diff options
author | Pieter Wuille <pieter.wuille@gmail.com> | 2016-05-11 19:36:38 +0200 |
---|---|---|
committer | Pieter Wuille <pieter.wuille@gmail.com> | 2016-05-11 19:37:02 +0200 |
commit | cd2be4419e9d8c6445fecc877b50198dc918a81f (patch) | |
tree | 4e490121ea95decee565f00e97110cfc560cabd7 /src/crypto | |
parent | 423ca302a3ee87000530da3c105f269b8fabece7 (diff) | |
parent | a545127fbccef4ee674d18d43732ce00ba97f782 (diff) |
Merge commit 'a545127fbccef4ee674d18d43732ce00ba97f782' as 'src/crypto/ctaes'
Diffstat (limited to 'src/crypto')
-rw-r--r-- | src/crypto/ctaes/COPYING | 21 | ||||
-rw-r--r-- | src/crypto/ctaes/README.md | 41 | ||||
-rw-r--r-- | src/crypto/ctaes/bench.c | 170 | ||||
-rw-r--r-- | src/crypto/ctaes/ctaes.c | 556 | ||||
-rw-r--r-- | src/crypto/ctaes/ctaes.h | 41 | ||||
-rw-r--r-- | src/crypto/ctaes/test.c | 110 |
6 files changed, 939 insertions, 0 deletions
diff --git a/src/crypto/ctaes/COPYING b/src/crypto/ctaes/COPYING new file mode 100644 index 0000000000..415b202a2a --- /dev/null +++ b/src/crypto/ctaes/COPYING @@ -0,0 +1,21 @@ +The MIT License (MIT) + +Copyright (c) 2016 Pieter Wuille + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/src/crypto/ctaes/README.md b/src/crypto/ctaes/README.md new file mode 100644 index 0000000000..0e7fe17751 --- /dev/null +++ b/src/crypto/ctaes/README.md @@ -0,0 +1,41 @@ +ctaes +===== + +Simple C module for constant-time AES encryption and decryption. + +Features: +* Simple, pure C code without any dependencies. +* No tables or data-dependent branches whatsoever, but using bit sliced approach from https://eprint.iacr.org/2009/129.pdf. +* Very small object code: slightly over 4k of executable code when compiled with -Os. +* Slower than implementations based on precomputed tables or specialized instructions, but can do ~15 MB/s on modern CPUs. + +Performance +----------- + +Compiled with GCC 5.3.1 with -O3, on an Intel(R) Core(TM) i7-4800MQ CPU, numbers in CPU cycles: + +| Algorithm | Key schedule | Encryption per byte | Decryption per byte | +| --------- | ------------:| -------------------:| -------------------:| +| AES-128 | 2.8k | 154 | 161 | +| AES-192 | 3.1k | 169 | 181 | +| AES-256 | 4.0k | 191 | 203 | + +Build steps +----------- + +Object code: + + $ gcc -O3 ctaes.c -c -o ctaes.o + +Tests: + + $ gcc -O3 ctaes.c test.c -o test + +Benchmark: + + $ gcc -O3 ctaes.c bench.c -o bench + +Review +------ + +Results of a formal review of the code can be found in http://bitcoin.sipa.be/ctaes/review.zip diff --git a/src/crypto/ctaes/bench.c b/src/crypto/ctaes/bench.c new file mode 100644 index 0000000000..a86df496c8 --- /dev/null +++ b/src/crypto/ctaes/bench.c @@ -0,0 +1,170 @@ +#include <stdio.h> +#include <math.h> +#include "sys/time.h" + +#include "ctaes.h" + +static double gettimedouble(void) { + struct timeval tv; + gettimeofday(&tv, NULL); + return tv.tv_usec * 0.000001 + tv.tv_sec; +} + +static void print_number(double x) { + double y = x; + int c = 0; + if (y < 0.0) { + y = -y; + } + while (y < 100.0) { + y *= 10.0; + c++; + } + printf("%.