aboutsummaryrefslogtreecommitdiff
path: root/src/crypto
diff options
context:
space:
mode:
authorJonas Schnelli <dev@jonasschnelli.ch>2019-03-11 16:15:45 +0100
committerJonas Schnelli <dev@jonasschnelli.ch>2019-06-25 15:13:02 +0200
commitaf5d1b5f4a7b56628a76af21284c258d845894f0 (patch)
tree1a86118f130acfed029545110e685b7dc1bdd4e1 /src/crypto
parent332c6134bb15384e5b91c631e821fe52a591d3bc (diff)
Add ChaCha20Poly1305@Bitcoin AEAD implementation
Diffstat (limited to 'src/crypto')
-rw-r--r--src/crypto/chacha_poly_aead.cpp126
-rw-r--r--src/crypto/chacha_poly_aead.h146
2 files changed, 272 insertions, 0 deletions
diff --git a/src/crypto/chacha_poly_aead.cpp b/src/crypto/chacha_poly_aead.cpp
new file mode 100644
index 0000000000..6a3d43deb1
--- /dev/null
+++ b/src/crypto/chacha_poly_aead.cpp
@@ -0,0 +1,126 @@
+// Copyright (c) 2019 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <crypto/chacha_poly_aead.h>
+
+#include <crypto/common.h>
+#include <crypto/poly1305.h>
+#include <support/cleanse.h>
+
+#include <assert.h>
+#include <string.h>
+
+#include <cstdio>
+#include <limits>
+
+#ifndef HAVE_TIMINGSAFE_BCMP
+
+int timingsafe_bcmp(const unsigned char* b1, const unsigned char* b2, size_t n)
+{
+ const unsigned char *p1 = b1, *p2 = b2;
+ int ret = 0;
+
+ for (; n > 0; n--)
+ ret |= *p1++ ^ *p2++;
+ return (ret != 0);
+}
+
+#endif // TIMINGSAFE_BCMP
+
+ChaCha20Poly1305AEAD::ChaCha20Poly1305AEAD(const unsigned char* K_1, size_t K_1_len, const unsigned char* K_2, size_t K_2_len)
+{
+ assert(K_1_len == CHACHA20_POLY1305_AEAD_KEY_LEN);
+ assert(K_2_len == CHACHA20_POLY1305_AEAD_KEY_LEN);
+ m_chacha_main.SetKey(K_1, CHACHA20_POLY1305_AEAD_KEY_LEN);
+ m_chacha_header.SetKey(K_2, CHACHA20_POLY1305_AEAD_KEY_LEN);
+
+ // set the cached sequence number to uint64 max which hints for an unset cache.
+ // we can't hit uint64 max since the rekey rule (which resets the sequence number) is 1GB
+ m_cached_aad_seqnr = std::numeric_limits<uint64_t>::max();
+}
+
+bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int aad_pos, unsigned char* dest, size_t dest_len /* length of the output buffer for sanity checks */, const unsigned char* src, size_t src_len, bool is_encrypt)
+{
+ // check buffer boundaries
+ if (
+ // if we encrypt, make sure the source contains at least the expected AAD and the destination has at least space for the source + MAC
+ (is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN || dest_len < src_len + POLY1305_TAGLEN)) ||
+ // if we decrypt, make sure the source contains at least the expected AAD+MAC and the destination has at least space for the source - MAC
+ (!is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN || dest_len < src_len - POLY1305_TAGLEN))) {
+ return false;
+ }
+
+ unsigned char expected_tag[POLY1305_TAGLEN], poly_key[POLY1305_KEYLEN];
+ memset(poly_key, 0, sizeof(poly_key));
+ m_chacha_main.SetIV(seqnr_payload);
+
+ // block counter 0 for the poly1305 key
+ // use lower 32bytes for the poly1305 key
+ // (throws away 32 unused bytes (upper 32) from this ChaCha20 round)
+ m_chacha_main.Seek(0);
+ m_chacha_main.Crypt(poly_key, poly_key, sizeof(poly_key));
+
+ // if decrypting, verify the tag prior to decryption
+ if (!is_encrypt) {
+ const unsigned char* tag = src + src_len - POLY1305_TAGLEN;
+ poly1305_auth(expected_tag, src, src_len - POLY1305_TAGLEN, poly_key);
+
