diff options
author | Martin Ankerl <martin.ankerl@gmail.com> | 2021-05-27 07:29:48 +0200 |
---|---|---|
committer | Martin Ankerl <martin.ankerl@gmail.com> | 2021-06-01 12:00:00 +0200 |
commit | e3c866e3ca85f841671a828712e6207e24d0d996 (patch) | |
tree | c14623b35023df369ce1256a2fac1ff4f9972a49 | |
parent | c91589dc2defdf0e193c2ebe383337c4008c47b5 (diff) |
test: update nanobench from release 4.0.0 to 4.3.4
This updates the third-party library nanobench with the latest release. It contains mostly minor bugfixes, a new pyperf output format, ability to suppress warnings with environment variable `NANOBENCH_SUPPRESS_WARNINGS`. Full changelog:
v4.0.2
* Changed `doNotOptimizeAway` to what google benchmark is doing. The old code did not work on some machines.
* fix: display correct "total" value
* minor Documentation updates
v4.1.0
* Updated link to new pyperf home
* Adds ability to configure console output time unit
* Add support for environment variable `NANOBENCH_SUPPRESS_WARNINGS`
* Nanobench is now usable with CMake's FetchContent (see documentation: https://nanobench.ankerl.com/tutorial.html#cmake-integration)
v4.2.0
* Ability to store and later compare results added, through `pyperf`.
* See https://nanobench.ankerl.com/tutorial.html#pyperf-python-pyperf-module-output
* Added lots of build targets to travis, similar to bitcoin's build.
* Some minor API & documentation improvements
v4.3.0
* `ankerl::nanobench::Rng` can now return the state with `std::vector<uint64_t> Rng::state()`, and this can also be used to initialize the Rng.
v4.3.1
* Minor cmake improvements when integrationg as a third-party library: add alias `nanobench::nanobench`, default to C++17
v4.3.2
* Fixed a MSVC 2015 build problem
* updates license to 2021.
* build should now work with very old linux headers
* Also disable UBSAN (bitcoin needed to add a suppression)
v4.3.3
* Do not use locale-dependent `std::to_string`
v4.3.4
* Add missing sanitizer suppression to `rotl`
-rw-r--r-- | src/bench/nanobench.h | 239 |
1 files changed, 187 insertions, 52 deletions
diff --git a/src/bench/nanobench.h b/src/bench/nanobench.h index c5379e7fd4..030d6ebf6a 100644 --- a/src/bench/nanobench.h +++ b/src/bench/nanobench.h @@ -7,7 +7,7 @@ // // Licensed under the MIT License <http://opensource.org/licenses/MIT>. // SPDX-License-Identifier: MIT -// Copyright (c) 2019-2020 Martin Ankerl <martin.ankerl@gmail.com> +// Copyright (c) 2019-2021 Martin Ankerl <martin.ankerl@gmail.com> // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal @@ -32,8 +32,8 @@ // see https://semver.org/ #define ANKERL_NANOBENCH_VERSION_MAJOR 4 // incompatible API changes -#define ANKERL_NANOBENCH_VERSION_MINOR 0 // backwards-compatible changes -#define ANKERL_NANOBENCH_VERSION_PATCH 0 // backwards-compatible bug fixes +#define ANKERL_NANOBENCH_VERSION_MINOR 3 // backwards-compatible changes +#define ANKERL_NANOBENCH_VERSION_PATCH 4 // backwards-compatible bug fixes /////////////////////////////////////////////////////////////////////////////////////////////////// // public facing api - as minimal as possible @@ -78,12 +78,20 @@ #if defined(ANKERL_NANOBENCH_LOG_ENABLED) # include <iostream> -# define ANKERL_NANOBENCH_LOG(x) std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl +# define ANKERL_NANOBENCH_LOG(x) \ + do { \ + std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl; \ + } while (0) #else -# define ANKERL_NANOBENCH_LOG(x) +# define ANKERL_NANOBENCH_LOG(x) \ + do { \ + } while (0) #endif -#if defined(__linux__) && !defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS) +#if defined(__linux__) && defined(PERF_EVENT_IOC_ID) && defined(PERF_COUNT_HW_REF_CPU_CYCLES) && defined(PERF_FLAG_FD_CLOEXEC) && \ + !defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS) +// only