*f", c, x); +} + +static void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) { + int i; + double min = HUGE_VAL; + double sum = 0.0; + double max = 0.0; + for (i = 0; i < count; i++) { + double begin, total; + if (setup != NULL) { + setup(data); + } + begin = gettimedouble(); + benchmark(data); + total = gettimedouble() - begin; + if (teardown != NULL) { + teardown(data); + } + if (total < min) { + min = total; + } + if (total > max) { + max = total; + } + sum += total; + } + printf("%s: min ", name); + print_number(min * 1000000000.0 / iter); + printf("ns / avg "); + print_number((sum / count) * 1000000000.0 / iter); + printf("ns / max "); + print_number(max * 1000000000.0 / iter); + printf("ns\n"); +} + +static void bench_AES128_init(void* data) { + AES128_ctx* ctx = (AES128_ctx*)data; + int i; + for (i = 0; i < 50000; i++) { + AES128_init(ctx, (unsigned char*)ctx); + } +} + +static void bench_AES128_encrypt_setup(void* data) { + AES128_ctx* ctx = (AES128_ctx*)data; + static const unsigned char key[16] = {0}; + AES128_init(ctx, key); +} + +static void bench_AES128_encrypt(void* data) { + const AES128_ctx* ctx = (const AES128_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES128_encrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES128_decrypt(void* data) { + const AES128_ctx* ctx = (const AES128_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES128_decrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES192_init(void* data) { + AES192_ctx* ctx = (AES192_ctx*)data; + int i; + for (i = 0; i < 50000; i++) { + AES192_init(ctx, (unsigned char*)ctx); + } +} + +static void bench_AES192_encrypt_setup(void* data) { + AES192_ctx* ctx = (AES192_ctx*)data; + static const unsigned char key[16] = {0}; + AES192_init(ctx, key); +} + +static void bench_AES192_encrypt(void* data) { + const AES192_ctx* ctx = (const AES192_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES192_encrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES192_decrypt(void* data) { + const AES192_ctx* ctx = (const AES192_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES192_decrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES256_init(void* data) { + AES256_ctx* ctx = (AES256_ctx*)data; + int i; + for (i = 0; i < 50000; i++) { + AES256_init(ctx, (unsigned char*)ctx); + } +} + + +static void bench_AES256_encrypt_setup(void* data) { + AES256_ctx* ctx = (AES256_ctx*)data; + static const unsigned char key[16] = {0}; + AES256_init(ctx, key); +} + +static void bench_AES256_encrypt(void* data) { + const AES256_ctx* ctx = (const AES256_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES256_encrypt(ctx, 1, scratch, scratch); + } +} + +static void bench_AES256_decrypt(void* data) { + const AES256_ctx* ctx = (const AES256_ctx*)data; + unsigned char scratch[16] = {0}; + int i; + for (i = 0; i < 4000000 / 16; i++) { + AES256_decrypt(ctx, 1, scratch, scratch); + } +} + +int main(void) { + AES128_ctx ctx128; + AES192_ctx ctx192; + AES256_ctx ctx256; + run_benchmark("aes128_init", bench_AES128_init, NULL, NULL, &ctx128, 20, 50000); + run_benchmark("aes128_encrypt_byte", bench_AES128_encrypt, bench_AES128_encrypt_setup, NULL, &ctx128, 20, 4000000); + run_benchmark("aes128_decrypt_byte", bench_AES128_decrypt, bench_AES128_encrypt_setup, NULL, &ctx128, 20, 4000000); + run_benchmark("aes192_init", bench_AES192_init, NULL, NULL, &ctx192, 20, 50000); + run_benchmark("aes192_encrypt_byte", bench_AES192_encrypt, bench_AES192_encrypt_setup, NULL, &ctx192, 20, 4000000); + run_benchmark("aes192_decrypt_byte", bench_AES192_decrypt, bench_AES192_encrypt_setup, NULL, &ctx192, 20, 4000000); + run_benchmark("aes256_init", bench_AES256_init, NULL, NULL, &ctx256, 20, 50000); + run_benchmark("aes256_encrypt_byte", bench_AES256_encrypt, bench_AES256_encrypt_setup, NULL, &ctx256, 20, 4000000); + run_benchmark("aes256_decrypt_byte", bench_AES256_decrypt, bench_AES256_encrypt_setup, NULL, &ctx256, 20, 4000000); + return 0; +} diff --git a/src/crypto/ctaes/ctaes.c