aboutsummaryrefslogtreecommitdiff
path: root/src/bench/chacha_poly_aead.cpp
diff options
context:
space:
mode:
authorMartin Ankerl <martin.ankerl@gmail.com>2020-06-13 09:37:27 +0200
committerMartin Ankerl <martin.ankerl@gmail.com>2020-06-13 12:24:18 +0200
commit78c312c983255e15fc274de2368a2ec13ce81cbf (patch)
tree09c5cec9b0b3f7ef2aa9364057858861c134cf45 /src/bench/chacha_poly_aead.cpp
parent19e919217e6d62e3640525e4149de1a4ae04e74f (diff)
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an MIT licensed single-header benchmarking library, of which I am the autor. This has in my opinion several advantages, especially on Linux: * fast: Running all benchmarks takes ~6 seconds instead of 4m13s on an Intel i7-8700 CPU @ 3.20GHz. * accurate: I ran e.g. the benchmark for SipHash_32b 10 times and calculate standard deviation / mean = coefficient of variation: * 0.57% CV for old benchmarking framework * 0.20% CV for nanobench So the benchmark results with nanobench seem to vary less than with the old framework. * It automatically determines runtime based on clock precision, no need to specify number of evaluations. * measure instructions, cycles, branches, instructions per cycle, branch misses (only Linux, when performance counters are available) * output in markdown table format. * Warn about unstable environment (frequency scaling, turbo, ...) * For better profiling, it is possible to set the environment variable NANOBENCH_ENDLESS to force endless running of a particular benchmark without the need to recompile. This makes it to e.g. run "perf top" and look at hotspots. Here is an example copy & pasted from the terminal output: | ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160` | 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1` | 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256` | 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024` | 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b` | 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512` [1] https://github.com/martinus/nanobench * Adds support for asymptotes This adds support to calculate asymptotic complexity of a benchmark. This is similar to #17375, but currently only one asymptote is supported, and I have added support in the benchmark `ComplexMemPool` as an example. Usage is e.g. like this: ``` ./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800 ``` This runs the benchmark `ComplexMemPool` several times but with different complexityN settings. The benchmark can extract that number and use it accordingly. Here, it's used for `childTxs`. The output is this: | complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark |------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:---------- | 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool` | 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool` | 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool` | 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool` | 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool` | 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool` | 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool` | coefficient | err% | complexity |--------------:|-------:|------------ | 4.78486e-07 | 4.5% | O(n^2) | 6.38557e-10 | 21.7% | O(n^3) | 3.42338e-05 | 38.0% | O(n log n) | 0.000313914 | 46.9% | O(n) | 0.0129823 | 114.4% | O(log n) | 0.0815055 | 133.8% | O(1) The best fitting curve is O(n^2), so the algorithm seems to scale quadratic with `childTxs` in the range 25 to 800.
Diffstat (limited to 'src/bench/chacha_poly_aead.cpp')
-rw-r--r--src/bench/chacha_poly_aead.cpp65
1 files changed, 33 insertions, 32 deletions
diff --git a/src/bench/chacha_poly_aead.cpp b/src/bench/chacha_poly_aead.cpp
index df10f27d03..30d7851b7f 100644
--- a/src/bench/chacha_poly_aead.cpp
+++ b/src/bench/chacha_poly_aead.cpp
@@ -21,7 +21,7 @@ static const unsigned char k2[32] = {0};
static ChaCha20Poly1305AEAD aead(k1, 32, k2, 32);
-static void CHACHA20_POLY1305_AEAD(benchmark::State& state, size_t buffersize, bool include_decryption)
+static void CHACHA20_POLY1305_AEAD(benchmark::Bench& bench, size_t buffersize, bool include_decryption)
{
