aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSuhas Daftuar <sdaftuar@gmail.com>2022-02-09 09:38:52 -0500
committerSuhas Daftuar <sdaftuar@gmail.com>2022-08-29 08:10:35 -0400
commit551a8d957c4c44afbd0d608fcdf7c6a4352babce (patch)
tree774014202e3ad8560a3be4d59f94b8443e672a67
parented470940cddbeb40425960d51cefeec4948febe4 (diff)
downloadbitcoin-551a8d957c4c44afbd0d608fcdf7c6a4352babce.tar.xz
Utilize anti-DoS headers download strategy
Avoid permanently storing headers from a peer, unless the headers are part of a chain with sufficiently high work. This prevents memory attacks using low-work headers. Designed and co-authored with Pieter Wuille.
-rw-r--r--src/Makefile.am2
-rw-r--r--src/headerssync.cpp317
-rw-r--r--src/headerssync.h268
-rw-r--r--src/logging.cpp3
-rw-r--r--src/logging.h1
-rw-r--r--src/net_processing.cpp280
-rw-r--r--src/validation.cpp16
-rw-r--r--src/validation.h6
-rwxr-xr-xtest/functional/p2p_dos_header_tree.py3
9 files changed, 884 insertions, 12 deletions
diff --git a/src/Makefile.am b/src/Makefile.am
index 89b0afe3d9..bf26cc9674 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -151,6 +151,7 @@ BITCOIN_CORE_H = \
external_signer.h \
flatfile.h \
fs.h \
+ headerssync.h \
httprpc.h \
httpserver.h \
i2p.h \
@@ -361,6 +362,7 @@ libbitcoin_node_a_SOURCES = \
dbwrapper.cpp \
deploymentstatus.cpp \
flatfile.cpp \
+ headerssync.cpp \
httprpc.cpp \
httpserver.cpp \
i2p.cpp \
diff --git a/src/headerssync.cpp b/src/headerssync.cpp
new file mode 100644
index 0000000000..3eca492d81
--- /dev/null
+++ b/src/headerssync.cpp
@@ -0,0 +1,317 @@
+// Copyright (c) 2022 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <headerssync.h>
+#include <logging.h>
+#include <pow.h>
+#include <timedata.h>
+#include <util/check.h>
+
+// The two constants below are computed using the simulation script on
+// https://gist.github.com/sipa/016ae445c132cdf65a2791534dfb7ae1
+
+//! Store a commitment to a header every HEADER_COMMITMENT_PERIOD blocks.
+constexpr size_t HEADER_COMMITMENT_PERIOD{584};
+
+//! Only feed headers to validation once this many headers on top have been
+//! received and validated against commitments.
+constexpr size_t REDOWNLOAD_BUFFER_SIZE{13959}; // 13959/584 = ~23.9 commitments
+
+// Our memory analysis assumes 48 bytes for a CompressedHeader (so we should
+// re-calculate parameters if we compress further)
+static_assert(sizeof(CompressedHeader) == 48);
+
+HeadersSyncState::HeadersSyncState(NodeId id, const Consensus::Params& consensus_params,
+ const CBlockIndex* chain_start, const arith_uint256& minimum_required_work) :
+ m_id(id), m_consensus_params(consensus_params),
+ m_chain_start(chain_start),
+ m_minimum_required_work(minimum_required_work),
+ m_current_chain_work(chain_start->nChainWork),
+ m_commit_offset(GetRand<unsigned>(HEADER_COMMITMENT_PERIOD)),
+ m_last_header_received(m_chain_start->GetBlockHeader()),
+ m_current_height(chain_start->nHeight)
+{
+ // Estimate the number of blocks that could possibly exist on the peer's
+ // chain *right now* using 6 blocks/second (fastest blockrate given the MTP
+ // rule) times the number of seconds from the last allowed block until
+ // today. This serves as a memory bound on how many commitments we might
+ // store from this peer, and we can safely give up syncing if the peer
+ // exceeds this bound, because it's not possible for a consensus-valid
+ // chain to be longer than this (at the current time -- in the future we
+ // could try again, if necessary, to sync a longer chain).