b/src/crypto/ctaes/ctaes.c new file mode 100644 index 0000000000..2389fc0bb2 --- /dev/null +++ b/src/crypto/ctaes/ctaes.c @@ -0,0 +1,556 @@ + /********************************************************************* + * Copyright (c) 2016 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +/* Constant time, unoptimized, concise, plain C, AES implementation + * Based On: + * Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM + * http://www.iacr.org/archive/ches2009/57470001/57470001.pdf + * But using 8 16-bit integers representing a single AES state rather than 8 128-bit + * integers representing 8 AES states. + */ + +#include "ctaes.h" + +/* Slice variable slice_i contains the i'th bit of the 16 state variables in this order: + * 0 1 2 3 + * 4 5 6 7 + * 8 9 10 11 + * 12 13 14 15 + */ + +/** Convert a byte to sliced form, storing it corresponding to given row and column in s */ +static void LoadByte(AES_state* s, unsigned char byte, int r, int c) { + int i; + for (i = 0; i < 8; i++) { + s->slice[i] |= (byte & 1) << (r * 4 + c); + byte >>= 1; + } +} + +/** Load 16 bytes of data into 8 sliced integers */ +static void LoadBytes(AES_state *s, const unsigned char* data16) { + int c; + for (c = 0; c < 4; c++) { + int r; + for (r = 0; r < 4; r++) { + LoadByte(s, *(data16++), r, c); + } + } +} + +/** Convert 8 sliced integers into 16 bytes of data */ +static void SaveBytes(unsigned char* data16, const AES_state *s) { + int c; + for (c = 0; c < 4; c++) { + int r; + for (r = 0; r < 4; r++) { + int b; + uint8_t v = 0; + for (b = 0; b < 8; b++) { + v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b; + } + *(data16++) = v; + } + } +} + +/* S-box implementation based on the gate logic from: + * Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box. + * https://eprint.iacr.org/2011/332.pdf +*/ +static void SubBytes(AES_state *s, int inv) { + /* Load the bit slices */ + uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4]; + uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0]; + + uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16; + uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D; + uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40; + uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54; + uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63; + + if (inv) { + uint16_t R5, R13, R17, R18, R19; + /* Undo linear postprocessing */ + T23 = U0 ^ U3; + T22 = ~(U1 ^ U3); + T2 = ~(U0 ^ U1); + T1 = U3 ^ U4; + T24 = ~(U4 ^ U7); + R5 = U6 ^ U7; + T8 = ~(U1 ^ T23); + T19 = T22 ^ R5; + T9 = ~(U7 ^ T1); + T10 = T2 ^ T24; + T13 = T2 ^ R5; + T3 = T1 ^ R5; + T25 = ~(U2 ^ T1); + R13 = U1 ^ U6; + T17 = ~(U2 ^ T19); + T20 = T24 ^ R13; + T4 = U4 ^ T8; + R17 = ~(U2 ^ U5); + R18 = ~(U5 ^ U6); + R19 = ~(U2 ^ U4); + D = U0 ^ R17; + T6 = T22 ^ R17; + T16 = R13 ^ R19; + T27 = T1 ^ R18; + T15 = T10 ^ T27; + T14 = T10 ^ R18; + T26 = T3 ^ T16; + } else { + /* Linear preprocessing. */ + T1 = U0 ^ U3; + T2 = U0 ^ U5; + T3 = U0 ^ U6; + T4 = U3 ^ U5; + T5 = U4 ^ U6; + T6 = T1 ^ T5; + T7 = U1 ^ U2; + T8 = U7 ^ T6; + T9 = U7 ^ T7; + T10 = T6 ^ T7; + T11 = U1 ^ U5; + T12 = U2 ^ U5; + T13 = T3 ^ T4; + T14 = T6 ^ T11; + T15 = T5 ^ T11; + T16 = T5 ^ T12; + T17 = T9 ^ T16; + T18 = U3 ^ U7; + T19 = T7 ^ T18; + T20 = T1 ^ T19; + T21 = U6 ^ U7; + T22 = T7 ^ T21; + T23 = T2 ^ T22; + T24 = T2 ^ T10; + T25 = T20 ^ T17; + T26 = T3 ^ T16; + T27 = T1 ^ T12; + D = U7; + } + + /* Non-linear transformation (identical to the code in SubBytes) */ + M1 = T13 & T6; + M6 = T3 & T16; + M11 = T1 & T15; + M13 = (T4 & T27) ^ M11; + M15 = (T2 & T10) ^ M11; + M20 = T14 ^ M1 ^ (T23 & T8) ^ M13; + M21 = (T19 & D) ^ M1 ^ T24 ^ M15; + M22 = T26 ^ M6 ^ (T22 & T9) ^ M13; + M23 = (T20 & T17) ^ M6 ^ M15 ^ T25; + M25 = M22 & M20; + M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25)); + M38 = M20 ^ M25 ^ (M21 | (M20 & M23)); + M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25)); + M40 = M22 ^ M25 ^ (M23 | (M21 & M22)); + M41 = M38 ^ M40; + M42 = M37 ^ M39; + M43 = M37 ^ M38; + M44 = M39 ^ M40; + M45 = M42 ^ M41; + M46 = M44 & T6; + M47 = M40 & T8; + M48 = M39 & D; + M49 = M43 & T16; + M50 = M38 & T9; + M51 = M37 & T17; + M52 = M42 & T15; + M53 = M45 & T27; + M54 = M41 & T10; + M55 = M44 & T13; + M56 = M40 & T23; + M57 = M39 & T19; + M58 = M43 & T3; + M59 = M38 & T22; + M60 = M37 & T20; + M61 = M42 & T1; + M62 = M45 & T4; + M63 = M41 & T2; + + if (inv){ + /* Undo linear preprocessing */ + uint16_t P0 = M52 ^ M61; + uint16_t P1 = M58 ^ M59; + uint16_t P2 = M54 ^ M62; + uint16_t P3 = M47 ^ M50; + uint16_t P4 = M48 ^ M56; + uint16_t P5 = M46 ^ M51; + uint16_t P6 = M49 ^ M60; + uint16_t P7 = P0 ^ P1; + uint16_t P8 = M50 ^ M53; + uint16_t P9 = M55 ^ M63; + uint16_t P10 = M57 ^ P4; + uint16_t P11 = P0 ^ P3; + uint16_t P12 = M46 ^ M48; + uint16_t P13 = M49 ^ M51; + uint16_t P14 = M49 ^ M62; + uint16_t P15 = M54 ^ M59; + uint16_t P16 = M57 ^ M61; + uint16_t P17 = M58 ^ P2; + uint16_t P18 = M63 ^ P5; + uint16_t P19 = P2 ^ P3; + uint16_t P20 = P4 ^ P6; + uint16_t P22 = P2 ^ P7; + uint16_t P23 = P7 ^ P8; + uint16_t P24 = P5 ^ P7; + uint16_t P25 = P6 ^ P10; + uint16_t P26 = P9 ^ P11; + uint16_t P27 = P10 ^ P18; + uint16_t P28 = P11 ^ P25; + uint16_t P29 = P15 ^ P20; + s->slice[7] = P13 ^ P22; + s->slice[6] = P26 ^ P29; + s->slice[5] = P17 ^ P28; + s->slice[4] = P12 ^ P22; + s->slice[3] = P23 ^ P27; + s->slice[2] = P19 ^ P24; + s->slice[1] = P14 ^ P23; + s->slice[0] = P9 ^ P16; + } else { + /* Linear postprocessing */ + uint16_t L0 = M61 ^ M62; + uint16_t L1 = M50 ^ M56; + uint16_t L2 = M46 ^ M48; + uint16_t L3 = M47 ^ M55; + uint16_t L4 = M54 ^ M58; + uint16_t L5 = M49 ^ M61; + uint16_t L6 = M62 ^ L5; + uint16_t L7 = M46 ^ L3; + uint16_t L8 = M51 ^ M59; + uint16_t L9 = M52 ^ M53; + uint16_t L10 = M53 ^ L4; + uint16_t L11 = M60 ^ L2; + uint16_t L12 = M48 ^ M51; + uint16_t L13 = M50 ^ L0; + uint16_t L14 = M52 ^ M61; + uint16_t L15 = M55 ^ L1; + uint16_t L16 = M56 ^ L0; + uint16_t L17 = M57 ^ L1; + uint16_t L18 = M58 ^ L8; + uint16_t L19 = M63 ^ L4; + uint16_t L20 = L0 ^ L1; + uint16_t L21 = L1 ^ L7; + uint16_t L22 = L3 ^ L12; + uint16_t L23 = L18 ^ L2; + uint16_t L24 = L15 ^ L9; + uint16_t L25 = L6 ^ L10; + uint16_t L26 = L7 ^ L9; + uint16_t L27 = L8 ^ L10; + uint16_t L28 = L11 ^ L14; + uint16_t L29 = L11 ^ L17; + s->slice[7] = L6 ^ L24; + s->slice[6] = ~(L16 ^ L26); + s->slice[5] = ~(L19 ^ L28); + s->slice[4] = L6 ^ L21; + s->slice[3] = L20 ^ L22; + s->slice[2] = L25 ^ L29; + s->slice[1] = ~(L13 ^ L27); + s->slice[0] = ~(L6 ^ L23); + } +} + +#define BIT_RANGE(from,to) (((1 << ((to) - (from))) - 1) << (from)) + +#define BIT_RANGE_LEFT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) << (shift)) +#define BIT_RANGE_RIGHT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) >> (shift)) + +static void ShiftRows(AES_state* s) { + int i; + for (i = 0; i < 8; i++) { + uint16_t v = s->slice[i]; + s->slice[i] = + (v & BIT_RANGE(0, 4)) | + BIT_RANGE_LEFT(v, 4, 5, 3) | BIT_RANGE_RIGHT(v, 5, 8, 1) | + BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) | + BIT_RANGE_LEFT(v, 