aboutsummaryrefslogtreecommitdiff
path: root/src/script/standard.cpp
diff options
context:
space:
mode:
authorPieter Wuille <pieter@wuille.net>2021-06-04 15:06:16 -0700
committerPieter Wuille <pieter@wuille.net>2021-06-18 11:28:47 -0700
commitd637a9b397816e34652d0c4d383308e39770737a (patch)
treefde3fcc1ca404e53e353b8883c95c64a4fa1479b /src/script/standard.cpp
parentc7388e5ada394b7fe94d6263fb02e9dd28ab367e (diff)
Taproot descriptor inference
Diffstat (limited to 'src/script/standard.cpp')
-rw-r--r--src/script/standard.cpp135
1 files changed, 135 insertions, 0 deletions
diff --git a/src/script/standard.cpp b/src/script/standard.cpp
index 748f00dda5..b3dd5442fc 100644
--- a/src/script/standard.cpp
+++ b/src/script/standard.cpp
@@ -520,3 +520,138 @@ TaprootSpendData TaprootBuilder::GetSpendData() const
}
return spd;
}
+
+std::optional<std::vector<std::tuple<int, CScript, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
+{
+ // Verify that the output matches the assumed Merkle root and internal key.
+ auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
+ if (!tweak || tweak->first != output) return std::nullopt;
+ // If the Merkle root is 0, the tree is empty, and we're done.
+ std::vector<std::tuple<int, CScript, int>> ret;
+ if (spenddata.merkle_root.IsNull()) return ret;
+
+ /** Data structure to represent the nodes of the tree we're going to be build. */
+ struct TreeNode {
+ /** Hash of this none, if known; 0 otherwise. */
+ uint256 hash;
+ /** The left and right subtrees (note that their order is irrelevant). */
+ std::unique_ptr<TreeNode> sub[2];
+ /** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
+ * nullptr otherwise. */
+ const std::pair<CScript, int>* leaf = nullptr;
+ /** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
+ bool explored = false;
+ /** Whether or not this node is an inner node (unknown until explored = true). */
+ bool inner;
+ /** Whether or not we have produced output for this subtree. */
+ bool done = false;
+ };
+
+ // Build tree from the provides branches.
+ TreeNode root;
+ root.hash = spenddata.merkle_root;
+ for (const auto& [key, control_blocks] : spenddata.scripts) {
+ const auto& [script, leaf_ver] = key;
+ for (const auto& control : control_blocks) {
+ // Skip script records with nonsensical leaf version.
+ if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
+ // Skip script records with invalid control block sizes.
+ if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
+ ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
+ // Skip script records that don't match the control block.
+ if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
+ // Skip script records that don't match the provided Merkle root.
+ const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
+ const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
+ if (merkle_root != spenddata.merkle_root) continue;
+
+ TreeNode* node = &root;
+ size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
+ for (size_t depth = 0; depth < levels; ++depth) {
+ // Can't descend into a node which we already know is a leaf.
+ if (node->explored && !node->inner) return std::nullopt;
+
+ // Extract partner hash from Merkle branch in control block.
+ uint256 hash;
+ std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
+ control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
+ hash.begin());
+
+ if (node->sub[0]) {
+ // Descend into the existing left or right branch.
+ bool desc = false;
+ for (int i = 0; i < 2; ++i) {
+ if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
+ node->sub[i]->hash = hash;
+ node = &*node->sub[1-i];
+ desc = true;
+ break;
+ }
+ }
+ if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
+ } else {
+ // We're in an unexplored node. Create subtrees and descend.
+ node->explored = true;
+ node->inner = true;
+ node->sub[0] = std::make_unique<TreeNode>();
+ node->sub[1] = std::make_unique<TreeNode>();
+ node->sub[1]->hash = hash;
+ node = &*node->sub[0];
+ }
+ }
+ // Cannot turn a known inner node into a leaf.
+ if (node->sub[0]) return std::nullopt;
+ node->explored = true;
+ node->inner = false;
+ node->leaf = &key;
+ node->hash = leaf_hash;
+ }
+ }
+
+ // Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
+ // overflowing the call stack (the tree may be 128 levels deep).
+ std::vector<TreeNode*> stack{&root};
+ while (!stack.empty()) {
+ TreeNode& node = *stack.back();
+ if (!node.explored) {
+ // Unexplored node, which means the tree is incomplete.
+ return std::nullopt;
+ } else if (!node.inner) {
+ // Leaf node; produce output.
+ ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
+ node.done = true;
+ stack.pop_back();
+ } else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
+ (CHashWriter{HASHER_TAPBRANCH} << node.sub[1]->hash << node.sub[1]->hash).GetSHA256() == node.hash) {
+ // Whenever there are nodes with two identical subtrees under it, we run into a problem:
+ // the control blocks for the leaves underneath those will be identical as well, and thus
+ // they will all be matched to the same path in the tree. The result is that at the location
+ // where the duplicate occurred, the left child will contain a normal tree that can be explored
+ // and processed, but the right one will remain unexplored.
+ //
+ // This situation can be detected, by encountering an inner node with unexplored right subtree
+ // with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
+ //
+ // To deal with this, simply process the left tree a second time (set its done flag to false;
+ // noting that the done flag of its children have already been set to false after processing
+ // those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
+ // subtree to true.
+ node.sub[0]->done = false;
+ node.sub[1]->done = true;
+ } else if (node.sub[0]->done && node.sub[1]->done) {
+ // An internal node which we're finished with.
+ node.sub[0]->done = false;
+ node.sub[1]->done = false;
+ node.done = true;
+ stack.pop_back();
+ } else if (!node.sub[0]->done) {
+ // An internal node whose left branch hasn't been processed yet. Do so first.
+ stack.push_back(&*node.sub[0]);
+ } else if (!node.sub[1]->done) {
+ // An internal node whose right branch hasn't been processed yet. Do so first.
+ stack.push_back(&*node.sub[1]);
+ }
+ }
+
+ return ret;
+}