enable perf counters on kernel 3.14 which seems to have all the necessary defines. The three PERF_... defines are not in +// kernel 2.6.32 (all others are). # define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 1 #else # define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 0 @@ -173,7 +181,7 @@ class BigO; * `contextswitches`, `instructions`, `branchinstructions`, and `branchmisses`. All the measuers (except `iterations`) are * provided for a single iteration (so `elapsed` is the time a single iteration took). The following tags are available: * - * * `{{median(<name>>)}}` Calculate median of a measurement data set, e.g. `{{median(elapsed)}}`. + * * `{{median(<name>)}}` Calculate median of a measurement data set, e.g. `{{median(elapsed)}}`. * * * `{{average(<name>)}}` Average (mean) calculation. * @@ -181,10 +189,11 @@ class BigO; * metric for the variation of measurements. It is more robust to outliers than the * [Mean absolute percentage error (M-APE)](https://en.wikipedia.org/wiki/Mean_absolute_percentage_error). * @f[ - * \mathrm{medianAbsolutePercentError}(e) = \mathrm{median}\{| \frac{e_i - \mathrm{median}\{e\}}{e_i}| \} + * \mathrm{MdAPE}(e) = \mathrm{med}\{| \frac{e_i - \mathrm{med}\{e\}}{e_i}| \} * @f] - * E.g. for *elapsed*: First, @f$ \mathrm{median}\{elapsed\} @f$ is calculated. This is used to calculate the absolute percentage - * error to this median for each measurement, as in @f$ | \frac{e_i - \mathrm{median}\{e\}}{e_i}| @f$. All these results + * E.g. for *elapsed*: First, @f$ \mathrm{med}\{e\} @f$ calculates the median by sorting and then taking the middle element + * of all *elapsed* measurements. This is used to calculate the absolute percentage + * error to this median for each measurement, as in @f$ | \frac{e_i - \mathrm{med}\{e\}}{e_i}| @f$. All these results * are sorted, and the middle value is chosen as the median absolute percent error. * * This measurement is a bit hard to interpret, but it is very robust against outliers. E.g. a value of 5% means that half of the @@ -207,7 +216,7 @@ class BigO; * * * `{{#measurement}}` To access individual measurement results, open the begin tag for measurements. * - * * `{{elapsed}}` Average elapsed time per iteration, in seconds. + * * `{{elapsed}}` Average elapsed wall clock time per iteration, in seconds. * * * `{{iterations}}` Number of iterations in the measurement. The number of iterations will fluctuate due * to some applied randomness, to enhance accuracy. @@ -261,6 +270,7 @@ class BigO; * :cpp:func:`templates::csv() <ankerl::nanobench::templates::csv()>` * :cpp:func:`templates::json() <ankerl::nanobench::templates::json()>` * :cpp:func:`templates::htmlBoxplot() <ankerl::nanobench::templates::htmlBoxplot()>` + * :cpp:func:`templates::pyperf() <ankerl::nanobench::templates::pyperf()>` @endverbatim * @@ -269,6 +279,7 @@ class BigO; * @param out Output for the generated output. */ void render(char const* mustacheTemplate, Bench const& bench, std::ostream& out); +void render(std::string const& mustacheTemplate, Bench const& bench, std::ostream& out); /** * Same as render(char const* mustacheTemplate, Bench const& bench, std::ostream& out), but for when @@ -279,6 +290,7 @@ void render(char const* mustacheTemplate, Bench const& bench, std::ostream& out) * @param out Output for the generated output. */ void render(char const* mustacheTemplate, std::vector<Result> const& results, std::ostream& out); +void render(std::string const& mustacheTemplate, std::vector<Result> const& results, std::ostream& out); // Contains mustache-like templates namespace templates { @@ -297,7 +309,7 @@ char const* csv() noexcept; /*! @brief HTML output that uses plotly to generate an interactive boxplot chart. See the tutorial for an