12, 15, 1) | BIT_RANGE_RIGHT(v, 15, 16, 3); + } +} + +static void InvShiftRows(AES_state* s) { + int i; + for (i = 0; i < 8; i++) { + uint16_t v = s->slice[i]; + s->slice[i] = + (v & BIT_RANGE(0, 4)) | + BIT_RANGE_LEFT(v, 4, 7, 1) | BIT_RANGE_RIGHT(v, 7, 8, 3) | + BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) | + BIT_RANGE_LEFT(v, 12, 13, 3) | BIT_RANGE_RIGHT(v, 13, 16, 1); + } +} + +#define ROT(x,b) (((x) >> ((b) * 4)) | ((x) << ((4-(b)) * 4))) + +static void MixColumns(AES_state* s, int inv) { + /* The MixColumns transform treats the bytes of the columns of the state as + * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them + * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo + * x^4 + {01}. + * + * In the inverse transform, we multiply by the inverse of a(x), + * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to + * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code + * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna) + * + * In the bitsliced representation, a multiplication of every column by x + * mod x^4 + 1 is simply a right rotation. + */ + + /* Shared for both directions is a multiplication by a(x), which can be + * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}). + * + * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01 + * variables and (x^3 + x^2 + x)*s into the s?_123 variables. + */ + uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2], s3 = s->slice[3]; + uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6], s7 = s->slice[7]; + uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3); + uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3); + uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3); + uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3); + uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3); + uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3); + uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3); + uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3); + /* Now compute s = s?_123 + {02} * s?_01. */ + s->slice[0] = s7_01 ^ s0_123; + s->slice[1] = s7_01 ^ s0_01 ^ s1_123; + s->slice[2] = s1_01 ^ s2_123; + s->slice[3] = s7_01 ^ s2_01 ^ s3_123; + s->slice[4] = s7_01 ^ s3_01 ^ s4_123; + s->slice[5] = s4_01 ^ s5_123; + s->slice[6] = s5_01 ^ s6_123; + s->slice[7] = s6_01 ^ s7_123; + if (inv) { + /* In the reverse direction, we further need to multiply by + * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}. + * + * First compute (x^2 + {01}) * s into the t?_02 variables: */ + uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2); + uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2); + uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2); + uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2); + uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2); + uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2); + uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2); + uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2); + /* And then update s += {04} * t?