diff options
author | Wladimir J. van der Laan <laanwj@gmail.com> | 2016-06-24 16:25:44 +0200 |
---|---|---|
committer | Wladimir J. van der Laan <laanwj@gmail.com> | 2016-06-24 18:07:44 +0200 |
commit | d612837814020ae832499d18e6ee5eb919a87907 (patch) | |
tree | a93b5e382503577109efaa5cf7526e4dc378b7ea /qa/rpc-tests/p2p-segwit.py | |
parent | af2421c291c42fd0119bf27261fdeeba93cadbcc (diff) | |
parent | f8528134fc188abc5c7175a19680206964a8fade (diff) |
Merge #8149: Segregated witness rebased
f852813 BIP9 parameters for testnet (Johnson Lau)
070dbc4 --- [SEGWIT] begin: deployment --- (Pieter Wuille)
fdb43df [qa] Add GetTransactionSigOpCost unit tests (Jonas Nick)
d846e02 [qa] script_tests: witness tests can specify tx amount (Suhas Daftuar)
330b0f3 [qa] p2p segwit tests (Suhas Daftuar)
4f7ff00 [qa] Add rpc test for segwit (Alex Morcos)
66cca79 [qa] Autogeneration support for witness in script_tests (Pieter Wuille)
06d3805 [qa] Add segwit support to script_tests (Pieter Wuille)
00f46cb [qa] Add transaction tests for segwit (NicolasDorier)
0aa9207 [qa] Witness version 0 signing unit tests (Pieter Wuille)
978e200 --- [SEGWIT] begin: tests --- (Pieter Wuille)
745eb67 [RPC] signrawtransaction can sign P2WSH (NicolasDorier)
f4691ab [RPC] Add wallet support for witness transactions (using P2SH) (Pieter Wuille)
605e847 BIP143: Signing logic (Pieter Wuille)
9757b57 --- [SEGWIT] begin: wallet --- (Pieter Wuille)
af87a67 Do not use compact blocks when segwit is enabled (Pieter Wuille)
6032f69 Add rewind logic to deal with post-fork software updates (Pieter Wuille)
b7dbeb2 [libconsensus] Script verification API with amounts (Thomas Kerin)
2b1f6f9 BIP141: Other consensus critical limits, and BIP145 (Pieter Wuille)
7c4bf77 [RPC] Return witness data in blockchain RPCs (Johnson Lau)
3dd4102 BIP143: Verification logic (Pieter Wuille)
0ef1dd3 Refactor script validation to observe amounts (Pieter Wuille)
b8a9749 BIP144: Handshake and relay (receiver side) (Pieter Wuille)
8b49040 BIP141: Commitment structure and deployment (Pieter Wuille)
449f9b8 BIP141: Witness program (Pieter Wuille)
7030d9e BIP144: Serialization, hashes, relay (sender side) (Pieter Wuille)
ecacfd9 --- [SEGWIT] begin: P2P/node/consensus --- (Pieter Wuille)
Diffstat (limited to 'qa/rpc-tests/p2p-segwit.py')
-rwxr-xr-x | qa/rpc-tests/p2p-segwit.py | 1646 |
1 files changed, 1646 insertions, 0 deletions
diff --git a/qa/rpc-tests/p2p-segwit.py b/qa/rpc-tests/p2p-segwit.py new file mode 100755 index 0000000000..cf78954f28 --- /dev/null +++ b/qa/rpc-tests/p2p-segwit.py @@ -0,0 +1,1646 @@ +#!/usr/bin/env python3 +# Copyright (c) 2016 The Bitcoin Core developers +# Distributed under the MIT software license, see the accompanying +# file COPYING or http://www.opensource.org/licenses/mit-license.php. + +from test_framework.mininode import * +from test_framework.test_framework import BitcoinTestFramework +from test_framework.util import * +from test_framework.script import * +from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, WITNESS_COMMITMENT_HEADER +from test_framework.key import CECKey, CPubKey +import time +import random +from binascii import hexlify + +# The versionbit bit used to signal activation of SegWit +VB_WITNESS_BIT = 1 +VB_PERIOD = 144 +VB_ACTIVATION_THRESHOLD = 108 +VB_TOP_BITS = 0x20000000 + +MAX_SIGOP_COST = 80000 + +''' +SegWit p2p test. +''' + +# Calculate the virtual size of a witness block: +# (base + witness/4) +def get_virtual_size(witness_block): + base_size = len(witness_block.serialize()) + total_size = len(witness_block.serialize(with_witness=True)) + # the "+3" is so we round up + vsize = int((3*base_size + total_size + 3)/4) + return vsize + +# Note: we can reduce code by using SingleNodeConnCB (in master, not 0.12) +class TestNode(NodeConnCB): + def __init__(self): + NodeConnCB.__init__(self) + self.connection = None + self.ping_counter = 1 + self.last_pong = msg_pong(0) + self.sleep_time = 0.05 + self.getdataset = set() + + def add_connection(self, conn): + self.connection = conn + + # Wrapper for the NodeConn's send_message function + def send_message(self, message): + self.connection.send_message(message) + + def on_inv(self, conn, message): + self.last_inv = message + + def on_block(self, conn, message): + self.last_block = message.block + self.last_block.calc_sha256() + + def on_getdata(self, conn, message): + for inv in message.inv: + self.getdataset.add(inv.hash) + self.last_getdata = message + + def on_pong(self, conn, message): + self.last_pong = message + + def on_reject(self, conn, message): + self.last_reject = message + #print message + + # Syncing helpers + def sync(self, test_function, timeout=60): + while timeout > 0: + with mininode_lock: + if test_function(): + return + time.sleep(self.sleep_time) + timeout -= self.sleep_time + raise AssertionError("Sync failed to complete") + + def sync_with_ping(self, timeout=60): + self.send_message(msg_ping(nonce=self.ping_counter)) + test_function = lambda: self.last_pong.nonce == self.ping_counter + self.sync(test_function, timeout) + self.ping_counter += 1 + return + + def wait_for_block(self, blockhash, timeout=60): + test_function = lambda: self.last_block != None and self.last_block.sha256 == blockhash + self.sync(test_function, timeout) + return + + def wait_for_getdata(self, timeout=60): + test_function = lambda: self.last_getdata != None + self.sync(test_function, timeout) + + def wait_for_inv(self, expected_inv, timeout=60): + test_function = lambda: self.last_inv != expected_inv + self.sync(test_function, timeout) + + def announce_tx_and_wait_for_getdata(self, tx, timeout=60): + with mininode_lock: + self.last_getdata = None + self.send_message(msg_inv(inv=[CInv(1, tx.sha256)])) + self.wait_for_getdata(timeout) + return + + def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60): + with mininode_lock: + self.last_getdata = None + if use_header: + msg = msg_headers() + msg.headers = [ CBlockHeader(block) ] + self.send_message(msg) + else: + self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) + self.wait_for_getdata() + return + + def announce_block(self, block, use_header): + with mininode_lock: + self.last_getdata = None + if use_header: + msg = msg_headers() + msg.headers = [ CBlockHeader(block) ] + self.send_message(msg) + else: + self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) + + def request_block(self, blockhash, inv_type, timeout=60): + with mininode_lock: + self.last_block = None + self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)])) + self.wait_for_block(blockhash, timeout) + return self.last_block + + def test_transaction_acceptance(self, tx, with_witness, accepted): + tx_message = msg_tx(tx) + if with_witness: + tx_message = msg_witness_tx(tx) + self.send_message(tx_message) + self.sync_with_ping() + assert_equal(tx.hash in self.connection.rpc.getrawmempool(), accepted) + + # Test whether a witness block had the correct effect on the tip + def test_witness_block(self, block, accepted, with_witness=True): + if with_witness: + self.send_message(msg_witness_block(block)) + else: + self.send_message(msg_block(block)) + self.sync_with_ping() + assert_equal(self.connection.rpc.getbestblockhash() == block.hash, accepted) + + +# Used to keep track of anyone-can-spend outputs that we can use in the tests +class UTXO(object): + def __init__(self, sha256, n, nValue): + self.sha256 = sha256 + self.n = n + self.nValue = nValue + + +class SegWitTest(BitcoinTestFramework): + def setup_chain(self): + initialize_chain_clean(self.options.tmpdir, 3) + + def add_options(self, parser): + parser.add_option("--oldbinary", dest="oldbinary", + default=None, + help="pre-segwit bitcoind binary for upgrade testing") + + def setup_network(self): + self.nodes = [] + self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1"])) + # Start a node for testing IsStandard rules. + self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1", "-acceptnonstdtxn=0"])) + connect_nodes(self.nodes[0], 1) + + # If an old bitcoind is given, do the upgrade-after-activation test. + self.test_upgrade = False + if (self.options.oldbinary != None): + self.nodes.append(start_node(2, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1"], binary=self.options.oldbinary)) + connect_nodes(self.nodes[0], 2) + self.test_upgrade = True + + ''' Helpers ''' + # Build a block on top of node0's tip. + def build_next_block(self, nVersion=4): + tip = self.nodes[0].getbestblockhash() + height = self.nodes[0].getblockcount() + 1 + block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1 + block = create_block(int(tip, 16), create_coinbase(height), block_time) + block.nVersion = nVersion + block.rehash() + return block + + # Adds list of transactions to block, adds witness commitment, then solves. + def update_witness_block_with_transactions(self, block, tx_list, nonce=0): + block.vtx.extend(tx_list) + add_witness_commitment(block, nonce) + block.solve() + return + + ''' Individual tests ''' + def test_witness_services(self): + print("\tVerifying NODE_WITNESS service bit") + assert((self.test_node.connection.nServices & NODE_WITNESS) != 0) + + + # See if sending a regular transaction works, and create a utxo + # to use in later tests. + def test_non_witness_transaction(self): + # Mine a block with an anyone-can-spend coinbase, + # let it mature, then try to spend it. + print("\tTesting non-witness transaction") + block = self.build_next_block(nVersion=1) + block.solve() + self.test_node.send_message(msg_block(block)) + self.test_node.sync_with_ping() # make sure the block was processed + txid = block.vtx[0].sha256 + + self.nodes[0].generate(99) # let the block mature + + # Create a transaction that spends the coinbase + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(txid, 0), b"")) + tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE]))) + tx.calc_sha256() + + # Check that serializing it with or without witness is the same + # This is a sanity check of our testing framework. + assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize()) + + self.test_node.send_message(msg_witness_tx(tx)) + self.test_node.sync_with_ping() # make sure the tx was processed + assert(tx.hash in self.nodes[0].getrawmempool()) + # Save this transaction for later + self.utxo.append(UTXO(tx.sha256, 0, 49*100000000)) + self.nodes[0].generate(1) + + + # Verify that blocks with witnesses are rejected before activation. + def test_unnecessary_witness_before_segwit_activation(self): + print("\tTesting behavior of unnecessary witnesses") + # For now, rely on earlier tests to have created at least one utxo for + # us to use + assert(len(self.utxo) > 0) + assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active') + + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) + tx.wit.vtxinwit.append(CTxinWitness()) + tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])] + + # Verify the hash with witness differs from the txid + # (otherwise our testing framework must be broken!) + tx.rehash() + assert(tx.sha256 != tx.calc_sha256(with_witness=True)) + + # Construct a segwit-signaling block that includes the transaction. + block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT))) + self.update_witness_block_with_transactions(block, [tx]) + # Sending witness data before activation is not allowed (anti-spam + # rule). + self.test_node.test_witness_block(block, accepted=False) + # TODO: fix synchronization so we can test reject reason + # Right now, bitcoind delays sending reject messages for blocks + # until the future, making synchronization here difficult. + #assert_equal(self.test_node.last_reject.reason, "unexpected-witness") + + # But it should not be permanently marked bad... + # Resend without witness information. + self.test_node.send_message(msg_block(block)) + self.test_node.sync_with_ping() + assert_equal(self.nodes[0].getbestblockhash(), block.hash) + + # Update our utxo list; we spent the first entry. + self.utxo.pop(0) + self.utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) + + + # Mine enough blocks for segwit's vb state to be 'started'. + def advance_to_segwit_started(self): + height = self.nodes[0].getblockcount() + # Will need to rewrite the tests here if we are past the first period + assert(height < VB_PERIOD - 1) + # Genesis block is 'defined'. + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined') + # Advance to end of period, status should now be 'started' + self.nodes[0].generate(VB_PERIOD-height-1) + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') + + # Mine enough blocks to lock in segwit, but don't activate. + # TODO: we could verify that lockin only happens at the right threshold of + # signalling blocks, rather than just at the right period boundary. + def advance_to_segwit_lockin(self): + height = self.nodes[0].getblockcount() + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') + # Advance to end of period, and verify lock-in happens at the end + self.nodes[0].generate(VB_PERIOD-1) + height = self.nodes[0].getblockcount() + assert((height % VB_PERIOD) == VB_PERIOD - 2) + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') + self.nodes[0].generate(1) + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') + + + # Mine enough blocks to activate segwit. + # TODO: we could verify that activation only happens at the right threshold + # of signalling blocks, rather than just at the right period boundary. + def advance_to_segwit_active(self): + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') + height = self.nodes[0].getblockcount() + self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2) + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') + self.nodes[0].generate(1) + assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active') + + + # This test can only be run after segwit has activated + def test_witness_commitments(self): + print("\tTesting witness commitments") + + # First try a correct witness commitment. + block = self.build_next_block() + add_witness_commitment(block) + block.solve() + + # Test the test -- witness serialization should be different + assert(msg_witness_block(block).serialize() != msg_block(block).serialize()) + + # This empty block should be valid. + self.test_node.test_witness_block(block, accepted=True) + + # Try to tweak the nonce + block_2 = self.build_next_block() + add_witness_commitment(block_2, nonce=28) + block_2.solve() + + # The commitment should have changed! + assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1]) + + # This should also be valid. + self.test_node.test_witness_block(block_2, accepted=True) + + # Now test commitments with actual transactions + assert (len(self.utxo) > 0) + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + + # Let's construct a witness program + witness_program = CScript([OP_TRUE]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) + tx.rehash() + + # tx2 will spend tx1, and send back to a regular anyone-can-spend address + tx2 = CTransaction() + tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) + tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] + tx2.rehash() + + block_3 = self.build_next_block() + self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1) + # Add an extra OP_RETURN output that matches the witness commitment template, + # even though it has extra data after the incorrect commitment. + # This block should fail. + block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10]))) + block_3.vtx[0].rehash() + block_3.hashMerkleRoot = block_3.calc_merkle_root() + block_3.rehash() + block_3.solve() + + self.test_node.test_witness_block(block_3, accepted=False) + + # Add