+ m_max_commitments = 6*(Ticks<std::chrono::seconds>(GetAdjustedTime() - NodeSeconds{std::chrono::seconds{chain_start->GetMedianTimePast()}}) + MAX_FUTURE_BLOCK_TIME) / HEADER_COMMITMENT_PERIOD;
+
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync started with peer=%d: height=%i, max_commitments=%i, min_work=%s\n", m_id, m_current_height, m_max_commitments, m_minimum_required_work.ToString());
+}
+
+/** Free any memory in use, and mark this object as no longer usable. This is
+ * required to guarantee that we won't reuse this object with the same
+ * SaltedTxidHasher for another sync. */
+void HeadersSyncState::Finalize()
+{
+ Assume(m_download_state != State::FINAL);
+ m_header_commitments = {};
+ m_last_header_received.SetNull();
+ m_redownloaded_headers = {};
+ m_redownload_buffer_last_hash.SetNull();
+ m_redownload_buffer_first_prev_hash.SetNull();
+ m_process_all_remaining_headers = false;
+ m_current_height = 0;
+
+ m_download_state = State::FINAL;
+}
+
+/** Process the next batch of headers received from our peer.
+ * Validate and store commitments, and compare total chainwork to our target to
+ * see if we can switch to REDOWNLOAD mode. */
+HeadersSyncState::ProcessingResult HeadersSyncState::ProcessNextHeaders(const
+ std::vector<CBlockHeader>& received_headers, const bool full_headers_message)
+{
+ ProcessingResult ret;
+
+ Assume(!received_headers.empty());
+ if (received_headers.empty()) return ret;
+
+ Assume(m_download_state != State::FINAL);
+ if (m_download_state == State::FINAL) return ret;
+
+ if (m_download_state == State::PRESYNC) {
+ // During PRESYNC, we minimally validate block headers and
+ // occasionally add commitments to them, until we reach our work
+ // threshold (at which point m_download_state is updated to REDOWNLOAD).
+ ret.success = ValidateAndStoreHeadersCommitments(received_headers);
+ if (ret.success) {
+ if (full_headers_message || m_download_state == State::REDOWNLOAD) {
+ // A full headers message means the peer may have more to give us;
+ // also if we just switched to REDOWNLOAD then we need to re-request
+ // headers from the beginning.
+ ret.request_more = true;
+ } else {
+ Assume(m_download_state == State::PRESYNC);
+ // If we're in PRESYNC and we get a non-full headers
+ // message, then the peer's chain has ended and definitely doesn't
+ // have enough work, so we can stop our sync.
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: incomplete headers message at height=%i (presync phase)\n", m_id, m_current_height);
+ }
+ }
+ } else if (m_download_state == State::REDOWNLOAD) {
+ // During REDOWNLOAD, we compare our stored commitments to what we
+ // receive, and add headers to our redownload buffer. When the buffer
+ // gets big enough (meaning that we've checked enough commitments),
+ // we'll return a batch of headers to the caller for processing.
+ ret.success = true;
+ for (const auto& hdr : received_headers) {
+ if (!ValidateAndStoreRedownloadedHeader(hdr)) {
+ // Something went wrong -- the peer gave us an unexpected chain.
+ // We could consider looking at the reason for failure and
+ // punishing the peer, but for now just give up on sync.
+ ret.success = false;
+ break;
+ }
+ }
+
+ if (ret.success) {
+ // Return any headers that are ready for acceptance.
+ ret.pow_validated_headers = PopHeadersReadyForAcceptance();
+
+ // If we hit our target blockhash, then all remaining headers will be
+ // returned and we can clear any leftover internal state.
+ if (m_redownloaded_headers.empty() && m_process_all_remaining_headers) {
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync complete with peer=%d: releasing all at height=%i (redownload phase)\n", m_id, m_redownload_buffer_last_height);
+ } else if (full_headers_message) {
+ // If the headers message is full, we need to request more.
+ ret.request_more = true;
+ } else {
+ // For some reason our peer gave us a high-work chain, but is now
+ // declining to serve us that full chain again. Give up.
+ // Note that there's no more processing to be done with these
+ // headers, so we can still return success.