example output. - The output uses only the elapsed time, and displays each epoch as a single dot. + The output uses only the elapsed wall clock time, and displays each epoch as a single dot. @verbatim embed:rst See the tutorial at :ref:`tutorial-template-html` for an example. @endverbatim @@ -307,6 +319,14 @@ char const* csv() noexcept; char const* htmlBoxplot() noexcept; /*! + @brief Output in pyperf compatible JSON format, which can be used for more analyzations. + @verbatim embed:rst + See the tutorial at :ref:`tutorial-template-pyperf` for an example how to further analyze the output. + @endverbatim + */ +char const* pyperf() noexcept; + +/*! @brief Template to generate JSON data. The generated JSON data contains *all* data that has been generated. All times are as double values, in seconds. The output can get @@ -369,6 +389,8 @@ struct Config { uint64_t mEpochIterations{0}; // If not 0, run *exactly* these number of iterations per epoch. uint64_t mWarmup = 0; std::ostream* mOut = nullptr; + std::chrono::duration<double> mTimeUnit = std::chrono::nanoseconds{1}; + std::string mTimeUnitName = "ns"; bool mShowPerformanceCounters = true; bool mIsRelative = false; @@ -504,6 +526,7 @@ public: */ explicit Rng(uint64_t seed) noexcept; Rng(uint64_t x, uint64_t y) noexcept; + Rng(std::vector<uint64_t> const& data); /** * Creates a copy of the Rng, thus the copy provides exactly the same random sequence as the original. @@ -558,6 +581,14 @@ public: template <typename Container> void shuffle(Container& container) noexcept; + /** + * Extracts the full state of the generator, e.g. for serialization. For this RNG this is just 2 values, but to stay API compatible + * with future implementations that potentially use more state, we use a vector. + * + * @return Vector containing the full state: + */ + std::vector<uint64_t> state() const; + private: static constexpr uint64_t rotl(uint64_t x, unsigned k) noexcept; @@ -667,6 +698,19 @@ public: ANKERL_NANOBENCH(NODISCARD) std::string const& unit() const noexcept; /** + * @brief Sets the time unit to be used for the default output. + * + * Nanobench defaults to using ns (nanoseconds) as output in the markdown. For some benchmarks this is too coarse, so it is + * possible to configure this. E.g. use `timeUnit(1ms, "ms")` to show `ms/op` instead of `ns/op`. + * + * @param tu Time unit to display the results in, default is 1ns. + * @param tuName Name for the time unit, default is "ns" + */ + Bench& timeUnit(std::chrono::duration<double> const& tu, std::string const& tuName); + ANKERL_NANOBENCH(NODISCARD) std::string const& timeUnitName() const noexcept; + ANKERL_NANOBENCH(NODISCARD) std::chrono::duration<double> const& timeUnit() const noexcept; + + /** * @brief Set the output stream where the resulting markdown table will be printed to. * * The default is `&std::cout`. You can disable all output by setting `nullptr`. @@ -916,6 +960,7 @@ public: @endverbatim */ Bench& render(char const* templateContent, std::ostream& os); + Bench& render(std::string const& templateContent, std::ostream& os); Bench& config(Config const& benchmarkConfig); ANKERL_NANOBENCH(NODISCARD) Config const& config() const noexcept; @@ -945,23 +990,24 @@ void doNotOptimizeAway(T const& val); #else -// see folly's Benchmark.h -template <typename T> -constexpr bool doNotOptimizeNeedsIndirect() { - using Decayed = typename std::decay<T>::type; - return !ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(Decayed) || sizeof(Decayed) > sizeof(long) || std::is_pointer<Decayed>::value; -} - +// These assembly magic is directly from what Google Benchmark is doing. I have previously used what facebook's folly was doing, but +// this seemd to have compilation problems in some cases. Google Benchmark seemed to be the most well tested anyways. +// see https://github.com/google/benchmark/blob/master/include/benchmark/benchmark.h#L307 template <typename T> -typename std::enable_if<!doNotOptimizeNeedsIndirect<T>()>::type doNotOptimizeAway(T const& val) { +void doNotOptimizeAway(T const& val) { // NOLINTNEXTLINE(hicpp-no-assembler) - asm volatile("" ::"r"(val)); + asm volatile("" : : "r,m"(val) : "memory"); } template <typename T> -typename std::enable_if<doNotOptimizeNeedsIndirect<T>()>::type doNotOptimizeAway(T const& val) { +void doNotOptimizeAway(T& val) { +# if defined(__clang__) + // NOLINTNEXTLINE(hicpp-no-assembler) + asm volatile("" : "+r,m"(val) : : "memory"); +# else // NOLINTNEXTLINE(hicpp-no-assembler) - asm volatile("" ::"m"(val) : "memory"); + asm volatile("" : "+m,r"(val) : : "memory"); +# endif } #endif @@ -1067,7 +1113,7 @@ constexpr uint64_t(Rng::max)() { return (std::numeric_limits<uint64_t>::max)(); } -ANKERL_NANOBENCH_NO_SANITIZE("integer") +ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") uint64_t Rng::operator()() noexcept { auto x = mX; @@ -1077,7 +1123,7 @@ uint64_t Rng::operator()() noexcept { return x; } -ANKERL_NANOBENCH_NO_SANITIZE("integer") +ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") uint32_t Rng::bounded(uint32_t range) noexcept { uint64_t r32 = static_cast<uint32_t>(operator()()); auto multiresult = r32 * range; @@ -1103,6 +1149,7 @@ void Rng::shuffle(Container& container) noexcept { } } +ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") constexpr uint64_t Rng::rotl(uint64_t x, unsigned k) noexcept { return (x << k) | (x >> (64U - k)); } @@ -1306,6 +1353,30 @@ char const* htmlBoxplot() noexcept { </html>)DELIM"; } +char const* pyperf() noexcept { + return R"DELIM({ + "benchmarks": [ + { + "runs": [ + { + "values": [ +{{#measurement}} {{elapsed}}{{^-last}}, +{{/last}}{{/measurement}} + ] + } + ] + } + ], + "metadata": { + "loops": {{sum(iterations)}}, + "inner_loops": {{batch}}, + "name": "{{title}}", + "unit": "second" + }, + "version": "1.0" +})DELIM"; +} + char const* json() noexcept { return R"DELIM({ "results": [ @@ -1410,6 +1481,7 @@ static std::vector<Node> parseMustacheTemplate(char const** tpl) { } static bool generateFirstLast(Node const& n, size_t idx, size_t size, std::ostream& out) { + ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type)); bool matchFirst = n == "-first"; bool matchLast = n == "-last"; if (!matchFirst && !matchLast) { @@ -1632,6 +1704,7 @@ namespace detail { char const* getEnv(char const* name); bool isEndlessRunning(std::string const& name); +bool isWarningsEnabled(); template <typename T> T parseFile(std::string const& filename); @@ -1770,25 +1843,49 @@ void render(char const* mustacheTemplate, std::vector<Result> const& results, st for (size_t i = 0; i < nbResults; ++i) { generateResult(n.children, i, results, out); } + } else if (n == "measurement") { + if (results.size() != 1) { + throw std::runtime_error( + "render: can only use section 'measurement' here if there is a single result, but there are " + + detail::fmt::to_s(results.size())); + } + // when we only have a single result, we can immediately go into its measurement. + auto const& r = results.front(); + for (size_t i = 0; i < r.size(); ++i) { + generateResultMeasurement(n.children, i, r, out); + } } else { - throw std::runtime_error("unknown section '" + std::string(n.begin, n.end) + "'"); + throw std::runtime_error("render: unknown section '" + std::string(n.begin, n.end) + "'"); } break; case templates::Node::Type::tag: - // This just uses the last result's config. - if (!generateConfigTag(n, results.back().config(), out)) { - throw std::runtime_error("unknown tag '" + std::string(n.begin, n.end) + "'"); + if (results.size() == 1) { + // result & config are