diff options
author | Martin Ankerl <martin.ankerl@gmail.com> | 2020-06-13 09:37:27 +0200 |
---|---|---|
committer | Martin Ankerl <martin.ankerl@gmail.com> | 2020-06-13 12:24:18 +0200 |
commit | 78c312c983255e15fc274de2368a2ec13ce81cbf (patch) | |
tree | 09c5cec9b0b3f7ef2aa9364057858861c134cf45 /src/bench/bench.h | |
parent | 19e919217e6d62e3640525e4149de1a4ae04e74f (diff) |
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
Diffstat (limited to 'src/bench/bench.h')
-rw-r--r-- | src/bench/bench.h | 116 |
1 files changed, 19 insertions, 97 deletions
diff --git a/src/bench/bench.h b/src/bench/bench.h index 629bca9a73..bafc7f8716 100644 --- a/src/bench/bench.h +++ b/src/bench/bench.h @@ -11,131 +11,53 @@ #include <string> #include <vector> +#include <bench/nanobench.h> #include <boost/preprocessor/cat.hpp> #include <boost/preprocessor/stringize.hpp> -// Simple micro-benchmarking framework; API mostly matches a subset of the Google Benchmark -// framework (see https://github.com/google/benchmark) -// Why not use the Google Benchmark framework? Because adding Yet Another Dependency -// (that uses cmake as its build system and has lots of features we don't need) isn't -// worth it. - /* * Usage: -static void CODE_TO_TIME(benchmark::State& state) +static void CODE_TO_TIME(benchmark::Bench& bench) { ... do any setup needed... - while (state.KeepRunning()) { + nanobench::Config().run([&] { ... do stuff you want to time... - } + }); ... do any cleanup needed... } -// default to running benchmark for 5000 iterations -BENCHMARK(CODE_TO_TIME, 5000); +BENCHMARK(CODE_TO_TIME); */ namespace benchmark { -// In case high_resolution_clock is steady, prefer that, otherwise use steady_clock. -struct best_clock { - using hi_res_clock = std::chrono::high_resolution_clock; - using steady_clock = std::chrono::steady_clock; - using type = std::conditional<hi_res_clock::is_steady, hi_res_clock, steady_clock>::type; -}; -using clock = best_clock::type; -using time_point = clock::time_point; -using duration = clock::duration; - -class Printer; - -class State -{ -public: - std::string m_name; - uint64_t m_num_iters_left; - const uint64_t m_num_iters; - const uint64_t m_num_evals; - std::vector<double> m_elapsed_results; - time_point m_start_time; - bool UpdateTimer(time_point finish_time); +using ankerl::nanobench::Bench; - State(std::string name, uint64_t num_evals, double num_iters, Printer& printer) : m_name(name), m_num_iters_left(0), m_num_iters(num_iters), m_num_evals(num_evals) - { - } +typedef std::function<void(Bench&)> BenchFunction; - inline bool KeepRunning() - { - if (m_num_iters_left--) { - return true; - } - - bool result = UpdateTimer(clock::now()); - // measure again so runtime of UpdateTimer is not included - m_start_time = clock::now(); - return result; - } +struct Args { + std::string regex_filter; + bool is_list_only; + std::vector<double> asymptote; + std::string output_csv; + std::string output_json; }; -typedef std::function<void(State&)> BenchFunction; - class BenchRunner { - struct Bench { - BenchFunction func; - uint64_t num_iters_for_one_second; - }; - typedef std::map<std::string, Bench> BenchmarkMap; + typedef std::map<std::string, BenchFunction> BenchmarkMap; static BenchmarkMap& benchmarks(); public: - BenchRunner(std::string name, BenchFunction func, uint64_t num_iters_for_one_second); - - static void RunAll(Printer& printer, uint64_t num_evals, double scaling, const std::string& filter, bool is_list_only); -}; + BenchRunner(std::string name, BenchFunction func); -// interface to output benchmark results. -class Printer -{ -public: - virtual ~Printer() {} - virtual void header() = 0; - virtual void result(const State& state) = 0; - virtual void footer() = 0; -}; - -// default printer to console, shows min, max, median. -class ConsolePrinter : public Printer -{ -public: - void header() override; - void result(const State& state) override; - void footer() override; -}; - -// creates box plot with plotly.js -class PlotlyPrinter : public Printer -{ -public: - PlotlyPrinter(std::string plotly_url, int64_t width, int64_t height); - void header() override; - void result(const State& state) override; - void footer() override; - -private: - std::string m_plotly_url; - int64_t m_width; - int64_t m_height; + static void RunAll(const Args& args); }; } - - -// BENCHMARK(foo, num_iters_for_one_second) expands to: benchmark::BenchRunner bench_11foo("foo", num_iterations); -// Choose a num_iters_for_one_second that takes roughly 1 second. The goal is that all benchmarks should take approximately -// the same time, and scaling factor can be used that the total time is appropriate for your system. -#define BENCHMARK(n, num_iters_for_one_second) \ - benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n, (num_iters_for_one_second)); +// BENCHMARK(foo) expands to: benchmark::BenchRunner bench_11foo("foo"); +#define BENCHMARK(n) \ + benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n); #endif // BITCOIN_BENCH_BENCH_H |