std::vector<unsigned char> in(buffersize + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
std::vector<unsigned char> out(buffersize + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
@@ -29,7 +29,7 @@ static void CHACHA20_POLY1305_AEAD(benchmark::State& state, size_t buffersize, b
uint64_t seqnr_aad = 0;
int aad_pos = 0;
uint32_t len = 0;
- while (state.KeepRunning()) {
+ bench.batch(buffersize).unit("byte").run([&] {
// encrypt or decrypt the buffer with a static key
assert(aead.Crypt(seqnr_payload, seqnr_aad, aad_pos, out.data(), out.size(), in.data(), buffersize, true));
@@ -53,70 +53,71 @@ static void CHACHA20_POLY1305_AEAD(benchmark::State& state, size_t buffersize, b
seqnr_aad = 0;
aad_pos = 0;
}
- }
+ });
}
-static void CHACHA20_POLY1305_AEAD_64BYTES_ONLY_ENCRYPT(benchmark::State& state)
+static void CHACHA20_POLY1305_AEAD_64BYTES_ONLY_ENCRYPT(benchmark::Bench& bench)
{
- CHACHA20_POLY1305_AEAD(state, BUFFER_SIZE_TINY, false);
+ CHACHA20_POLY1305_AEAD(bench, BUFFER_SIZE_TINY, false);
}
-static void CHACHA20_POLY1305_AEAD_256BYTES_ONLY_ENCRYPT(benchmark::State& state)
+static void CHACHA20_POLY1305_AEAD_256BYTES_ONLY_ENCRYPT(benchmark::Bench& bench)
{
- CHACHA20_POLY1305_AEAD(state, BUFFER_SIZE_SMALL, false);
+ CHACHA20_POLY1305_AEAD(bench, BUFFER_SIZE_SMALL, false);
}
-static void CHACHA20_POLY1305_AEAD_1MB_ONLY_ENCRYPT(benchmark::State& state)
+static void CHACHA20_POLY1305_AEAD_1MB_ONLY_ENCRYPT(benchmark::Bench& bench)
{
- CHACHA20_POLY1305_AEAD(state, BUFFER_SIZE_LARGE, false);
+ CHACHA20_POLY1305_AEAD(bench, BUFFER_SIZE_LARGE, false);
}
-static void CHACHA20_POLY1305_AEAD_64BYTES_ENCRYPT_DECRYPT(benchmark::State& state)
+static void CHACHA20_POLY1305_AEAD_64BYTES_ENCRYPT_DECRYPT(benchmark::Bench& bench)
{
- CHACHA20_POLY1305_AEAD(state, BUFFER_SIZE_TINY, true);
+ CHACHA20_POLY1305_AEAD(bench, BUFFER_SIZE_TINY, true);
}
-static void CHACHA20_POLY1305_AEAD_256BYTES_ENCRYPT_DECRYPT(benchmark::State& state)
+static void CHACHA20_POLY1305_AEAD_256BYTES_ENCRYPT_DECRYPT(benchmark::Bench& bench)
{
- CHACHA20_POLY1305_AEAD(state, BUFFER_SIZE_SMALL, true);
+ CHACHA20_POLY1305_AEAD(bench, BUFFER_SIZE_SMALL, true);
}
-static void CHACHA20_POLY1305_AEAD_1MB_ENCRYPT_DECRYPT(benchmark::State& state)
+static void CHACHA20_POLY1305_AEAD_1MB_ENCRYPT_DECRYPT(benchmark::Bench& bench)
{
- CHACHA20_POLY1305_AEAD(state, BUFFER_SIZE_LARGE, true);
+ CHACHA20_POLY1305_AEAD(bench, BUFFER_SIZE_LARGE, true);
}
// Add Hash() (dbl-sha256) bench for comparison
-static void HASH(benchmark::State& state, size_t buffersize)
+static void HASH(benchmark::Bench& bench, size_t buffersize)
{
uint8_t hash[CHash256::OUTPUT_SIZE];
std::vector<uint8_t> in(buffersize,0);
- while (state.KeepRunning())
+ bench.batch(in.size()).unit("byte").run([&] {
CHash256().Write(in.data(), in.size()).Finalize(hash);
+ });
}
-static void HASH_64BYTES(benchmark::State& state)
+static void HASH_64BYTES(benchmark::Bench& bench)
{
- HASH(state, BUFFER_SIZE_TINY);
+ HASH(bench, BUFFER_SIZE_TINY);
}
-static void HASH_256BYTES(benchmark::State& state)
+static void HASH_256BYTES(benchmark::Bench& bench)
{
- HASH(state, BUFFER_SIZE_SMALL);
+ HASH(bench, BUFFER_SIZE_SMALL);
}
-static void HASH_1MB(benchmark::State& state)
+static void HASH_1MB(benchmark::Bench& bench)
{
- HASH(state, BUFFER_SIZE_LARGE);
+ HASH(bench, BUFFER_SIZE_LARGE);
}
-BENCHMARK(CHACHA20_POLY1305_AEAD_64BYTES_ONLY_ENCRYPT, 500000);
-BENCHMARK(CHACHA20_POLY1305_AEAD_256BYTES_ONLY_ENCRYPT, 250000);
-BENCHMARK(CHACHA20_POLY1305_AEAD_1MB_ONLY_ENCRYPT, 340);
-BENCHMARK(CHACHA20_POLY1305_AEAD_64BYTES_ENCRYPT_DECRYPT, 500000);
-BENCHMARK(CHACHA20_POLY1305_AEAD_256BYTES_ENCRYPT_DECRYPT, 250000);
-BENCHMARK(CHACHA20_POLY1305_AEAD_1MB_ENCRYPT_DECRYPT, 340);
-BENCHMARK(HASH_64BYTES, 500000);
-BENCHMARK(HASH_256BYTES, 250000);
-BENCHMARK(HASH_1MB, 340);
+BENCHMARK(CHACHA20_POLY1305_AEAD_64BYTES_ONLY_ENCRYPT);
+BENCHMARK(CHACHA20_POLY1305_AEAD_256BYTES_ONLY_ENCRYPT);
+BENCHMARK(CHACHA20_POLY1305_AEAD_1MB_ONLY_ENCRYPT);
+BENCHMARK(CHACHA20_POLY1305_AEAD_64BYTES_ENCRYPT_DECRYPT);
+BENCHMARK(CHACHA20_POLY1305_AEAD_256BYTES_ENCRYPT_DECRYPT);
+BENCHMARK(CHACHA20_POLY1305_AEAD_1MB_ENCRYPT_DECRYPT);
+BENCHMARK(HASH_64BYTES);
+BENCHMARK(HASH_256BYTES);
+BENCHMARK(HASH_1MB);