aboutsummaryrefslogtreecommitdiff
path: root/src/test
diff options
context:
space:
mode:
authorAntoine Poinsot <darosior@protonmail.com>2021-08-24 15:39:47 +0200
committerAntoine Poinsot <darosior@protonmail.com>2023-02-11 14:12:09 +0100
commit22c5b00345063bdeb8b6d3da8b5692d18f92bfb7 (patch)
treefe2b395a2da1b3bc93d0ab2bcc140d73713e1480 /src/test
parentd0b1f613c2a20b2de2878be2de19f827347dcc24 (diff)
miniscript: satisfaction support
This introduces the logic to "sign for" a Miniscript. Co-Authored-By: Pieter Wuille <pieter.wuille@gmail.com>
Diffstat (limited to 'src/test')
-rw-r--r--src/test/miniscript_tests.cpp232
1 files changed, 230 insertions, 2 deletions
diff --git a/src/test/miniscript_tests.cpp b/src/test/miniscript_tests.cpp
index 9387c01e73..99893cc7d1 100644
--- a/src/test/miniscript_tests.cpp
+++ b/src/test/miniscript_tests.cpp
@@ -2,18 +2,23 @@
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
-
+#include <stdint.h>
#include <string>
+#include <vector>
#include <test/util/setup_common.h>
#include <boost/test/unit_test.hpp>
+#include <core_io.h>
#include <hash.h>
#include <pubkey.h>
#include <uint256.h>
#include <crypto/ripemd160.h>
#include <crypto/sha256.h>
+#include <script/interpreter.h>
#include <script/miniscript.h>
+#include <script/standard.h>
+#include <script/script_error.h>
namespace {
@@ -24,15 +29,22 @@ struct TestData {
//! A map from the public keys to their CKeyIDs (faster than hashing every time).
std::map<CPubKey, CKeyID> pkhashes;
std::map<CKeyID, CPubKey> pkmap;
+ std::map<CPubKey, std::vector<unsigned char>> signatures;
// Various precomputed hashes
std::vector<std::vector<unsigned char>> sha256;
std::vector<std::vector<unsigned char>> ripemd160;
std::vector<std::vector<unsigned char>> hash256;
std::vector<std::vector<unsigned char>> hash160;
+ std::map<std::vector<unsigned char>, std::vector<unsigned char>> sha256_preimages;
+ std::map<std::vector<unsigned char>, std::vector<unsigned char>> ripemd160_preimages;
+ std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash256_preimages;
+ std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash160_preimages;
TestData()
{
+ // All our signatures sign (and are required to sign) this constant message.
+ auto const MESSAGE_HASH = uint256S("f5cd94e18b6fe77dd7aca9e35c2b0c9cbd86356c80a71065");
// We generate 255 public keys and 255 hashes of each type.
for (int i = 1; i <= 255; ++i) {
// This 32-byte array functions as both private key data and hash preimage (31 zero bytes plus any nonzero byte).
@@ -48,18 +60,28 @@ struct TestData {
pkhashes.emplace(pubkey, keyid);
pkmap.emplace(keyid, pubkey);
+ // Compute ECDSA signatures on MESSAGE_HASH with the private keys.
+ std::vector<unsigned char> sig;
+ BOOST_CHECK(key.Sign(MESSAGE_HASH, sig));
+ sig.push_back(1); // sighash byte
+ signatures.emplace(pubkey, sig);
+
// Compute various hashes
std::vector<unsigned char> hash;
hash.resize(32);
CSHA256().Write(keydata, 32).Finalize(hash.data());
sha256.push_back(hash);
+ sha256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
CHash256().Write(keydata).Finalize(hash);
hash256.push_back(hash);
+ hash256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
hash.resize(20);
CRIPEMD160().Write(keydata, 32).Finalize(hash.data());
ripemd160.push_back(hash);
+ ripemd160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
CHash160().Write(keydata).Finalize(hash);
hash160.push_back(hash);
+ hash160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
}
}
};
@@ -67,7 +89,27 @@ struct TestData {
//! Global TestData object
std::unique_ptr<const TestData> g_testdata;
-/** A class encapsulating conversion routing for CPubKey. */
+//! A classification of leaf conditions in miniscripts (excluding true/false).