_02 */ + s->slice[0] ^= t6_02; + s->slice[1] ^= t6_02 ^ t7_02; + s->slice[2] ^= t0_02 ^ t7_02; + s->slice[3] ^= t1_02 ^ t6_02; + s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02; + s->slice[5] ^= t3_02 ^ t7_02; + s->slice[6] ^= t4_02; + s->slice[7] ^= t5_02; + } +} + +static void AddRoundKey(AES_state* s, const AES_state* round) { + int b; + for (b = 0; b < 8; b++) { + s->slice[b] ^= round->slice[b]; + } +} + +/** column_0(s) = column_c(a) */ +static void GetOneColumn(AES_state* s, const AES_state* a, int c) { + int b; + for (b = 0; b < 8; b++) { + s->slice[b] = (a->slice[b] >> c) & 0x1111; + } +} + +/** column_c1(r) |= (column_0(s) ^= column_c2(a)) */ +static void KeySetupColumnMix(AES_state* s, AES_state* r, const AES_state* a, int c1, int c2) { + int b; + for (b = 0; b < 8; b++) { + r->slice[b] |= ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1; + } +} + +/** Rotate the rows in s one position upwards, and xor in r */ +static void KeySetupTransform(AES_state* s, const AES_state* r) { + int b; + for (b = 0; b < 8; b++) { + s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b]; + } +} + +/* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 + x + 1 */ +static void MultX(AES_state* s) { + uint16_t top = s->slice[7]; + s->slice[7] = s->slice[6]; + s->slice[6] = s->slice[5]; + s->slice[5] = s->slice[4]; + s->slice[4] = s->slice[3] ^ top; + s->slice[3] = s->slice[2] ^ top; + s->slice[2] = s->slice[1]; + s->slice[1] = s->slice[0] ^ top; + s->slice[0] = top; +} + +/** Expand the cipher key into the key schedule. + * + * state must be a pointer to an array of size nrounds + 1. + * key must be a pointer to 4 * nkeywords bytes. + * + * AES128 uses nkeywords = 4, nrounds = 10 + * AES192 uses nkeywords = 6, nrounds = 12 + * AES256 uses nkeywords = 8, nrounds = 14 + */ +static void AES_setup(AES_state* rounds, const uint8_t* key, int nkeywords, int nrounds) +{ + int i; + + /* The one-byte round constant */ + AES_state rcon = {{1,0,0,0,0,0,0,0}}; + /* The number of the word being generated, modulo nkeywords */ + int pos = 0; + /* The column representing the word currently being processed */ + AES_state column; + + for (i = 0; i < nrounds + 1; i++) { + int b; + for (b = 0; b < 8; b++) { + rounds[i].slice[b] = 0; + } + } + + /* The first nkeywords round columns are just taken from the key directly. */ + for (i = 0; i < nkeywords; i++) { + int r; + for (r = 0; r < 4; r++) { + LoadByte(&rounds[i >> 2], *(key++), r, i & 3); + } + } + + GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3); + + for (i = nkeywords; i < 4 * (nrounds + 1); i++) { + /* Transform column */ + if (pos == 0) { + SubBytes(&column, 0); + KeySetupTransform(&column, &rcon); + MultX(&rcon); + } else if (nkeywords > 6 && pos == 4) { + SubBytes(&column, 0); + } + if (++pos == nkeywords) pos = 0; + KeySetupColumnMix(&column, &rounds[i >> 2], &rounds[(i - nkeywords) >> 2], i & 3, (i - nkeywords) & 3); + } +} + +static void AES_encrypt(const AES_state* rounds, int nrounds, unsigned char* cipher16, const unsigned char* plain16) { + AES_state s = {{0}}; + int round; + + LoadBytes(&s, plain16); + AddRoundKey(&s, rounds++); + + for (round = 1; round < nrounds; round++) { + SubBytes(&s, 0); + ShiftRows(&s); + MixColumns(&s, 0); + AddRoundKey(&s, rounds++); + } + + SubBytes(&s, 0); + ShiftRows(&s); + AddRoundKey(&s, rounds); + + SaveBytes(cipher16, &s); +} + +static void AES_decrypt(const AES_state* rounds, int nrounds, unsigned char* plain16, const unsigned char* cipher16) { + /* Most AES decryption implementations use the alternate scheme + * (the Equivalent Inverse Cipher), which looks more like encryption, but + * needs different round constants. We can't reuse any code here anyway, so + * don't bother. */ + AES_state s = {{0}}; + int round; + + rounds += nrounds; + + LoadBytes(&s, cipher16); + AddRoundKey(&s, rounds--); + + for (round = 1; round < nrounds; round++) { + InvShiftRows(&s); + SubBytes(&s, 