+ // constant time compare the calculated MAC with the provided MAC
+ if (timingsafe_bcmp(expected_tag, tag, POLY1305_TAGLEN) != 0) {
+ memory_cleanse(expected_tag, sizeof(expected_tag));
+ memory_cleanse(poly_key, sizeof(poly_key));
+ return false;
+ }
+ memory_cleanse(expected_tag, sizeof(expected_tag));
+ // MAC has been successfully verified, make sure we don't covert it in decryption
+ src_len -= POLY1305_TAGLEN;
+ }
+
+ // calculate and cache the next 64byte keystream block if requested sequence number is not yet the cache
+ if (m_cached_aad_seqnr != seqnr_aad) {
+ m_cached_aad_seqnr = seqnr_aad;
+ m_chacha_header.SetIV(seqnr_aad);
+ m_chacha_header.Seek(0);
+ m_chacha_header.Keystream(m_aad_keystream_buffer, CHACHA20_ROUND_OUTPUT);
+ }
+ // crypt the AAD (3 bytes message length) with given position in AAD cipher instance keystream
+ dest[0] = src[0] ^ m_aad_keystream_buffer[aad_pos];
+ dest[1] = src[1] ^ m_aad_keystream_buffer[aad_pos + 1];
+ dest[2] = src[2] ^ m_aad_keystream_buffer[aad_pos + 2];
+
+ // Set the playload ChaCha instance block counter to 1 and crypt the payload
+ m_chacha_main.Seek(1);
+ m_chacha_main.Crypt(src + CHACHA20_POLY1305_AEAD_AAD_LEN, dest + CHACHA20_POLY1305_AEAD_AAD_LEN, src_len - CHACHA20_POLY1305_AEAD_AAD_LEN);
+
+ // If encrypting, calculate and append tag
+ if (is_encrypt) {
+ // the poly1305 tag expands over the AAD (3 bytes length) & encrypted payload
+ poly1305_auth(dest + src_len, dest, src_len, poly_key);
+ }
+
+ // cleanse no longer required MAC and polykey
+ memory_cleanse(poly_key, sizeof(poly_key));
+ return true;
+}
+
+bool ChaCha20Poly1305AEAD::GetLength(uint32_t* len24_out, uint64_t seqnr_aad, int aad_pos, const uint8_t* ciphertext)
+{
+ // enforce valid aad position to avoid accessing outside of the 64byte keystream cache
+ // (there is space for 21 times 3 bytes)
+ assert(aad_pos >= 0 && aad_pos < CHACHA20_ROUND_OUTPUT - CHACHA20_POLY1305_AEAD_AAD_LEN);
+ if (m_cached_aad_seqnr != seqnr_aad) {
+ // we need to calculate the 64 keystream bytes since we reached a new aad sequence number
+ m_cached_aad_seqnr = seqnr_aad;
+ m_chacha_header.SetIV(seqnr_aad); // use LE for the nonce
+ m_chacha_header.Seek(0); // block counter 0
+ m_chacha_header.Keystream(m_aad_keystream_buffer, CHACHA20_ROUND_OUTPUT); // write keystream to the cache
+ }
+
+ // decrypt the ciphertext length by XORing the right position of the 64byte keystream cache with the ciphertext
+ *len24_out = (ciphertext[0] ^ m_aad_keystream_buffer[aad_pos + 0]) |
+ (ciphertext[1] ^ m_aad_keystream_buffer[aad_pos + 1]) << 8 |
+ (ciphertext[2] ^ m_aad_keystream_buffer[aad_pos + 2]) << 16;
+
+ return true;
+}
diff --git a/src/crypto/chacha_poly_aead.h b/src/crypto/chacha_poly_aead.h
new file mode 100644
index 0000000000..b3ba781cdd
--- /dev/null
+++ b/src/crypto/chacha_poly_aead.h
@@ -0,0 +1,146 @@
+// Copyright (c) 2019 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#ifndef BITCOIN_CRYPTO_CHACHA_POLY_AEAD_H
+#define BITCOIN_CRYPTO_CHACHA_POLY_AEAD_H
+
+#include <crypto/chacha20.h>
+
+#include <cmath>
+
+static constexpr int CHACHA20_POLY1305_AEAD_KEY_LEN = 32;
+static constexpr int CHACHA20_POLY1305_AEAD_AAD_LEN = 3; /* 3 bytes length */
+static constexpr int CHACHA20_ROUND_OUTPUT = 64; /* 64 bytes per round */
+static constexpr int AAD_PACKAGES_PER_ROUND = 21; /* 64 / 3 round down*/
+
+/* A AEAD class for ChaCha20-Poly1305@bitcoin.