a different commitment with different nonce, but in the + # right location, and with some funds burned(!). + # This should succeed (nValue shouldn't affect finding the + # witness commitment). + add_witness_commitment(block_3, nonce=0) + block_3.vtx[0].vout[0].nValue -= 1 + block_3.vtx[0].vout[-1].nValue += 1 + block_3.vtx[0].rehash() + block_3.hashMerkleRoot = block_3.calc_merkle_root() + block_3.rehash() + assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns + block_3.solve() + self.test_node.test_witness_block(block_3, accepted=True) + + # Finally test that a block with no witness transactions can + # omit the commitment. + block_4 = self.build_next_block() + tx3 = CTransaction() + tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) + tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) + tx3.rehash() + block_4.vtx.append(tx3) + block_4.hashMerkleRoot = block_4.calc_merkle_root() + block_4.solve() + self.test_node.test_witness_block(block_4, with_witness=False, accepted=True) + + # Update available utxo's for use in later test. + self.utxo.pop(0) + self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) + + + def test_block_malleability(self): + print("\tTesting witness block malleability") + + # Make sure that a block that has too big a virtual size + # because of a too-large coinbase witness is not permanently + # marked bad. + block = self.build_next_block() + add_witness_commitment(block) + block.solve() + + block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000) + assert(get_virtual_size(block) > MAX_BLOCK_SIZE) + + # We can't send over the p2p network, because this is too big to relay + # TODO: repeat this test with a block that can be relayed + self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) + + assert(self.nodes[0].getbestblockhash() != block.hash) + + block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop() + assert(get_virtual_size(block) < MAX_BLOCK_SIZE) + self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) + + assert(self.nodes[0].getbestblockhash() == block.hash) + + # Now make sure that malleating the witness nonce doesn't + # result in a block permanently marked bad. + block = self.build_next_block() + add_witness_commitment(block) + block.solve() + + # Change the nonce -- should not cause the block to be permanently + # failed + block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ] + self.test_node.test_witness_block(block, accepted=False) + + # Changing the witness nonce doesn't change the block hash + block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ] + self.test_node.test_witness_block(block, accepted=True) + + + def test_witness_block_size(self): + print("\tTesting witness block size limit") + # TODO: Test that non-witness carrying blocks can't exceed 1MB + # Skipping this test for now; this is covered in p2p-fullblocktest.py + + # Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB. + block = self.build_next_block() + + assert(len(self.utxo) > 0) + + # Create a P2WSH transaction. + # The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE. + # This should give us plenty of room to tweak the spending tx's + # virtual size. + NUM_DROPS = 200 # 201 max ops per script! + NUM_OUTPUTS = 50 + + witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE]) + witness_hash = uint256_from_str(sha256(witness_program)) + scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)]) + + prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n) + value = self.utxo[0].nValue + + parent_tx = CTransaction() + parent_tx.vin.append(CTxIn(prevout, b"")) + child_value = int(value/NUM_OUTPUTS) + for i in range(NUM_OUTPUTS): + parent_tx.vout.append(CTxOut(child_value, scriptPubKey)) + parent_tx.vout[0].nValue -= 50000 + assert(parent_tx.vout[0].nValue > 0) + parent_tx.rehash() + + child_tx = CTransaction() + for i in range(NUM_OUTPUTS): + child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b"")) + child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))] + for i in range(NUM_OUTPUTS): + child_tx.wit.vtxinwit.append(CTxinWitness()) + child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program] + child_tx.rehash() + self.update_witness_block_with_transactions(block, [parent_tx, child_tx]) + + vsize = get_virtual_size(block) + additional_bytes = (MAX_BLOCK_SIZE - vsize)*4 + i = 0 + while additional_bytes > 0: + # Add some more bytes to each input until we hit MAX_BLOCK_SIZE+1 + extra_bytes = min(additional_bytes+1, 55) + block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes) + additional_bytes -= extra_bytes + i += 1 + + block.vtx[0].vout.pop() # Remove old commitment + add_witness_commitment(block) + block.solve() + vsize = get_virtual_size(block) + assert_equal(vsize, MAX_BLOCK_SIZE + 1) + # Make sure that our test case would exceed the old max-network-message + # limit + assert(len(block.serialize(True)) > 2*1024*1024) + + self.test_node.test_witness_block(block, accepted=False) + + # Now resize the second transaction to make the block fit. + cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0]) + block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1) + block.vtx[0].vout.pop() + add_witness_commitment(block) + block.solve() + assert(get_virtual_size(block) == MAX_BLOCK_SIZE) + + self.test_node.test_witness_block(block, accepted=True) + + # Update available utxo's + self.utxo.pop(0) + self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue)) + + + # submitblock will try to add the nonce automatically, so that mining + # software doesn't need to worry about doing so itself. + def test_submit_block(self): + block = self.build_next_block() + + # Try using a custom nonce and then don't supply it. + # This shouldn't possibly work. + add_witness_commitment(block, nonce=1) + block.vtx[0].wit = CTxWitness() # drop the nonce + block.solve() + self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) + assert(self.nodes[0].getbestblockhash() != block.hash) + + # Now redo commitment with the standard nonce, but let bitcoind fill it in. + add_witness_commitment(block, nonce=0) + block.vtx[0].wit = CTxWitness() + block.solve() + self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) + assert_equal(self.nodes[0].getbestblockhash(), block.hash) + + # This time, add a tx with non-empty witness, but don't supply + # the commitment. + block_2 = self.build_next_block() + + add_witness_commitment(block_2) + + block_2.solve() + + # Drop commitment and nonce -- submitblock should not fill in. + block_2.vtx[0].vout.pop() + block_2.vtx[0].wit = CTxWitness() + + self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True))) + # Tip should not advance! + assert(self.nodes[0].getbestblockhash() != block_2.hash) + + + # Consensus tests of extra witness data in a transaction. + def test_extra_witness_data(self): + print("\tTesting extra witness data in tx") + + assert(len(self.utxo) > 0) + + block = self.build_next_block() + + witness_program = CScript([OP_DROP, OP_TRUE]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + + # First try extra witness data on a tx that doesn't require a witness + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-2000, scriptPubKey)) + tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output + tx.wit.vtxinwit.append(CTxinWitness()) + tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])] + tx.rehash() + self.update_witness_block_with_transactions(block, [tx]) + + # Extra witness data should not be allowed. + self.test_node.test_witness_block(block, accepted=False) + + # Try extra signature data. Ok if we're not spending a witness output. + block.vtx[1].wit.vtxinwit = [] + block.vtx[1].vin[0].scriptSig = CScript([OP_0]) + block.vtx[1].rehash() + add_witness_commitment(block) + block.solve() + + self.test_node.test_witness_block(block, accepted=True) + + # Now try extra witness/signature data on an input that DOES require a + # witness + tx2 = CTransaction() + tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output + tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness + tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) + tx2.wit.vtxinwit.extend([CTxinWitness(), CTxinWitness()]) + tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ] + tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ] + + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx2]) + + # This has extra witness data, so it should fail. + self.test_node.test_witness_block(block, accepted=False) + + # Now get rid of the extra witness, but add extra scriptSig data + tx2.vin[0].scriptSig = CScript([OP_TRUE]) + tx2.vin[1].scriptSig = CScript([OP_TRUE]) + tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0) + tx2.wit.vtxinwit[1].scriptWitness.stack = [] + tx2.rehash() + add_witness_commitment(block) + block.solve() + + # This has extra signature data for a witness input, so it should fail. + self.test_node.test_witness_block(block, accepted=False) + + # Now get rid of the extra scriptsig on the witness input, and verify + # success (even with extra scriptsig data in the non-witness input) + tx2.vin[0].scriptSig = b"" + tx2.rehash() + add_witness_commitment(block) + block.solve() + + self.test_node.test_witness_block(block, accepted=True) + + # Update utxo for later tests + self.utxo.pop(0) + self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) + + + def test_max_witness_push_length(self): + ''' Should only allow up to 520 byte pushes in witness stack ''' + print("\tTesting maximum witness push size") + MAX_SCRIPT_ELEMENT_SIZE = 520 + assert(len(self.utxo)) + + block = self.build_next_block() + + witness_program = CScript([OP_DROP, OP_TRUE]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) + tx.rehash() + + tx2 = CTransaction() + tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) + tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) + tx2.wit.vtxinwit.append(CTxinWitness()) + # First try a 521-byte stack element + tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ] + tx2.rehash() + + self.update_witness_block_with_transactions(block, [tx, tx2]) + self.test_node.test_witness_block(block, accepted=False) + + # Now reduce the length of the stack element + tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE) + + add_witness_commitment(block) + block.solve() + self.test_node.test_witness_block(block, accepted=True) + + # Update the utxo for later tests + self.utxo.pop() + self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) + + def test_max_witness_program_length(self): + # Can create witness outputs that are long, but can't be greater than + # 10k bytes to successfully spend + print("\tTesting maximum witness program length") + assert(len(self.utxo)) + MAX_PROGRAM_LENGTH = 10000 + + # This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes. + long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE]) + assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1) + long_witness_hash = sha256(long_witness_program) + long_scriptPubKey = CScript([OP_0, long_witness_hash]) + + block = self.build_next_block() + + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, long_scriptPubKey)) + tx.rehash() + + tx2 = CTransaction() + tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) + tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program] + tx2.rehash() + + self.update_witness_block_with_transactions(block, [tx, tx2]) + + self.test_node.test_witness_block(block, accepted=False) + + # Try again with one less byte in the witness program + witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE]) + assert(len(witness_program) == MAX_PROGRAM_LENGTH) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + + tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey) + tx.rehash() + tx2.vin[0].prevout.hash = tx.sha256 + tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program] + tx2.rehash() + block.vtx = [block.vtx[0]] + self.update_witness_block_with_transactions(block, [tx, tx2]) + self.test_node.test_witness_block(block, accepted=True) + + self.utxo.pop() + self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) + + + def test_witness_input_length(self): + ''' Ensure that vin length must match vtxinwit length ''' + print("\tTesting witness input length") + assert(len(self.utxo)) + + witness_program = CScript([OP_DROP, OP_TRUE]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + + # Create a transaction that splits our utxo into many outputs + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + nValue = self.utxo[0].nValue + for i in range(10): + tx.vout.append(CTxOut(int(nValue/10), scriptPubKey)) + tx.vout[0].nValue -= 1000 + assert(tx.vout[0].nValue >= 0) + + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True) + + # Try various ways to spend tx that should all break. + # This "broken" transaction serializer will not normalize + # the length of vtxinwit. + class BrokenCTransaction(CTransaction): + def serialize_with_witness(self): + flags = 0 + if not self.wit.is_null(): + flags |= 1 + r = b"" + r += struct.pack("<i", self.nVersion) + if flags: + dummy = [] + r += ser_vector(dummy) + r += struct.pack("<B", flags) + r += ser_vector(self.vin) + r += ser_vector(self.vout) + if flags & 1: + r += self.wit.serialize() + r += struct.pack("<I", self.nLockTime) + return r + + tx2 = BrokenCTransaction() + for i in range(10): + tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) + tx2.vout.append(CTxOut(nValue-3000, CScript([OP_TRUE]))) + + # First try using a too long vtxinwit + for i in range(11): + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program] + + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx2]) + self.test_node.test_witness_block(block, accepted=False) + + # Now try using a too short vtxinwit + tx2.wit.vtxinwit.pop() + tx2.wit.vtxinwit.pop() + + block.vtx = [block.vtx[0]] + self.update_witness_block_with_transactions(block, [tx2]) + self.test_node.test_witness_block(block, accepted=False) + + # Now make one of the intermediate witnesses be incorrect + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program] + tx2.wit.vtxinwit[5].scriptWitness.stack = [ witness_program ] + + block.vtx = [block.vtx[0]] + self.update_witness_block_with_transactions(block, [tx2]) + self.test_node.test_witness_block(block, accepted=False) + + # Fix the broken witness and the block should be accepted. + tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program] + block.vtx = [block.vtx[0]] + self.update_witness_block_with_transactions(block, [tx2]) + self.test_node.test_witness_block(block, accepted=True) + + self.utxo.pop() + self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) + + + def test_witness_tx_relay_before_segwit_activation(self): + print("\tTesting relay of witness transactions") + # Generate a transaction that doesn't require a witness, but send it + # with a witness. Should be rejected for premature-witness, but should + # not be added to recently rejected list. + assert(len(self.utxo)) + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) + tx.wit.vtxinwit.append(CTxinWitness()) + tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ] + tx.rehash() + + tx_hash = tx.sha256 + tx_value = tx.vout[0].nValue + + # Verify that if a peer doesn't set nServices to include NODE_WITNESS, + # the getdata is just for the non-witness portion. + self.old_node.announce_tx_and_wait_for_getdata(tx) + assert(self.old_node.last_getdata.inv[0].type == 1) + + # Since we haven't delivered the tx yet, inv'ing the same tx from + # a witness transaction ought not result in a