+enum class ChallengeType {
+ SHA256,
+ RIPEMD160,
+ HASH256,
+ HASH160,
+ OLDER,
+ AFTER,
+ PK
+};
+
+/* With each leaf condition we associate a challenge number.
+ * For hashes it's just the first 4 bytes of the hash. For pubkeys, it's the last 4 bytes.
+ */
+uint32_t ChallengeNumber(const CPubKey& pubkey) { return ReadLE32(pubkey.data() + 29); }
+uint32_t ChallengeNumber(const std::vector<unsigned char>& hash) { return ReadLE32(hash.data()); }
+
+//! A Challenge is a combination of type of leaf condition and its challenge number.
+typedef std::pair<ChallengeType, uint32_t> Challenge;
+
+/** A class encapulating conversion routing for CPubKey. */
struct KeyConverter {
typedef CPubKey Key;
@@ -117,12 +159,197 @@ struct KeyConverter {
}
};
+/** A class that encapsulates all signing/hash revealing operations. */
+struct Satisfier : public KeyConverter {
+ //! Which keys/timelocks/hash preimages are available.
+ std::set<Challenge> supported;
+
+ //! Implement simplified CLTV logic: stack value must exactly match an entry in `supported`.
+ bool CheckAfter(uint32_t value) const {
+ return supported.count(Challenge(ChallengeType::AFTER, value));
+ }
+
+ //! Implement simplified CSV logic: stack value must exactly match an entry in `supported`.
+ bool CheckOlder(uint32_t value) const {
+ return supported.count(Challenge(ChallengeType::OLDER, value));
+ }
+
+ //! Produce a signature for the given key.
+ miniscript::Availability Sign(const CPubKey& key, std::vector<unsigned char>& sig) const {
+ if (supported.count(Challenge(ChallengeType::PK, ChallengeNumber(key)))) {
+ auto it = g_testdata->signatures.find(key);
+ if (it == g_testdata->signatures.end()) return miniscript::Availability::NO;
+ sig = it->second;
+ return miniscript::Availability::YES;
+ }
+ return miniscript::Availability::NO;
+ }
+
+ //! Helper function for the various hash based satisfactions.
+ miniscript::Availability SatHash(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage, ChallengeType chtype) const {
+ if (!supported.count(Challenge(chtype, ChallengeNumber(hash)))) return miniscript::Availability::NO;
+ const auto& m =
+ chtype == ChallengeType::SHA256 ? g_testdata->sha256_preimages :
+ chtype == ChallengeType::HASH256 ? g_testdata->hash256_preimages :
+ chtype == ChallengeType::RIPEMD160 ? g_testdata->ripemd160_preimages :
+ g_testdata->hash160_preimages;
+ auto it = m.find(hash);
+ if (it == m.end()) return miniscript::Availability::NO;
+ preimage = it->second;
+ return miniscript::Availability::YES;
+ }
+
+ // Functions that produce the preimage for hashes of various types.
+ miniscript::Availability SatSHA256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::SHA256); }
+ miniscript::Availability SatRIPEMD160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::RIPEMD160); }
+ miniscript::Availability SatHASH256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::HASH256); }
+ miniscript::Availability SatHASH160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { return SatHash(hash, preimage, ChallengeType::HASH160); }
+};
+
+/** Mocking signature/timelock checker.
+ *
+ * It holds a pointer to a Satisfier object, to determine which timelocks are supposed to be available.
+ */
+class TestSignatureChecker : public BaseSignatureChecker {
+ const Satisfier& ctx;
+
+public:
+ TestSignatureChecker(const Satisfier& in_ctx LIFETIMEBOUND) : ctx(in_ctx) {}
+
+ bool CheckECDSASignature(const std::vector<unsigned char>& sig, const std::vector<unsigned char>& pubkey, const CScript& scriptcode, SigVersion sigversion) const override {
+ CPubKey pk(pubkey);
+ if (!pk.IsValid()) return false;
+ // Instead of actually running signature validation, check if the signature matches the precomputed one for this key.