1); + AddRoundKey(&s, rounds--); + MixColumns(&s, 1); + } + + InvShiftRows(&s); + SubBytes(&s, 1); + AddRoundKey(&s, rounds); + + SaveBytes(plain16, &s); +} + +void AES128_init(AES128_ctx* ctx, const unsigned char* key16) { + AES_setup(ctx->rk, key16, 4, 10); +} + +void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) { + while (blocks--) { + AES_encrypt(ctx->rk, 10, cipher16, plain16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) { + while (blocks--) { + AES_decrypt(ctx->rk, 10, plain16, cipher16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES192_init(AES192_ctx* ctx, const unsigned char* key24) { + AES_setup(ctx->rk, key24, 6, 12); +} + +void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) { + while (blocks--) { + AES_encrypt(ctx->rk, 12, cipher16, plain16); + cipher16 += 16; + plain16 += 16; + } + +} + +void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) { + while (blocks--) { + AES_decrypt(ctx->rk, 12, plain16, cipher16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES256_init(AES256_ctx* ctx, const unsigned char* key32) { + AES_setup(ctx->rk, key32, 8, 14); +} + +void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) { + while (blocks--) { + AES_encrypt(ctx->rk, 14, cipher16, plain16); + cipher16 += 16; + plain16 += 16; + } +} + +void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) { + while (blocks--) { + AES_decrypt(ctx->rk, 14, plain16, cipher16); + cipher16 += 16; + plain16 += 16; + } +} diff --git a/src/crypto/ctaes/ctaes.h b/src/crypto/ctaes/ctaes.h new file mode 100644 index 0000000000..2f0af04216 --- /dev/null +++ b/src/crypto/ctaes/ctaes.h @@ -0,0 +1,41 @@ + /********************************************************************* + * Copyright (c) 2016 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _CTAES_H_ +#define _CTAES_H_ 1 + +#include <stdint.h> +#include <stdlib.h> + +typedef struct { + uint16_t slice[8]; +} AES_state; + +typedef struct { + AES_state rk[11]; +} AES128_ctx; + +typedef struct { + AES_state rk[13]; +} AES192_ctx; + +typedef struct { + AES_state rk[15]; +} AES256_ctx; + +void AES128_init(AES128_ctx* ctx, const unsigned char* key16); +void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16); +void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16); + +void AES192_init(AES192_ctx* ctx, const unsigned char* key24); +void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16); +void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16); + +void AES256_init(AES256_ctx* ctx, const unsigned char* key32); +void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16); +void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16); + +#endif diff --git a/src/crypto/ctaes/test.c b/src/crypto/ctaes/test.c new file mode 100644 index 0000000000..fce1696acd --- /dev/null +++ b/src/crypto/ctaes/test.c @@ -0,0 +1,110 @@ + /********************************************************************* + * Copyright (c) 2016 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#include "ctaes.h" + +#include <stdio.h> +#include <string.h> +#include <assert.h> + +typedef struct { + int keysize; + const char* key; + const char* plain; + const char* cipher; +} ctaes_test; + +static const ctaes_test ctaes_tests[] = { + /* AES test vectors from FIPS 197. */ + {128, "000102030405060708090a0b0c0d0e0f", "00112233445566778899aabbccddeeff", "69c4e0d86a7b0430d8cdb78070b4c55a"}, + {192, "000102030405060708090a0b0c0d0e0f1011121314151617", "00112233445566778899aabbccddeeff", "dda97ca4864cdfe06eaf70a0ec0d7191"}, + {256, "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", "00112233445566778899aabbccddeeff", "8ea2b7ca516745bfeafc49904b496089"}, + + /* AES-ECB