getdata. + try: + self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2) + print("Error: duplicate tx getdata!") + assert(False) + except AssertionError as e: + pass + + # Delivering this transaction with witness should fail (no matter who + # its from) + assert_equal(len(self.nodes[0].getrawmempool()), 0) + assert_equal(len(self.nodes[1].getrawmempool()), 0) + self.old_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) + self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) + + # But eliminating the witness should fix it + self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) + + # Verify that inv's to test_node come with getdata's for non-witness tx's + # Just tweak the transaction, announce it, and verify we get a getdata + # for a normal tx + tx.vout[0].scriptPubKey = CScript([OP_TRUE, OP_TRUE]) + tx.rehash() + self.test_node.announce_tx_and_wait_for_getdata(tx) + assert(self.test_node.last_getdata.inv[0].type == 1) + + # Cleanup: mine the first transaction and update utxo + self.nodes[0].generate(1) + assert_equal(len(self.nodes[0].getrawmempool()), 0) + + self.utxo.pop(0) + self.utxo.append(UTXO(tx_hash, 0, tx_value)) + + + # After segwit activates, verify that mempool: + # - rejects transactions with unnecessary/extra witnesses + # - accepts transactions with valid witnesses + # and that witness transactions are relayed to non-upgraded peers. + def test_tx_relay_after_segwit_activation(self): + print("\tTesting relay of witness transactions") + # Generate a transaction that doesn't require a witness, but send it + # with a witness. Should be rejected because we can't use a witness + # when spending a non-witness output. + assert(len(self.utxo)) + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) + tx.wit.vtxinwit.append(CTxinWitness()) + tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ] + tx.rehash() + + tx_hash = tx.sha256 + tx_value = tx.vout[0].nValue + + # Verify that unnecessary witnesses are rejected. + self.test_node.announce_tx_and_wait_for_getdata(tx) + assert_equal(len(self.nodes[0].getrawmempool()), 0) + self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) + + # Verify that removing the witness succeeds. + # Re-announcing won't result in a getdata for ~2.5 minutes, so just + # deliver the modified transaction. + self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) + + # Now try to add extra witness data to a valid witness tx. + witness_program = CScript([OP_TRUE]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + tx2 = CTransaction() + tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b"")) + tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey)) + tx2.rehash() + + tx3 = CTransaction() + tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) + tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, CScript([OP_TRUE]))) + tx3.wit.vtxinwit.append(CTxinWitness()) + tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program ] + tx3.rehash() + + self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) + self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) + + # Get rid of the extra witness, and verify acceptance. + tx3.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] + # Also check that old_node gets a tx announcement, even though this is + # a witness transaction. + self.old_node.wait_for_inv(CInv(1, tx2.sha256)) # wait until tx2 was inv'ed + self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) + self.old_node.wait_for_inv(CInv(1, tx3.sha256)) + + # Test that getrawtransaction returns correct witness information + # hash, size, vsize + raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1) + assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True)) + assert_equal(raw_tx["size"], len(tx3.serialize_with_witness())) + vsize = (len(tx3.serialize_with_witness()) + 3*len(tx3.serialize_without_witness()) + 3) / 4 + assert_equal(raw_tx["vsize"], vsize) + assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1) + assert_equal(raw_tx["vin"][0]["txinwitness"][0], hexlify(witness_program).decode('ascii')) + assert(vsize != raw_tx["size"]) + + # Cleanup: mine the transactions and update utxo for next test + self.nodes[0].generate(1) + assert_equal(len(self.nodes[0].getrawmempool()), 0) + + self.utxo.pop(0) + self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) + + + # Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG + # This is true regardless of segwit activation. + # Also test that we don't ask for blocks from unupgraded peers + def test_block_relay(self, segwit_activated): + print("\tTesting block relay") + + blocktype = 2|MSG_WITNESS_FLAG if segwit_activated else 2 + + # test_node has set NODE_WITNESS, so all getdata requests should be for + # witness blocks. + # Test announcing a block via inv results in a getdata, and that + # announcing a version 4 or random VB block with a header results in a getdata + block1 = self.build_next_block() + block1.solve() + + self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False) + assert(self.test_node.last_getdata.inv[0].type == blocktype) + self.test_node.test_witness_block(block1, True) + + block2 = self.build_next_block(nVersion=4) + block2.solve() + + self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True) + assert(self.test_node.last_getdata.inv[0].type == blocktype) + self.test_node.test_witness_block(block2, True) + + block3 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15))) + block3.solve() + self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True) + assert(self.test_node.last_getdata.inv[0].type == blocktype) + self.test_node.test_witness_block(block3, True) + + # Check that we can getdata for witness blocks or regular blocks, + # and the right thing happens. + if segwit_activated == False: + # Before activation, we should be able to request old blocks with + # or without witness, and they should be the same. + chain_height = self.nodes[0].getblockcount() + # Pick 10 random blocks on main chain, and verify that getdata's + # for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal. + all_heights = list(range(chain_height+1)) + random.shuffle(all_heights) + all_heights = all_heights[0:10] + for height in all_heights: + block_hash = self.nodes[0].getblockhash(height) + rpc_block = self.nodes[0].getblock(block_hash, False) + block_hash = int(block_hash, 16) + block = self.test_node.request_block(block_hash, 2) + wit_block = self.test_node.request_block(block_hash, 2|MSG_WITNESS_FLAG) + assert_equal(block.serialize(True), wit_block.serialize(True)) + assert_equal(block.serialize(), hex_str_to_bytes(rpc_block)) + else: + # After activation, witness blocks and non-witness blocks should + # be different. Verify rpc getblock() returns witness blocks, while + # getdata respects the requested type. + block = self.build_next_block() + self.update_witness_block_with_transactions(block, []) + # This gives us a witness commitment. + assert(len(block.vtx[0].wit.vtxinwit) == 1) + assert(len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1) + self.test_node.test_witness_block(block, accepted=True) + # Now try to retrieve it... + rpc_block = self.nodes[0].getblock(block.hash, False) + non_wit_block = self.test_node.request_block(block.sha256, 2) + wit_block = self.test_node.request_block(block.sha256, 2|MSG_WITNESS_FLAG) + assert_equal(wit_block.serialize(True), hex_str_to_bytes(rpc_block)) + assert_equal(wit_block.serialize(False), non_wit_block.serialize()) + assert_equal(wit_block.serialize(True), block.serialize(True)) + + # Test size, vsize, cost + rpc_details = self.nodes[0].getblock(block.hash, True) + assert_equal(rpc_details["size"], len(block.serialize(True))) + assert_equal(rpc_details["strippedsize"], len(block.serialize(False))) + cost = 