ReadLE32(pubkey.data() + 29); } +uint32_t ChallengeNumber(const std::vector<unsigned char>& hash) { return ReadLE32(hash.data()); } + +//! A Challenge is a combination of type of leaf condition and its challenge number. +typedef std::pair<ChallengeType, uint32_t> Challenge; + +/** A class encapulating conversion routing for CPubKey. */ struct KeyConverter { typedef CPubKey Key; @@ -117,12 +159,197 @@ struct KeyConverter { } }; +/** A class that encapsulates all signing/hash revealing operations. */ +struct Satisfier : public KeyConverter { + //! Which keys/timelocks/hash preimages are available. + std::set<Challenge> supported; + + //! Implement simplified CLTV logic: stack value must exactly match an entry in `supported`. + bool CheckAfter(uint32_t value) const { + return supported.count(Challenge(ChallengeType::AFTER, value)); + } + + //! Implement simplified CSV logic: stack value must exactly match an entry in `supported`. + bool CheckOlder(uint32_t value) const { + return supported.count(Challenge(ChallengeType::OLDER, value)); + } + + //! Produce a signature for the given key. + miniscript::Availability Sign(const CPubKey& key, std::vector<unsigned char>& sig) const { + if (supported.count(Challenge(ChallengeType::PK, ChallengeNumber(key)))) { + auto it = g_testdata->signatures.find(key); + if (it == g_testdata->signatures.end()) return miniscript::Availability::NO; + sig = it->second; + return miniscript::Availability::YES; + } + return miniscript::Availability::NO; + } + + //! Helper function for the various hash based satisfactions. + miniscript::Availability SatHash(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage, ChallengeType chtype) const { + if (!supported.count(Challenge(chtype, ChallengeNumber(hash)))) return miniscript::Availability::NO; + const auto& m = + chtype == ChallengeType::SHA256 ? g_testdata->sha256_preimages : + chtype == ChallengeType::HASH256 ? g_testdata->hash256_preimages : + chtype == ChallengeType::RIPEMD160 ? g_testdata->ripemd160_preimages : + g_testdata->hash160_preimages; + auto it = m.find(hash); + if (it == m.end()) return miniscript::Availability::NO; + preimage = it->second; + return miniscript::Availability::YES; + } + + // Functions that produce the preimage for hashes of various types. + miniscript::Availability SatSHA256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::SHA256); } + miniscript::Availability SatRIPEMD160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::RIPEMD160); } + miniscript::Availability SatHASH256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::HASH256); } + miniscript::Availability SatHASH160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::HASH160); } +}; + +/** Mocking signature/timelock checker. + * + * It holds a pointer to a Satisfier object, to determine which timelocks are supposed to be available. + */ +class TestSignatureChecker : public BaseSignatureChecker { + const Satisfier& ctx; + +public: + TestSignatureChecker(const Satisfier& in_ctx LIFETIMEBOUND) : ctx(in_ctx) {} + + bool CheckECDSASignature(const std::vector<unsigned char>& sig, const std::vector<unsigned char>& pubkey, const CScript& scriptcode, SigVersion sigversion) const override { + CPubKey pk(pubkey); + if (!pk.IsValid()) return false; + // Instead of actually running signature validation, check if the signature matches the precomputed one for this key. + auto it = g_testdata->signatures.find(pk); + if (it == g_testdata->signatures.end()) return false; + return sig == it->second; + } + + bool CheckLockTime(const CScriptNum& locktime) const override { + // Delegate to Satisfier. + return ctx.CheckAfter(locktime.GetInt64()); + } + + bool CheckSequence(const CScriptNum& sequence) const override { + // Delegate to Satisfier. + return ctx.CheckOlder(sequence.GetInt64()); + } +}; + //! Singleton instance of KeyConverter. const KeyConverter CONVERTER{}; +using Fragment = miniscript::Fragment; +using NodeRef = miniscript::NodeRef<CPubKey>; // https://github.com/llvm/llvm-project/issues/53444 // NOLINTNEXTLINE(misc-unused-using-decls) using miniscript::operator"" _mst; +using Node = miniscript::Node<CPubKey>; + +/** Compute all challenges (pubkeys, hashes, timelocks) that occur in a given Miniscript. */ +std::set<Challenge> FindChallenges(const NodeRef& ref) { + std::set<Challenge> chal; + for (const auto& key : ref->keys) { + chal.emplace(ChallengeType::PK, ChallengeNumber(key)); + } + if (ref->fragment == miniscript::Fragment::OLDER) { + chal.emplace(ChallengeType::OLDER, ref->k); + } else if (ref->fragment == miniscript::Fragment::AFTER) { + chal.emplace(ChallengeType::AFTER, ref->k); + } else if (ref->fragment == miniscript::Fragment::SHA256) { + chal.emplace(ChallengeType::SHA256, ChallengeNumber(ref->data)); + } else if (ref->fragment == miniscript::Fragment::RIPEMD160) { + chal.emplace(ChallengeType::RIPEMD160, ChallengeNumber(ref->data)); + } else if (ref->fragment == miniscript::Fragment::HASH256) { + chal.emplace(ChallengeType::HASH256, ChallengeNumber(ref->data)); + } else if (ref->fragment == miniscript::Fragment::HASH160) { + chal.emplace(ChallengeType::HASH160, ChallengeNumber(ref->data)); + } + for (const auto& sub : ref->subs) { + auto sub_chal = FindChallenges(sub); + chal.insert(sub_chal.begin(), sub_chal.end()); + } + return chal; +} + +/** Run random satisfaction tests. */ +void TestSatisfy(const std::string& testcase, const NodeRef& node) { + auto script = node->ToScript(CONVERTER); + auto challenges = FindChallenges(node); // Find all challenges in the generated miniscript. + std::vector<Challenge> challist(challenges.begin(), challenges.end()); + for (int iter = 0; iter < 3; ++iter) { + Shuffle(challist.begin(), challist.end(), g_insecure_rand_ctx); + Satisfier satisfier; + TestSignatureChecker checker(satisfier); + bool prev_mal_success = false, prev_nonmal_success = false; + // Go over all challenges involved in this miniscript in random order. + for (int add = -1; add < (int)challist.size(); ++add) { + if (add >= 0) satisfier.supported.insert(challist[add]); // The first iteration does not add anything + + // Run malleable satisfaction algorithm. + const CScript script_pubkey = CScript() << OP_0 << WitnessV0ScriptHash(script); + CScriptWitness witness_mal; + const bool mal_success = node->Satisfy(satisfier, witness_mal.stack, false) == miniscript::Availability::YES; + witness_mal.stack.push_back(std::vector<unsigned char>(script.begin(), script.end())); + + // Run non-malleable satisfaction algorithm. + CScriptWitness witness_nonmal; + const bool nonmal_success = node->Satisfy(satisfier, witness_nonmal.stack, true) == miniscript::Availability::YES; + witness_nonmal.stack.push_back(std::vector<unsigned char>(script.begin(), script.end())); + + if (nonmal_success) { + // Non-malleable satisfactions are bounded by GetStackSize(). + BOOST_CHECK(witness_nonmal.stack.size() <= node->GetStackSize()); + // If a non-malleable satisfaction exists, the malleable one must also exist, and be identical to it. + BOOST_CHECK(mal_success); + BOOST_CHECK(witness_nonmal.stack == witness_mal.stack); + + // Test non-malleable satisfaction. + ScriptError serror; + bool res = VerifyScript(CScript(), script_pubkey, &witness_nonmal, STANDARD_SCRIPT_VERIFY_FLAGS, checker, &serror); + // Non-malleable satisfactions are guaranteed to be valid if ValidSatisfactions(). + if (node->ValidSatisfactions()) BOOST_CHECK(res); + // More detailed: non-malleable satisfactions must be valid, or could fail with ops count error (if CheckOpsLimit failed), + // or with a stack size error (if CheckStackSize check fails). + BOOST_CHECK(res || + (!node->CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) || + (!node->CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE)); + } + + if (mal_success && (!nonmal_success || witness_mal.stack != witness_nonmal.stack)) { + // Test malleable satisfaction only if it's different from the non-malleable one. + ScriptError serror; + bool res = VerifyScript(CScript(), script_pubkey, &witness_mal, STANDARD_SCRIPT_VERIFY_FLAGS, checker, &serror); + // Malleable satisfactions are not guaranteed to be valid under any conditions, but they can only + // fail due to stack or ops limits. + BOOST_CHECK(res || serror == ScriptError::SCRIPT_ERR_OP_COUNT || serror == ScriptError::SCRIPT_ERR_STACK_SIZE); + } + + if (node->IsSane()) { + // For sane nodes, the two algorithms behave identically. + BOOST_CHECK_EQUAL(mal_success, nonmal_success); + } + + // Adding more satisfied conditions can never remove our ability to produce a satisfaction. + BOOST_CHECK(mal_success >= prev_mal_success); + // For nonmalleable solutions this is only true if the added condition is PK; + // for other conditions, adding one may make an valid satisfaction become malleable. If the script + // is sane, this cannot happen however. + if (node->IsSane() || add < 0 || challist[add].first == ChallengeType::PK) { + BOOST_CHECK(nonmal_success >= prev_nonmal_success); + } + // Remember results for the next added challenge. + prev_mal_success = mal_success; + prev_nonmal_success = nonmal_success; + } + + bool satisfiable = node->IsSatisfiable([](const Node&) { return true; }); + // If the miniscript was satisfiable at all, a satisfaction must be found after all conditions are added. + BOOST_CHECK_EQUAL(prev_mal_success, satisfiable); + // If the miniscript is sane and satisfiable, a nonmalleable satisfaction must eventually be found. + if (node->IsSane()) BOOST_CHECK_EQUAL(prev_nonmal_success, satisfiable); + } +} enum TestMode : int { TESTMODE_INVALID = 0, @@ -152,6 +379,7 @@ void Test(const std::string& ms, const std::string& hexscript, int mode, int ops BOOST_CHECK_MESSAGE(inferred_miniscript->ToScript(CONVERTER) == computed_script, "Roundtrip failure: miniscript->script != miniscript->script->miniscript->script: " + ms); if (opslimit != -1) BOOST_CHECK_MESSAGE((int)node->GetOps() == opslimit, "Ops limit mismatch: " << ms << " (" << node->GetOps() << " vs " << opslimit << ")"); if (stacklimit != -1) BOOST_CHECK_MESSAGE((int)node->GetStackSize() == stacklimit, "Stack limit mismatch: " << ms << " (" << node->GetStackSize() << " vs " << stacklimit << ")"); + TestSatisfy(ms, node); } } } // namespace |