test vectors from NIST sp800-38a. */ + {128, "2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "3ad77bb40d7a3660a89ecaf32466ef97"}, + {128, "2b7e151628aed2a6abf7158809cf4f3c", "ae2d8a571e03ac9c9eb76fac45af8e51", "f5d3d58503b9699de785895a96fdbaaf"}, + {128, "2b7e151628aed2a6abf7158809cf4f3c", "30c81c46a35ce411e5fbc1191a0a52ef", "43b1cd7f598ece23881b00e3ed030688"}, + {128, "2b7e151628aed2a6abf7158809cf4f3c", "f69f2445df4f9b17ad2b417be66c3710", "7b0c785e27e8ad3f8223207104725dd4"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "6bc1bee22e409f96e93d7e117393172a", "bd334f1d6e45f25ff712a214571fa5cc"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "ae2d8a571e03ac9c9eb76fac45af8e51", "974104846d0ad3ad7734ecb3ecee4eef"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "30c81c46a35ce411e5fbc1191a0a52ef", "ef7afd2270e2e60adce0ba2face6444e"}, + {192, "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "f69f2445df4f9b17ad2b417be66c3710", "9a4b41ba738d6c72fb16691603c18e0e"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "6bc1bee22e409f96e93d7e117393172a", "f3eed1bdb5d2a03c064b5a7e3db181f8"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "ae2d8a571e03ac9c9eb76fac45af8e51", "591ccb10d410ed26dc5ba74a31362870"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "30c81c46a35ce411e5fbc1191a0a52ef", "b6ed21b99ca6f4f9f153e7b1beafed1d"}, + {256, "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f69f2445df4f9b17ad2b417be66c3710", "23304b7a39f9f3ff067d8d8f9e24ecc7"} +}; + +static void from_hex(unsigned char* data, int len, const char* hex) { + int p; + for (p = 0; p < len; p++) { + int v = 0; + int n; + for (n = 0; n < 2; n++) { + assert((*hex >= '0' && *hex <= '9') || (*hex >= 'a' && *hex <= 'f')); + if (*hex >= '0' && *hex <= '9') { + v |= (*hex - '0') << (4 * (1 - n)); + } else { + v |= (*hex - 'a' + 10) << (4 * (1 - n)); + } + hex++; + } + *(data++) = v; + } + assert(*hex == 0); +} + +int main(void) { + int i; + int fail = 0; + for (i = 0; i < sizeof(ctaes_tests) / sizeof(ctaes_tests[0]); i++) { + unsigned char key[32], plain[16], cipher[16], ciphered[16], deciphered[16]; + const ctaes_test* test = &ctaes_tests[i]; + assert(test->keysize == 128 || test->keysize == 192 || test->keysize == 256); + from_hex(plain, 16, test->plain); + from_hex(cipher, 16, test->cipher); + switch (test->keysize) { + case 128: { + AES128_ctx ctx; + from_hex(key, 16, test->key); + AES128_init(&ctx, key); + AES128_encrypt(&ctx, 1, ciphered, plain); + AES128_decrypt(&ctx, 1, deciphered, cipher); + break; + } + case 192: { + AES192_ctx ctx; + from_hex(key, 24, test->key); + AES192_init(&ctx, key); + AES192_encrypt(&ctx, 1, ciphered, plain); + AES192_decrypt(&ctx, 1, deciphered, cipher); + break; + } + case 256: { + AES256_ctx ctx; + from_hex(key, 32, test->key); + AES256_init(&ctx, key); + AES256_encrypt(&ctx, 1, ciphered, plain); + AES256_decrypt(&ctx, 1, deciphered, cipher); + break; + } + } + if (memcmp(cipher, ciphered, 16)) { + fprintf(stderr, "E(key=\"%s\", plain=\"%s\") != \"%s\"\n", test->key, test->plain, test->cipher); + fail++; + } + if (memcmp(plain, deciphered, 16)) { + fprintf(stderr, "D(key=\"%s\", cipher=\"%s\") != \"%s\"\n", test->key, test->cipher, test->plain); + fail++; + } + } + if (fail == 0) { + fprintf(stderr, "All tests succesful\n"); + } else { + fprintf(stderr, "%i tests failed\n", fail); + } + return (fail != 0); +} |