3*len(block.serialize(False)) + len(block.serialize(True)) + assert_equal(rpc_details["cost"], cost) + + # Upgraded node should not ask for blocks from unupgraded + block4 = self.build_next_block(nVersion=4) + block4.solve() + self.old_node.getdataset = set() + # Blocks can be requested via direct-fetch (immediately upon processing the announcement) + # or via parallel download (with an indeterminate delay from processing the announcement) + # so to test that a block is NOT requested, we could guess a time period to sleep for, + # and then check. We can avoid the sleep() by taking advantage of transaction getdata's + # being processed after block getdata's, and announce a transaction as well, + # and then check to see if that particular getdata has been received. + self.old_node.announce_block(block4, use_header=False) + self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0]) + assert(block4.sha256 not in self.old_node.getdataset) + + # Verify that future segwit upgraded transactions are non-standard, + # but valid in blocks. Can run this before and after segwit activation. + def test_segwit_versions(self): + print("\tTesting standardness/consensus for segwit versions (0-16)") + assert(len(self.utxo)) + NUM_TESTS = 17 # will test OP_0, OP1, ..., OP_16 + if (len(self.utxo) < NUM_TESTS): + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + split_value = (self.utxo[0].nValue - 4000) // NUM_TESTS + for i in range(NUM_TESTS): + tx.vout.append(CTxOut(split_value, CScript([OP_TRUE]))) + tx.rehash() + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True) + self.utxo.pop(0) + for i in range(NUM_TESTS): + self.utxo.append(UTXO(tx.sha256, i, split_value)) + + sync_blocks(self.nodes) + temp_utxo = [] + tx = CTransaction() + count = 0 + witness_program = CScript([OP_TRUE]) + witness_hash = sha256(witness_program) + assert_equal(len(self.nodes[1].getrawmempool()), 0) + for version in list(range(OP_1, OP_16+1)) + [OP_0]: + count += 1 + # First try to spend to a future version segwit scriptPubKey. + scriptPubKey = CScript([CScriptOp(version), witness_hash]) + tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] + tx.vout = [CTxOut(self.utxo[0].nValue-1000, scriptPubKey)] + tx.rehash() + self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) + self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) + self.utxo.pop(0) + temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) + + self.nodes[0].generate(1) # Mine all the transactions + sync_blocks(self.nodes) + assert(len(self.nodes[0].getrawmempool()) == 0) + + # Finally, verify that version 0 -> version 1 transactions + # are non-standard + scriptPubKey = CScript([CScriptOp(OP_1), witness_hash]) + tx2 = CTransaction() + tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] + tx2.vout = [CTxOut(tx.vout[0].nValue-1000, scriptPubKey)] + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] + tx2.rehash() + # Gets accepted to test_node, because standardness of outputs isn't + # checked with fRequireStandard + self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) + self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=False) + temp_utxo.pop() # last entry in temp_utxo was the output we just spent + temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) + + # Spend everything in temp_utxo back to an OP_TRUE output. + tx3 = CTransaction() + total_value = 0 + for i in temp_utxo: + tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) + tx3.wit.vtxinwit.append(CTxinWitness()) + total_value += i.nValue + tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] + tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE]))) + tx3.rehash() + # Spending a higher version witness output is not allowed by policy, + # even with fRequireStandard=false. + self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) + self.test_node.sync_with_ping() + with mininode_lock: + assert(b"reserved for soft-fork upgrades" in self.test_node.last_reject.reason) + + # Building a block with the transaction must be valid, however. + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx2, tx3]) + self.test_node.test_witness_block(block, accepted=True) + sync_blocks(self.nodes) + + # Add utxo to our list + self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) + + + def test_premature_coinbase_witness_spend(self): + print("\tTesting premature coinbase witness spend") + block = self.build_next_block() + # Change the output of the block to be a witness output. + witness_program = CScript([OP_TRUE]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + block.vtx[0].vout[0].scriptPubKey = scriptPubKey + # This next line will rehash the coinbase and update the merkle + # root, and solve. + self.update_witness_block_with_transactions(block, []) + self.test_node.test_witness_block(block, accepted=True) + + spend_tx = CTransaction() + spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")] + spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)] + spend_tx.wit.vtxinwit.append(CTxinWitness()) + spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] + spend_tx.rehash() + + # Now test a premature spend. + self.nodes[0].generate(98) + sync_blocks(self.nodes) + block2 = self.build_next_block() + self.update_witness_block_with_transactions(block2, [spend_tx]) + self.test_node.test_witness_block(block2, accepted=False) + + # Advancing one more block should allow the spend. + self.nodes[0].generate(1) + block2 = self.build_next_block() + self.update_witness_block_with_transactions(block2, [spend_tx]) + self.test_node.test_witness_block(block2, accepted=True) + sync_blocks(self.nodes) + + + def test_signature_version_1(self): + print("\tTesting segwit signature hash version 1") + key = CECKey() + key.set_secretbytes(b"9") + pubkey = CPubKey(key.get_pubkey()) + + witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + + # First create a witness output for use in the tests. + assert(len(self.utxo)) + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) + tx.rehash() + + self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) + # Mine this transaction in preparation for following tests. + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True) + sync_blocks(self.nodes) + self.utxo.pop(0) + + # Add signature for a P2PK witness program. + def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key): + tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value) + signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1') + txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script] + txTo.rehash() + + # Test each hashtype + prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) + for sigflag in [ 0, SIGHASH_ANYONECANPAY ]: + for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]: + hashtype |= sigflag + block = self.build_next_block() + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) + tx.vout.append(CTxOut(prev_utxo.nValue - 1000, scriptPubKey)) + tx.wit.vtxinwit.append(CTxinWitness()) + # Too-large input value + sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key) + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=False) + + # Too-small input value + sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key) + block.vtx.pop() # remove last tx + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=False) + + # Now try correct value + sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key) + block.vtx.pop() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True) + + prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) + + # Test combinations of signature hashes. + # Split the utxo into a lot of outputs. + # Randomly choose up to 10 to spend, sign with different hashtypes, and + # output to a random number of outputs. Repeat NUM_TESTS times. + # Ensure that we've tested a situation where we use SIGHASH_SINGLE with + # an input index > number of outputs. + NUM_TESTS = 500 + temp_utxos = [] + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) + split_value = prev_utxo.nValue // NUM_TESTS + for i in range(NUM_TESTS): + tx.vout.append(CTxOut(split_value, scriptPubKey)) + tx.wit.vtxinwit.append(CTxinWitness()) + sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key) + for i in range(NUM_TESTS): + temp_utxos.append(UTXO(tx.sha256, i, split_value)) + + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True) + + block = self.build_next_block() + used_sighash_single_out_of_bounds = False + for i in range(NUM_TESTS): + # Choose random number of inputs to use. + num_inputs = random.randint(1, 10) + # Create a slight bias for producing more utxos + num_outputs = random.randint(1, 11) + random.shuffle(temp_utxos) + assert(len(temp_utxos) > num_inputs) + tx = CTransaction() + total_value = 0 + for i in range(num_inputs): + tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b"")) + tx.wit.vtxinwit.append(CTxinWitness()) + total_value += temp_utxos[i].nValue + split_value = total_value // num_outputs + for i in range(num_outputs): + tx.vout.append(CTxOut(split_value, scriptPubKey)) + for i in range(num_inputs): + # Now try to sign each input, using a random hashtype. + anyonecanpay = 0 + if random.randint(0, 1): + anyonecanpay = SIGHASH_ANYONECANPAY + hashtype = random.randint(1, 3) | anyonecanpay + sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key) + if (hashtype == SIGHASH_SINGLE and i >= num_outputs): + used_sighash_single_out_of_bounds = True + tx.rehash() + for i in range(num_outputs): + temp_utxos.append(UTXO(tx.sha256, i, split_value)) + temp_utxos = temp_utxos[num_inputs:] + + block.vtx.append(tx) + + # Test the block periodically, if we're close to maxblocksize + if (get_virtual_size(block) > MAX_BLOCK_SIZE - 1000): + self.update_witness_block_with_transactions(block, []) + self.test_node.test_witness_block(block, accepted=True) + block = self.build_next_block() + + if (not used_sighash_single_out_of_bounds): + print("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value") + # Test the transactions we've added to the block + if (len(block.vtx) > 1): + self.update_witness_block_with_transactions(block, []) + self.test_node.test_witness_block(block, accepted=True) + + # Now test witness version 0 P2PKH transactions + pubkeyhash = hash160(pubkey) + scriptPKH = CScript([OP_0, pubkeyhash]) + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b"")) + tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH)) + tx.wit.vtxinwit.append(CTxinWitness()) + sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key) + tx2 = CTransaction() + tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) + tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) + + script = CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)]) + sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) + signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL + + # Check that we can't have a scriptSig + tx2.vin[0].scriptSig = CScript([signature, pubkey]) + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx, tx2]) + self.test_node.test_witness_block(block, accepted=False) + + # Move the signature to the witness. + block.vtx.pop() + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] + tx2.vin[0].scriptSig = b"" + tx2.rehash() + + self.update_witness_block_with_transactions(block, [tx2]) + self.test_node.test_witness_block(block, accepted=True) + + temp_utxos.pop(0) + + # Update self.utxos for later tests. Just spend everything in + # temp_utxos to a corresponding entry in self.utxos + tx = CTransaction() + index = 0 + for i in temp_utxos: + # Just spend to our usual anyone-can-spend output + # Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up + # the signatures as we go. + tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) + tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE]))) + tx.wit.vtxinwit.append(CTxinWitness()) + sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key) + index += 1 + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True) + + for i in range(len(tx.vout)): + self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue)) + + + # Test P2SH wrapped witness programs. + def test_p2sh_witness(self, segwit_activated): + print("\tTesting P2SH witness transactions") + + assert(len(self.utxo)) + + # Prepare the p2sh-wrapped witness output + witness_program = CScript([OP_DROP, OP_TRUE]) + witness_hash = sha256(witness_program) + p2wsh_pubkey = CScript([OP_0, witness_hash]) + p2sh_witness_hash = hash160(p2wsh_pubkey) + scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) + scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script + + # Fund the P2SH output + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) + tx.rehash() + + # Verify mempool acceptance and block validity + self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [tx]) + self.test_node.test_witness_block(block, accepted=True, with_witness=segwit_activated) + sync_blocks(self.nodes) + + # Now test attempts to spend the output. + spend_tx = CTransaction() + spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig)) + spend_tx.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) + spend_tx.rehash() + + # This transaction should not be accepted into the mempool pre- or + # post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which + # will require a witness to spend a witness program regardless of + # segwit activation. Note that older bitcoind's that are not + # segwit-aware would also reject this for failing CLEANSTACK. + self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) + + # Try to put the witness script in the scriptSig, should also fail. + spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a']) + spend_tx.rehash() + self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) + + # Now put the witness script in the witness, should succeed after + # segwit activates. + spend_tx.vin[0].scriptSig = scriptSig + spend_tx.rehash() + spend_tx.wit.vtxinwit.append(CTxinWitness()) + spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ] + + # Verify mempool acceptance + self.test_node.test_transaction_acceptance(spend_tx, with_witness=True, accepted=segwit_activated) + block = self.build_next_block() + self.update_witness_block_with_transactions(block, [spend_tx]) + + # If we're before activation, then sending this without witnesses + # should be valid. If we're after activation, then sending this with + # witnesses should be valid. + if segwit_activated: + self.test_node.test_witness_block(block, accepted=True) + else: + self.test_node.test_witness_block(block, accepted=True, with_witness=False) + + # Update self.utxo + self.utxo.pop(0) + self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue)) + + # Test the behavior of starting up a segwit-aware node after the softfork + # has activated. As segwit requires different block data than pre-segwit + # nodes would have stored, this requires special handling. + # To enable this test, pass --oldbinary=<path-to-pre-segwit-bitcoind> to + # the test. + def test_upgrade_after_activation(self, node, node_id): + print("\tTesting software upgrade after softfork activation") + + assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind + + # Make sure the nodes are all up + sync_blocks(self.nodes) + + # Restart with the new binary + stop_node(node, node_id) + self.nodes[node_id] = start_node(node_id, self.options.tmpdir, ["-debug"]) + connect_nodes(self.nodes[0], node_id) + + sync_blocks(self.nodes) + + # Make sure that this peer thinks segwit has activated. + assert(get_bip9_status(node, 'segwit')['status'] == "active") + + # Make sure this peers blocks match those of node0. + height = node.getblockcount() + while