aboutsummaryrefslogtreecommitdiff
path: root/src/bench/checkqueue.cpp
diff options
context:
space:
mode:
authorMartin Ankerl <martin.ankerl@gmail.com>2020-06-13 09:37:27 +0200
committerMartin Ankerl <martin.ankerl@gmail.com>2020-06-13 12:24:18 +0200
commit78c312c983255e15fc274de2368a2ec13ce81cbf (patch)
tree09c5cec9b0b3f7ef2aa9364057858861c134cf45 /src/bench/checkqueue.cpp
parent19e919217e6d62e3640525e4149de1a4ae04e74f (diff)
downloadbitcoin-78c312c983255e15fc274de2368a2ec13ce81cbf.tar.xz
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an MIT licensed single-header benchmarking library, of which I am the autor. This has in my opinion several advantages, especially on Linux: * fast: Running all benchmarks takes ~6 seconds instead of 4m13s on an Intel i7-8700 CPU @ 3.20GHz. * accurate: I ran e.g. the benchmark for SipHash_32b 10 times and calculate standard deviation / mean = coefficient of variation: * 0.57% CV for old benchmarking framework * 0.20% CV for nanobench So the benchmark results with nanobench seem to vary less than with the old framework. * It automatically determines runtime based on clock precision, no need to specify number of evaluations. * measure instructions, cycles, branches, instructions per cycle, branch misses (only Linux, when performance counters are available) * output in markdown table format. * Warn about unstable environment (frequency scaling, turbo, ...) * For better profiling, it is possible to set the environment variable NANOBENCH_ENDLESS to force endless running of a particular benchmark without the need to recompile. This makes it to e.g. run "perf top" and look at hotspots. Here is an example copy & pasted from the terminal output: | ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160` | 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1` | 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256` | 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024` | 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b` | 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512` [1] https://github.com/martinus/nanobench * Adds support for asymptotes This adds support to calculate asymptotic complexity of a benchmark. This is similar to #17375, but currently only one asymptote is supported, and I have added support in the benchmark `ComplexMemPool` as an example. Usage is e.g. like this: ``` ./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800 ``` This runs the benchmark `ComplexMemPool` several times but with different complexityN settings. The benchmark can extract that number and use it accordingly. Here, it's used for `childTxs`. The output is this: | complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark |------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:---------- | 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool` | 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool` | 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool` | 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool` | 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool` | 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool` | 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool` | coefficient | err% | complexity |--------------:|-------:|------------ | 4.78486e-07 | 4.5% | O(n^2) | 6.38557e-10 | 21.7% | O(n^3) | 3.42338e-05 | 38.0% | O(n log n) | 0.000313914 | 46.9% | O(n) | 0.0129823 | 114.4% | O(log n) | 0.0815055 | 133.8% | O(1) The best fitting curve is O(n^2), so the algorithm seems to scale quadratic with `childTxs` in the range 25 to 800.
Diffstat (limited to 'src/bench/checkqueue.cpp')
-rw-r--r--src/bench/checkqueue.cpp25
1 files changed, 15 insertions, 10 deletions
diff --git a/src/bench/checkqueue.cpp b/src/bench/checkqueue.cpp
index e052681181..19d7bc0dbc 100644
--- a/src/bench/checkqueue.cpp
+++ b/src/bench/checkqueue.cpp
@@ -24,7 +24,7 @@ static const unsigned int QUEUE_BATCH_SIZE = 128;
// This Benchmark tests the CheckQueue with a slightly realistic workload,
// where checks all contain a prevector that is indirect 50% of the time
// and there is a little bit of work done between calls to Add.
-static void CCheckQueueSpeedPrevectorJob(benchmark::State& state)
+static void CCheckQueueSpeedPrevectorJob(benchmark::Bench& bench)
{
const ECCVerifyHandle verify_handle;
ECC_Start();
@@ -47,23 +47,28 @@ static void CCheckQueueSpeedPrevectorJob(benchmark::State& state)
for (auto x = 0; x < std::max(MIN_CORES, GetNumCores()); ++x) {
tg.create_thread([&]{queue.Thread();});
}
- while (state.KeepRunning()) {
+
+ // create all the data once, then submit copies in the benchmark.
+ FastRandomContext insecure_rand(true);
+ std::vector<std::vector<PrevectorJob>> vBatches(BATCHES);
+ for (auto& vChecks : vBatches) {
+ vChecks.reserve(BATCH_SIZE);
+ for (size_t x = 0; x < BATCH_SIZE; ++x)
+ vChecks.emplace_back(insecure_rand);
+ }
+
+ bench.minEpochIterations(10).batch(BATCH_SIZE * BATCHES).unit("job").run([&] {
// Make insecure_rand here so that each iteration is identical.
- FastRandomContext insecure_rand(true);
CCheckQueueControl<PrevectorJob> control(&queue);
- std::vector<std::vector<PrevectorJob>> vBatches(BATCHES);
- for (auto& vChecks : vBatches) {
- vChecks.reserve(BATCH_SIZE);
- for (size_t x = 0; x < BATCH_SIZE; ++x)
- vChecks.emplace_back(insecure_rand);
+ for (auto vChecks : vBatches) {
control.Add(vChecks);
}
// control waits for completion by RAII, but
// it is done explicitly here for clarity
control.Wait();
- }
+ });
tg.interrupt_all();
tg.join_all();
ECC_Stop();
}
-BENCHMARK(CCheckQueueSpeedPrevectorJob, 1400);
+BENCHMARK(CCheckQueueSpeedPrevectorJob);