+ auto it = g_testdata->signatures.find(pk);
+ if (it == g_testdata->signatures.end()) return false;
+ return sig == it->second;
+ }
+
+ bool CheckLockTime(const CScriptNum& locktime) const override {
+ // Delegate to Satisfier.
+ return ctx.CheckAfter(locktime.GetInt64());
+ }
+
+ bool CheckSequence(const CScriptNum& sequence) const override {
+ // Delegate to Satisfier.
+ return ctx.CheckOlder(sequence.GetInt64());
+ }
+};
+
//! Singleton instance of KeyConverter.
const KeyConverter CONVERTER{};
+using Fragment = miniscript::Fragment;
+using NodeRef = miniscript::NodeRef<CPubKey>;
// https://github.com/llvm/llvm-project/issues/53444
// NOLINTNEXTLINE(misc-unused-using-decls)
using miniscript::operator"" _mst;
+using Node = miniscript::Node<CPubKey>;
+
+/** Compute all challenges (pubkeys, hashes, timelocks) that occur in a given Miniscript. */
+std::set<Challenge> FindChallenges(const NodeRef& ref) {
+ std::set<Challenge> chal;
+ for (const auto& key : ref->keys) {
+ chal.emplace(ChallengeType::PK, ChallengeNumber(key));
+ }
+ if (ref->fragment == miniscript::Fragment::OLDER) {
+ chal.emplace(ChallengeType::OLDER, ref->k);
+ } else if (ref->fragment == miniscript::Fragment::AFTER) {
+ chal.emplace(ChallengeType::AFTER, ref->k);
+ } else if (ref->fragment == miniscript::Fragment::SHA256) {
+ chal.emplace(ChallengeType::SHA256, ChallengeNumber(ref->data));
+ } else if (ref->fragment == miniscript::Fragment::RIPEMD160) {
+ chal.emplace(ChallengeType::RIPEMD160, ChallengeNumber(ref->data));
+ } else if (ref->fragment == miniscript::Fragment::HASH256) {
+ chal.emplace(ChallengeType::HASH256, ChallengeNumber(ref->data));
+ } else if (ref->fragment == miniscript::Fragment::HASH160) {
+ chal.emplace(ChallengeType::HASH160, ChallengeNumber(ref->data));
+ }
+ for (const auto& sub : ref->subs) {
+ auto sub_chal = FindChallenges(sub);
+ chal.insert(sub_chal.begin(), sub_chal.end());
+ }
+ return chal;
+}
+
+/** Run random satisfaction tests. */
+void TestSatisfy(const std::string& testcase, const NodeRef& node) {
+ auto script = node->ToScript(CONVERTER);
+ auto challenges = FindChallenges(node); // Find all challenges in the generated miniscript.
+ std::vector<Challenge> challist(challenges.begin(), challenges.end());
+ for (int iter = 0; iter < 3; ++iter) {
+ Shuffle(challist.begin(), challist.end(), g_insecure_rand_ctx);
+ Satisfier satisfier;
+ TestSignatureChecker checker(satisfier);
+ bool prev_mal_success = false, prev_nonmal_success = false;
+ // Go over all challenges involved in this miniscript in random order.
+ for (int add = -1; add < (int)challist.size(); ++add) {
+ if (add >= 0) satisfier.supported.insert(challist[add]); // The first iteration does not add anything
+
+ // Run malleable satisfaction algorithm.
+ const CScript script_pubkey = CScript() << OP_0 << WitnessV0ScriptHash(script);
+ CScriptWitness witness_mal;
+ const bool mal_success = node->Satisfy(satisfier, witness_mal.stack, false) == miniscript::Availability::YES;
+ witness_mal.stack.push_back(std::vector<unsigned char>(script.begin(), script.end()));
+
+ // Run non-malleable satisfaction algorithm.
+ CScriptWitness witness_nonmal;
+ const bool nonmal_success = node->Satisfy(satisfier, witness_nonmal.stack, true) == miniscript::Availability::YES;
+ witness_nonmal.stack.push_back(std::vector<unsigned char>(script.begin(), script.end()));
+
+ if (nonmal_success) {
+ // Non-malleable satisfactions are bounded by GetStackSize().