height >= 0: + block_hash = node.getblockhash(height) + assert_equal(block_hash, self.nodes[0].getblockhash(height)) + assert_equal(self.nodes[0].getblock(block_hash), node.getblock(block_hash)) + height -= 1 + + + def test_witness_sigops(self): + '''Ensure sigop counting is correct inside witnesses.''' + print("\tTesting sigops limit") + + assert(len(self.utxo)) + + # Keep this under MAX_OPS_PER_SCRIPT (201) + witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF]) + witness_hash = sha256(witness_program) + scriptPubKey = CScript([OP_0, witness_hash]) + + sigops_per_script = 20*5 + 193*1 + # We'll produce 2 extra outputs, one with a program that would take us + # over max sig ops, and one with a program that would exactly reach max + # sig ops + outputs = (MAX_SIGOP_COST // sigops_per_script) + 2 + extra_sigops_available = MAX_SIGOP_COST % sigops_per_script + + # We chose the number of checkmultisigs/checksigs to make this work: + assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT + + # This script, when spent with the first + # N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction, + # would push us just over the block sigop limit. + witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF]) + witness_hash_toomany = sha256(witness_program_toomany) + scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany]) + + # If we spend this script instead, we would exactly reach our sigop + # limit (for witness sigops). + witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF]) + witness_hash_justright = sha256(witness_program_justright) + scriptPubKey_justright = CScript([OP_0, witness_hash_justright]) + + # First split our available utxo into a bunch of outputs + split_value = self.utxo[0].nValue // outputs + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) + for i in range(outputs): + tx.vout.append(CTxOut(split_value, scriptPubKey)) + tx.vout[-2].scriptPubKey = scriptPubKey_toomany + tx.vout[-1].scriptPubKey = scriptPubKey_justright + tx.rehash() + + block_1 = self.build_next_block() + self.update_witness_block_with_transactions(block_1, [tx]) + self.test_node.test_witness_block(block_1, accepted=True) + + tx2 = CTransaction() + # If we try to spend the first n-1 outputs from tx, that should be + # too many sigops. + total_value = 0 + for i in range(outputs-1): + tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ] + total_value += tx.vout[i].nValue + tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ] + tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE]))) + tx2.rehash() + + block_2 = self.build_next_block() + self.update_witness_block_with_transactions(block_2, [tx2]) + self.test_node.test_witness_block(block_2, accepted=False) + + # Try dropping the last input in tx2, and add an output that has + # too many sigops (contributing to legacy sigop count). + checksig_count = (extra_sigops_available // 4) + 1 + scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count) + tx2.vout.append(CTxOut(0, scriptPubKey_checksigs)); + tx2.vin.pop() + tx2.wit.vtxinwit.pop() + tx2.vout[0].nValue -= tx.vout[-2].nValue + tx2.rehash() + block_3 = self.build_next_block() + self.update_witness_block_with_transactions(block_3, [tx2]) + self.test_node.test_witness_block(block_3, accepted=False) + + # If we drop the last checksig in this output, the tx should succeed. + block_4 = self.build_next_block() + tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1)) + tx2.rehash() + self.update_witness_block_with_transactions(block_4, [tx2]) + self.test_node.test_witness_block(block_4, accepted=True) + + # Reset the tip back down for the next test + sync_blocks(self.nodes) + for x in self.nodes: + x.invalidateblock(block_4.hash) + + # Try replacing the last input of tx2 to be spending the last + # output of tx + block_5 = self.build_next_block() + tx2.vout.pop() + tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b"")) + tx2.wit.vtxinwit.append(CTxinWitness()) + tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ] + tx2.rehash() + self.update_witness_block_with_transactions(block_5, [tx2]) + self.test_node.test_witness_block(block_5, accepted=True) + + # TODO: test p2sh sigop counting + + def test_getblocktemplate_before_lockin(self): + print("\tTesting getblocktemplate setting of segwit versionbit (before lockin)") + block_version = (self.nodes[0].getblocktemplate())['version'] + assert_equal(block_version & (1 << VB_WITNESS_BIT), 0) + + # Workaround: + # Can either change the tip, or change the mempool and wait 5 seconds + # to trigger a recomputation of getblocktemplate. + self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) + # Using mocktime lets us avoid sleep() + self.nodes[0].setmocktime(int(time.time())+10) + + block_version = self.nodes[0].getblocktemplate({"rules" : ["segwit"]})['version'] + assert(block_version & (1 << VB_WITNESS_BIT) != 0) + self.nodes[0].setmocktime(0) # undo mocktime + + def run_test(self): + # Setup the p2p connections and start up the network thread. + self.test_node = TestNode() # sets NODE_WITNESS|NODE_NETWORK + self.old_node = TestNode() # only NODE_NETWORK + self.std_node = TestNode() # for testing node1 (fRequireStandard=true) + + self.p2p_connections = [self.test_node, self.old_node] + + self.connections = [] + self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node, services=NODE_NETWORK|NODE_WITNESS)) + self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.old_node, services=NODE_NETWORK)) + self.connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.std_node, services=NODE_NETWORK|NODE_WITNESS)) + self.test_node.add_connection(self.connections[0]) + self.old_node.add_connection(self.connections[1]) + self.std_node.add_connection(self.connections[2]) + + NetworkThread().start() # Start up network handling in another thread + + # Keep a place to store utxo's that can be used in later tests + self.utxo = [] + + # Test logic begins here + self.test_node.wait_for_verack() + + print("\nStarting tests before segwit lock in:") + + self.test_witness_services() # Verifies NODE_WITNESS + self.test_non_witness_transaction() # non-witness tx's are accepted + self.test_unnecessary_witness_before_segwit_activation() + self.test_block_relay(segwit_activated=False) + + # Advance to segwit being 'started' + self.advance_to_segwit_started() + self.test_getblocktemplate_before_lockin() + + sync_blocks(self.nodes) + + # At lockin, nothing should change. + print("\nTesting behavior post lockin, pre-activation") + self.advance_to_segwit_lockin() + + # Retest unnecessary witnesses + self.test_unnecessary_witness_before_segwit_activation() + self.test_witness_tx_relay_before_segwit_activation() + self.test_block_relay(segwit_activated=False) + self.test_p2sh_witness(segwit_activated=False) + + sync_blocks(self.nodes) + + # Now activate segwit + print("\nTesting behavior after segwit activation") + self.advance_to_segwit_active() + + sync_blocks(self.nodes) + + # Test P2SH witness handling again + self.test_p2sh_witness(segwit_activated=True) + self.test_witness_commitments() + self.test_block_malleability() + self.test_witness_block_size() + self.test_submit_block() + self.test_extra_witness_data() + self.test_max_witness_push_length() + self.test_max_witness_program_length() + self.test_witness_input_length() + self.test_block_relay(segwit_activated=True) + self.test_tx_relay_after_segwit_activation() + self.test_segwit_versions() + self.test_premature_coinbase_witness_spend() + self.test_signature_version_1() + sync_blocks(self.nodes) + if self.test_upgrade: + self.test_upgrade_after_activation(self.nodes[2], 2) + else: + print("\tSkipping upgrade-after-activation test (use --oldbinary to enable)") + self.test_witness_sigops() + + +if __name__ == '__main__': + SegWitTest().main() |