+ *
+ * ChaCha20 is a stream cipher designed by Daniel Bernstein and described in
+ * <ref>[http://cr.yp.to/chacha/chacha-20080128.pdf ChaCha20]</ref>. It operates
+ * by permuting 128 fixed bits, 128 or 256 bits of key, a 64 bit nonce and a 64
+ * bit counter into 64 bytes of output. This output is used as a keystream, with
+ * any unused bytes simply discarded.
+ *
+ * Poly1305 <ref>[http://cr.yp.to/mac/poly1305-20050329.pdf Poly1305]</ref>, also
+ * by Daniel Bernstein, is a one-time Carter-Wegman MAC that computes a 128 bit
+ * integrity tag given a message and a single-use 256 bit secret key.
+ *
+ * The chacha20-poly1305@bitcoin combines these two primitives into an
+ * authenticated encryption mode. The construction used is based on that proposed
+ * for TLS by Adam Langley in
+ * <ref>[http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-03 "ChaCha20
+ * and Poly1305 based Cipher Suites for TLS", Adam Langley]</ref>, but differs in
+ * the layout of data passed to the MAC and in the addition of encryption of the
+ * packet lengths.
+ *
+ * ==== Detailed Construction ====
+ *
+ * The chacha20-poly1305@bitcoin cipher requires two 256 bits of key material as
+ * output from the key exchange. Each key (K_1 and K_2) are used by two separate
+ * instances of chacha20.
+ *
+ * The instance keyed by K_1 is a stream cipher that is used only to encrypt the 3
+ * byte packet length field and has its own sequence number. The second instance,
+ * keyed by K_2, is used in conjunction with poly1305 to build an AEAD
+ * (Authenticated Encryption with Associated Data) that is used to encrypt and
+ * authenticate the entire packet.
+ *
+ * Two separate cipher instances are used here so as to keep the packet lengths
+ * confidential but not create an oracle for the packet payload cipher by
+ * decrypting and using the packet length prior to checking the MAC. By using an
+ * independently-keyed cipher instance to encrypt the length, an active attacker
+ * seeking to exploit the packet input handling as a decryption oracle can learn
+ * nothing about the payload contents or its MAC (assuming key derivation,
+ * ChaCha20 and Poly1305 are secure).
+ *
+ * The AEAD is constructed as follows: for each packet, generate a Poly1305 key by
+ * taking the first 256 bits of ChaCha20 stream output generated using K_2, an IV
+ * consisting of the packet sequence number encoded as an LE uint64 and a ChaCha20
+ * block counter of zero. The K_2 ChaCha20 block counter is then set to the
+ * little-endian encoding of 1 (i.e. {1, 0, 0, 0, 0, 0, 0, 0}) and this instance
+ * is used for encryption of the packet payload.
+ *
+ * ==== Packet Handling ====
+ *
+ * When receiving a packet, the length must be decrypted first. When 3 bytes of
+ * ciphertext length have been received, they may be decrypted.
+ *
+ * A ChaCha20 round always calculates 64bytes which is sufficient to crypt 21
+ * times a 3 bytes length field (21*3 = 63). The length field sequence number can
+ * thus be used 21 times (keystream caching).
+ *
+ * The length field must be enc-/decrypted with the ChaCha20 keystream keyed with
+ * K_1 defined by block counter 0, the length field sequence number in little
+ * endian and a keystream position from 0 to 60.