both supported there + generateResultTag(n, results.front(), out); + } else { + // This just uses the last result's config. + if (!generateConfigTag(n, results.back().config(), out)) { + throw std::runtime_error("unknown tag '" + std::string(n.begin, n.end) + "'"); + } } break; } } } +void render(std::string const& mustacheTemplate, std::vector<Result> const& results, std::ostream& out) { + render(mustacheTemplate.c_str(), results, out); +} + void render(char const* mustacheTemplate, const Bench& bench, std::ostream& out) { render(mustacheTemplate, bench.results(), out); } +void render(std::string const& mustacheTemplate, const Bench& bench, std::ostream& out) { + render(mustacheTemplate.c_str(), bench.results(), out); +} + namespace detail { PerformanceCounters& performanceCounters() { @@ -1837,6 +1934,12 @@ bool isEndlessRunning(std::string const& name) { return nullptr != endless && endless == name; } +// True when environment variable NANOBENCH_SUPPRESS_WARNINGS is either not set at all, or set to "0" +bool isWarningsEnabled() { + auto suppression = getEnv("NANOBENCH_SUPPRESS_WARNINGS"); + return nullptr == suppression || suppression == std::string("0"); +} + void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations) { warnings.clear(); recommendations.clear(); @@ -1889,13 +1992,13 @@ void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector< recommendations.emplace_back("Make sure you compile for Release"); } if (recommendPyPerf) { - recommendations.emplace_back("Use 'pyperf system tune' before benchmarking. See https://github.com/vstinner/pyperf"); + recommendations.emplace_back("Use 'pyperf system tune' before benchmarking. See https://github.com/psf/pyperf"); } } void printStabilityInformationOnce(std::ostream* outStream) { static bool shouldPrint = true; - if (shouldPrint && outStream) { + if (shouldPrint && outStream && isWarningsEnabled()) { auto& os = *outStream; shouldPrint = false; std::vector<std::string> warnings; @@ -1923,16 +2026,7 @@ uint64_t& singletonHeaderHash() noexcept { return sHeaderHash; } -ANKERL_NANOBENCH_NO_SANITIZE("integer") -inline uint64_t fnv1a(std::string const& str) noexcept { - auto val = UINT64_C(14695981039346656037); - for (auto c : str) { - val = (val ^ static_cast<uint8_t>(c)) * UINT64_C(1099511628211); - } - return val; -} - -ANKERL_NANOBENCH_NO_SANITIZE("integer") +ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") inline uint64_t hash_combine(uint64_t seed, uint64_t val) { return seed ^ (val + UINT64_C(0x9e3779b9) + (seed << 6U) + (seed >> 2U)); } @@ -2010,7 +2104,7 @@ struct IterationLogic::Impl { return static_cast<uint64_t>(doubleNewIters + 0.5); } - ANKERL_NANOBENCH_NO_SANITIZE("integer") void upscale(std::chrono::nanoseconds elapsed) { + ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") void upscale(std::chrono::nanoseconds elapsed) { if (elapsed * 10 < mTargetRuntimePerEpoch) { // we are far below the target runtime. Multiply iterations by 10 (with overflow check) if (mNumIters * 10 < mNumIters) { @@ -2108,7 +2202,8 @@ struct IterationLogic::Impl { columns.emplace_back(14, 0, "complexityN", "", mBench.complexityN()); } - columns.emplace_back(22, 2, "ns/" + mBench.unit(), "", 1e9 * rMedian / mBench.batch()); + columns.emplace_back(22, 2, mBench.timeUnitName() + "/" + mBench.unit(), "", + rMedian / (mBench.timeUnit().count() * mBench.batch())); columns.emplace_back(22, 2, mBench.unit() + "/s", "", rMedian <= 0.0 ? 