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: incomplete headers message at height=%i (redownload phase)\n", m_id, m_redownload_buffer_last_height);
+ }
+ }
+ }
+
+ if (!(ret.success && ret.request_more)) Finalize();
+ return ret;
+}
+
+bool HeadersSyncState::ValidateAndStoreHeadersCommitments(const std::vector<CBlockHeader>& headers)
+{
+ // The caller should not give us an empty set of headers.
+ Assume(headers.size() > 0);
+ if (headers.size() == 0) return true;
+
+ Assume(m_download_state == State::PRESYNC);
+ if (m_download_state != State::PRESYNC) return false;
+
+ if (headers[0].hashPrevBlock != m_last_header_received.GetHash()) {
+ // Somehow our peer gave us a header that doesn't connect.
+ // This might be benign -- perhaps our peer reorged away from the chain
+ // they were on. Give up on this sync for now (likely we will start a
+ // new sync with a new starting point).
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: non-continuous headers at height=%i (presync phase)\n", m_id, m_current_height);
+ return false;
+ }
+
+ // If it does connect, (minimally) validate and occasionally store
+ // commitments.
+ for (const auto& hdr : headers) {
+ if (!ValidateAndProcessSingleHeader(hdr)) {
+ return false;
+ }
+ }
+
+ if (m_current_chain_work >= m_minimum_required_work) {
+ m_redownloaded_headers.clear();
+ m_redownload_buffer_last_height = m_chain_start->nHeight;
+ m_redownload_buffer_first_prev_hash = m_chain_start->GetBlockHash();
+ m_redownload_buffer_last_hash = m_chain_start->GetBlockHash();
+ m_redownload_chain_work = m_chain_start->nChainWork;
+ m_download_state = State::REDOWNLOAD;
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync transition with peer=%d: reached sufficient work at height=%i, redownloading from height=%i\n", m_id, m_current_height, m_redownload_buffer_last_height);
+ }
+ return true;
+}
+
+bool HeadersSyncState::ValidateAndProcessSingleHeader(const CBlockHeader& current)
+{
+ Assume(m_download_state == State::PRESYNC);
+ if (m_download_state != State::PRESYNC) return false;
+
+ int next_height = m_current_height + 1;
+
+ // Verify that the difficulty isn't growing too fast; an adversary with
+ // limited hashing capability has a greater chance of producing a high
+ // work chain if they compress the work into as few blocks as possible,
+ // so don't let anyone give a chain that would violate the difficulty
+ // adjustment maximum.
+ if (!PermittedDifficultyTransition(m_consensus_params, next_height,
+ m_last_header_received.nBits, current.nBits)) {
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: invalid difficulty transition at height=%i (presync phase)\n", m_id, next_height);
+ return false;
+ }
+
+ if (next_height % HEADER_COMMITMENT_PERIOD == m_commit_offset) {
+ // Add a commitment.
+ m_header_commitments.push_back(m_hasher(current.GetHash()) & 1);
+ if (m_header_commitments.size() > m_max_commitments) {
+ // The peer's chain is too long; give up.
+ // It's possible the chain grew since we started the sync; so
+ // potentially we could succeed in syncing the peer's chain if we
+ // try again later.
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: exceeded max commitments at height=%i (presync phase)\n", m_id, next_height);
+ return false;
+ }
+ }
+
+ m_current_chain_work += GetBlockProof(CBlockIndex(current));
+ m_last_header_received = current;
+ m_current_height = next_height;
+
+ return true;
+}
+
+bool HeadersSyncState::ValidateAndStoreRedownloadedHeader(const CBlockHeader& header)
+{
+ Assume(m_download_state == State::REDOWNLOAD);
+ if (m_download_state != State::REDOWNLOAD) return false;
+
+ int64_t next_height = m_redownload_buffer_last_height + 1;
+
+ // Ensure that we're working on a header that connects to the chain we're
+ // downloading.