+ *
+ * Once the entire packet has been received, the MAC MUST be checked before
+ * decryption. A per-packet Poly1305 key is generated as described above and the
+ * MAC tag calculated using Poly1305 with this key over the ciphertext of the
+ * packet length and the payload together. The calculated MAC is then compared in
+ * constant time with the one appended to the packet and the packet decrypted
+ * using ChaCha20 as described above (with K_2, the packet sequence number as
+ * nonce and a starting block counter of 1).
+ *
+ * Detection of an invalid MAC MUST lead to immediate connection termination.
+ *
+ * To send a packet, first encode the 3 byte length and encrypt it using K_1 as
+ * described above. Encrypt the packet payload (using K_2) and append it to the
+ * encrypted length. Finally, calculate a MAC tag and append it.
+ *
+ * The initiating peer MUST use <code>K_1_A, K_2_A</code> to encrypt messages on
+ * the send channel, <code>K_1_B, K_2_B</code> MUST be used to decrypt messages on
+ * the receive channel.
+ *
+ * The responding peer MUST use <code>K_1_A, K_2_A</code> to decrypt messages on
+ * the receive channel, <code>K_1_B, K_2_B</code> MUST be used to encrypt messages
+ * on the send channel.
+ *
+ * Optimized implementations of ChaCha20-Poly1305@bitcoin are relatively fast in
+ * general, therefore it is very likely that encrypted messages require not more
+ * CPU cycles per bytes then the current unencrypted p2p message format
+ * (ChaCha20/Poly1305 versus double SHA256).
+ *
+ * The initial packet sequence numbers are 0.
+ *
+ * K_2 ChaCha20 cipher instance (payload) must never reuse a {key, nonce} for
+ * encryption nor may it be used to encrypt more than 2^70 bytes under the same
+ * {key, nonce}.
+ *
+ * K_1 ChaCha20 cipher instance (length field/AAD) must never reuse a {key, nonce,
+ * position-in-keystream} for encryption nor may it be used to encrypt more than
+ * 2^70 bytes under the same {key, nonce}.
+ *
+ * We use message sequence numbers for both communication directions.
+ */
+
+class ChaCha20Poly1305AEAD
+{
+private:
+ ChaCha20 m_chacha_main; // payload and poly1305 key-derivation cipher instance
+ ChaCha20 m_chacha_header; // AAD cipher instance (encrypted length)
+ unsigned char m_aad_keystream_buffer[CHACHA20_ROUND_OUTPUT]; // aad keystream cache
+ uint64_t m_cached_aad_seqnr; // aad keystream cache hint
+
+public:
+ ChaCha20Poly1305AEAD(const unsigned char* K_1, size_t K_1_len, const unsigned char* K_2, size_t K_2_len);
+
+ explicit ChaCha20Poly1305AEAD(const ChaCha20Poly1305AEAD&) = delete;
+
+ /** Encrypts/decrypts a packet
+ seqnr_payload, the message sequence number
+ seqnr_aad, the messages AAD sequence number which allows reuse of the AAD keystream
+ aad_pos, position to use in the AAD keystream to encrypt the AAD
+ dest, output buffer, must be of a size equal or larger then CHACHA20_POLY1305_AEAD_AAD_LEN + payload (+ POLY1305_TAG_LEN in encryption) bytes
+ destlen, length of the destination buffer
+ src, the AAD+payload to encrypt or the AAD+payload+MAC to decrypt
+ src_len, the length of the source buffer
+ is_encrypt, set to true if we encrypt (creates and appends the MAC instead of verifying it)
+ */
+ bool Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int aad_pos, unsigned char* dest, size_t dest_len, const unsigned char* src, size_t src_len, bool is_encrypt);
+
+ /** decrypts the 3 bytes AAD data and decodes it into a uint32_t field */
+ bool GetLength(uint32_t* len24_out, uint64_t seqnr_aad, int aad_pos, const uint8_t* ciphertext);
+};
+
+#endif // BITCOIN_CRYPTO_CHACHA_POLY_AEAD_H