+ BOOST_CHECK(witness_nonmal.stack.size() <= node->GetStackSize());
+ // If a non-malleable satisfaction exists, the malleable one must also exist, and be identical to it.
+ BOOST_CHECK(mal_success);
+ BOOST_CHECK(witness_nonmal.stack == witness_mal.stack);
+
+ // Test non-malleable satisfaction.
+ ScriptError serror;
+ bool res = VerifyScript(CScript(), script_pubkey, &witness_nonmal, STANDARD_SCRIPT_VERIFY_FLAGS, checker, &serror);
+ // Non-malleable satisfactions are guaranteed to be valid if ValidSatisfactions().
+ if (node->ValidSatisfactions()) BOOST_CHECK(res);
+ // More detailed: non-malleable satisfactions must be valid, or could fail with ops count error (if CheckOpsLimit failed),
+ // or with a stack size error (if CheckStackSize check fails).
+ BOOST_CHECK(res ||
+ (!node->CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) ||
+ (!node->CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE));
+ }
+
+ if (mal_success && (!nonmal_success || witness_mal.stack != witness_nonmal.stack)) {
+ // Test malleable satisfaction only if it's different from the non-malleable one.
+ ScriptError serror;
+ bool res = VerifyScript(CScript(), script_pubkey, &witness_mal, STANDARD_SCRIPT_VERIFY_FLAGS, checker, &serror);
+ // Malleable satisfactions are not guaranteed to be valid under any conditions, but they can only
+ // fail due to stack or ops limits.
+ BOOST_CHECK(res || serror == ScriptError::SCRIPT_ERR_OP_COUNT || serror == ScriptError::SCRIPT_ERR_STACK_SIZE);
+ }
+
+ if (node->IsSane()) {
+ // For sane nodes, the two algorithms behave identically.
+ BOOST_CHECK_EQUAL(mal_success, nonmal_success);
+ }
+
+ // Adding more satisfied conditions can never remove our ability to produce a satisfaction.
+ BOOST_CHECK(mal_success >= prev_mal_success);
+ // For nonmalleable solutions this is only true if the added condition is PK;
+ // for other conditions, adding one may make an valid satisfaction become malleable. If the script
+ // is sane, this cannot happen however.
+ if (node->IsSane() || add < 0 || challist[add].first == ChallengeType::PK) {
+ BOOST_CHECK(nonmal_success >= prev_nonmal_success);
+ }
+ // Remember results for the next added challenge.
+ prev_mal_success = mal_success;
+ prev_nonmal_success = nonmal_success;
+ }
+
+ bool satisfiable = node->IsSatisfiable([](const Node&) { return true; });
+ // If the miniscript was satisfiable at all, a satisfaction must be found after all conditions are added.
+ BOOST_CHECK_EQUAL(prev_mal_success, satisfiable);
+ // If the miniscript is sane and satisfiable, a nonmalleable satisfaction must eventually be found.
+ if (node->IsSane()) BOOST_CHECK_EQUAL(prev_nonmal_success, satisfiable);
+ }
+}
enum TestMode : int {
TESTMODE_INVALID = 0,
@@ -152,6 +379,7 @@ void Test(const std::string& ms, const std::string& hexscript, int mode, int ops
BOOST_CHECK_MESSAGE(inferred_miniscript->ToScript(CONVERTER) == computed_script, "Roundtrip failure: miniscript->script != miniscript->script->miniscript->script: " + ms);
if (opslimit != -1) BOOST_CHECK_MESSAGE((int)node->GetOps() == opslimit, "Ops limit mismatch: " << ms << " (" << node->GetOps() << " vs " << opslimit << ")");
if (stacklimit != -1) BOOST_CHECK_MESSAGE((int)node->GetStackSize() == stacklimit, "Stack limit mismatch: " << ms << " (" << node->GetStackSize() << " vs " << stacklimit << ")");
+ TestSatisfy(ms, node);
}
}
} // namespace