aboutsummaryrefslogtreecommitdiff
path: root/src/test/bloom_tests.cpp
diff options
context:
space:
mode:
authorGavin Andresen <gavinandresen@gmail.com>2015-04-24 13:14:45 -0400
committerPieter Wuille <pieter.wuille@gmail.com>2015-04-30 07:58:29 -0700
commit69a5f8be0abda1e462f8ef44acadd2cbfaa850fb (patch)
tree0369fcb002ab0d63aba1522b151ff89248c44818 /src/test/bloom_tests.cpp
parent8a10000222cb49eb253b41802ecf312adaf79439 (diff)
Rolling bloom filter class
For when you need to keep track of the last N items you've seen, and can tolerate some false-positives. Rebased-by: Pieter Wuille <pieter.wuille@gmail.com>
Diffstat (limited to 'src/test/bloom_tests.cpp')
-rw-r--r--src/test/bloom_tests.cpp78
1 files changed, 78 insertions, 0 deletions
diff --git a/src/test/bloom_tests.cpp b/src/test/bloom_tests.cpp
index 73a146f05c..1bda8a7ea1 100644
--- a/src/test/bloom_tests.cpp
+++ b/src/test/bloom_tests.cpp
@@ -8,6 +8,7 @@
#include "clientversion.h"
#include "key.h"
#include "merkleblock.h"
+#include "random.h"
#include "serialize.h"
#include "streams.h"
#include "uint256.h"
@@ -459,4 +460,81 @@ BOOST_AUTO_TEST_CASE(merkle_block_4_test_update_none)
BOOST_CHECK(!filter.contains(COutPoint(uint256S("0x02981fa052f0481dbc5868f4fc2166035a10f27a03cfd2de67326471df5bc041"), 0)));
}
+static std::vector<unsigned char> RandomData()
+{
+ uint256 r = GetRandHash();
+ return std::vector<unsigned char>(r.begin(), r.end());
+}
+
+BOOST_AUTO_TEST_CASE(rolling_bloom)
+{
+ // last-100-entry, 1% false positive:
+ CRollingBloomFilter rb1(100, 0.01, 0);
+
+ // Overfill:
+ static const int DATASIZE=399;
+ std::vector<unsigned char> data[DATASIZE];
+ for (int i = 0; i < DATASIZE; i++) {
+ data[i] = RandomData();
+ rb1.insert(data[i]);
+ }
+ // Last 100 guaranteed to be remembered:
+ for (int i = 299; i < DATASIZE; i++) {
+ BOOST_CHECK(rb1.contains(data[i]));
+ }
+
+ // false positive rate is 1%, so we should get about 100 hits if
+ // testing 10,000 random keys. We get worst-case false positive
+ // behavior when the filter is as full as possible, which is
+ // when we've inserted one minus an integer multiple of nElement*2.
+ unsigned int nHits = 0;
+ for (int i = 0; i < 10000; i++) {
+ if (rb1.contains(RandomData()))
+ ++nHits;
+ }
+ // Run test_bitcoin with --log_level=message to see BOOST_TEST_MESSAGEs:
+ BOOST_TEST_MESSAGE("RollingBloomFilter got " << nHits << " false positives (~100 expected)");
+
+ // Insanely unlikely to get a fp count outside this range:
+ BOOST_CHECK(nHits > 25);
+ BOOST_CHECK(nHits < 175);
+
+ BOOST_CHECK(rb1.contains(data[DATASIZE-1]));
+ rb1.clear();
+ BOOST_CHECK(!rb1.contains(data[DATASIZE-1]));
+
+ // Now roll through data, make sure last 100 entries
+ // are always remembered:
+ for (int i = 0; i < DATASIZE; i++) {
+ if (i >= 100)
+ BOOST_CHECK(rb1.contains(data[i-100]));
+ rb1.insert(data[i]);
+ }
+
+ // Insert 999 more random entries:
+ for (int i = 0; i < 999; i++) {
+ rb1.insert(RandomData());
+ }
+ // Sanity check to make sure the filter isn't just filling up:
+ nHits = 0;
+ for (int i = 0; i < DATASIZE; i++) {
+ if (rb1.contains(data[i]))
+ ++nHits;
+ }
+ // Expect about 5 false positives, more than 100 means
+ // something is definitely broken.
+ BOOST_TEST_MESSAGE("RollingBloomFilter got " << nHits << " false positives (~5 expected)");
+ BOOST_CHECK(nHits < 100);
+
+ // last-1000-entry, 0.01% false positive:
+ CRollingBloomFilter rb2(1000, 0.001, 0);
+ for (int i = 0; i < DATASIZE; i++) {
+ rb2.insert(data[i]);
+ }
+ // ... room for all of them:
+ for (int i = 0; i < DATASIZE; i++) {
+ BOOST_CHECK(rb2.contains(data[i]));
+ }
+}
+
BOOST_AUTO_TEST_SUITE_END()