0.0 : mBench.batch() / rMedian); double rErrorMedian = mResult.medianAbsolutePercentError(Result::Measure::elapsed); @@ -2140,16 +2235,19 @@ struct IterationLogic::Impl { } } - columns.emplace_back(12, 2, "total", "", mResult.sum(Result::Measure::elapsed)); + columns.emplace_back(12, 2, "total", "", mResult.sumProduct(Result::Measure::iterations, Result::Measure::elapsed)); // write everything auto& os = *mBench.output(); + // combine all elements that are relevant for printing the header uint64_t hash = 0; - hash = hash_combine(fnv1a(mBench.unit()), hash); - hash = hash_combine(fnv1a(mBench.title()), hash); - hash = hash_combine(mBench.relative(), hash); - hash = hash_combine(mBench.performanceCounters(), hash); + hash = hash_combine(std::hash<std::string>{}(mBench.unit()), hash); + hash = hash_combine(std::hash<std::string>{}(mBench.title()), hash); + hash = hash_combine(std::hash<std::string>{}(mBench.timeUnitName()), hash); + hash = hash_combine(std::hash<double>{}(mBench.timeUnit().count()), hash); + hash = hash_combine(std::hash<bool>{}(mBench.relative()), hash); + hash = hash_combine(std::hash<bool>{}(mBench.performanceCounters()), hash); if (hash != singletonHeaderHash()) { singletonHeaderHash() = hash; @@ -2177,7 +2275,7 @@ struct IterationLogic::Impl { os << col.value(); } os << "| "; - auto showUnstable = rErrorMedian >= 0.05; + auto showUnstable = isWarningsEnabled() && rErrorMedian >= 0.05; if (showUnstable) { os << ":wavy_dash: "; } @@ -2305,7 +2403,7 @@ public: } template <typename Op> - ANKERL_NANOBENCH_NO_SANITIZE("integer") + ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") void calibrate(Op&& op) { // clear current calibration data, for (auto& v : mCalibratedOverhead) { @@ -2411,7 +2509,7 @@ bool LinuxPerformanceCounters::monitor(perf_hw_id hwId, LinuxPerformanceCounters } // overflow is ok, it's checked -ANKERL_NANOBENCH_NO_SANITIZE("integer") +ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") void LinuxPerformanceCounters::updateResults(uint64_t numIters) { // clear old data for (auto& id_value : mIdToTarget) { @@ -2963,6 +3061,20 @@ std::string const& Bench::unit() const noexcept { return mConfig.mUnit; } +Bench& Bench::timeUnit(std::chrono::duration<double> const& tu, std::string const& tuName) { + mConfig.mTimeUnit = tu; + mConfig.mTimeUnitName = tuName; + return *this; +} + +std::string const& Bench::timeUnitName() const noexcept { + return mConfig.mTimeUnitName; +} + +std::chrono::duration<double> const& Bench::timeUnit() const noexcept { + return mConfig.mTimeUnit; +} + // If benchmarkTitle differs from currently set title, the stored results will be cleared. Bench& Bench::title(const char* benchmarkTitle) { if (benchmarkTitle != mConfig.mBenchmarkTitle) { @@ -3083,6 +3195,11 @@ Bench& Bench::render(char const* templateContent, std::ostream& os) { return *this; } +Bench& Bench::render(std::string const& templateContent, std::ostream& os) { + ::ankerl::nanobench::render(templateContent, *this, os); + return *this; +} + std::vector<BigO> Bench::complexityBigO() const { std::vector<BigO> bigOs; auto rangeMeasure = BigO::collectRangeMeasure(mResults); @@ -3119,7 +3236,7 @@ Rng::Rng() } while (mX == 0 && mY == 0); } -ANKERL_NANOBENCH_NO_SANITIZE("integer") +ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") uint64_t splitMix64(uint64_t& state) noexcept { uint64_t z = (state += UINT64_C(0x9e3779b97f4a7c15)); z = (z ^ (z >> 30U)) * UINT64_C(0xbf58476d1ce4e5b9); @@ -3145,6 +3262,24 @@ Rng Rng::copy() const noexcept { return Rng{mX, mY}; } +Rng::Rng(std::vector<uint64_t> const& data) + : mX(0) + , mY(0) { + if (data.size() != 2) { + throw std::runtime_error("ankerl::nanobench::Rng::Rng: needed exactly 2 entries in data, but got " + + detail::fmt::to_s(data.size())); + } + mX = data[0]; + mY = data[1]; +} + +std::vector<uint64_t> Rng::state() const { + std::vector<uint64_t> data(2); + data[0] = mX; + data[1] = mY; + return data; +} + BigO::RangeMeasure BigO::collectRangeMeasure(std::vector<Result> const& results) { BigO::RangeMeasure rangeMeasure; for (auto const& result : results) { |