+ if (header.hashPrevBlock != m_redownload_buffer_last_hash) {
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: non-continuous headers at height=%i (redownload phase)\n", m_id, next_height);
+ return false;
+ }
+
+ // Check that the difficulty adjustments are within our tolerance:
+ uint32_t previous_nBits{0};
+ if (!m_redownloaded_headers.empty()) {
+ previous_nBits = m_redownloaded_headers.back().nBits;
+ } else {
+ previous_nBits = m_chain_start->nBits;
+ }
+
+ if (!PermittedDifficultyTransition(m_consensus_params, next_height,
+ previous_nBits, header.nBits)) {
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: invalid difficulty transition at height=%i (redownload phase)\n", m_id, next_height);
+ return false;
+ }
+
+ // Track work on the redownloaded chain
+ m_redownload_chain_work += GetBlockProof(CBlockIndex(header));
+
+ if (m_redownload_chain_work >= m_minimum_required_work) {
+ m_process_all_remaining_headers = true;
+ }
+
+ // If we're at a header for which we previously stored a commitment, verify
+ // it is correct. Failure will result in aborting download.
+ // Also, don't check commitments once we've gotten to our target blockhash;
+ // it's possible our peer has extended its chain between our first sync and
+ // our second, and we don't want to return failure after we've seen our
+ // target blockhash just because we ran out of commitments.
+ if (!m_process_all_remaining_headers && next_height % HEADER_COMMITMENT_PERIOD == m_commit_offset) {
+ if (m_header_commitments.size() == 0) {
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: commitment overrun at height=%i (redownload phase)\n", m_id, next_height);
+ // Somehow our peer managed to feed us a different chain and
+ // we've run out of commitments.
+ return false;
+ }
+ bool commitment = m_hasher(header.GetHash()) & 1;
+ bool expected_commitment = m_header_commitments.front();
+ m_header_commitments.pop_front();
+ if (commitment != expected_commitment) {
+ LogPrint(BCLog::HEADERSSYNC, "Initial headers sync aborted with peer=%d: commitment mismatch at height=%i (redownload phase)\n", m_id, next_height);
+ return false;
+ }
+ }
+
+ // Store this header for later processing.
+ m_redownloaded_headers.push_back(header);
+ m_redownload_buffer_last_height = next_height;
+ m_redownload_buffer_last_hash = header.GetHash();
+
+ return true;
+}
+
+std::vector<CBlockHeader> HeadersSyncState::PopHeadersReadyForAcceptance()
+{
+ std::vector<CBlockHeader> ret;
+
+ Assume(m_download_state == State::REDOWNLOAD);
+ if (m_download_state != State::REDOWNLOAD) return ret;
+
+ while (m_redownloaded_headers.size() > REDOWNLOAD_BUFFER_SIZE ||
+ (m_redownloaded_headers.size() > 0 && m_process_all_remaining_headers)) {
+ ret.emplace_back(m_redownloaded_headers.front().GetFullHeader(m_redownload_buffer_first_prev_hash));
+ m_redownloaded_headers.pop_front();
+ m_redownload_buffer_first_prev_hash = ret.back().GetHash();
+ }
+ return ret;
+}
+
+CBlockLocator HeadersSyncState::NextHeadersRequestLocator() const
+{
+ Assume(m_download_state != State::FINAL);
+ if (m_download_state == State::FINAL) return {};
+
+ auto chain_start_locator = LocatorEntries(m_chain_start);
+ std::vector<uint256> locator;
+
+ if (m_download_state == State::PRESYNC) {
+ // During pre-synchronization, we continue from the last header received.
+ locator.push_back(m_last_header_received.GetHash());
+ }
+
+ if (m_download_state == State::REDOWNLOAD) {
+ // During redownload, we will download from the last received header that we stored.
+ locator.push_back(m_redownload_buffer_last_hash);
+ }
+
+ locator.insert(locator.end(), chain_start_locator.begin(), chain_start_locator.end());
+
+ return CBlockLocator{std::move(locator)};
+}
diff --git a/src/headerssync.h b/src/headerssync.h
new file mode 100644
index 0000000000..b694407792
--- /dev/null
+++ b/src/headerssync.h
@@ -0,0 +1,268 @@
+// Copyright (c) 2022 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#ifndef BITCOIN_HEADERSSYNC_H
+#define BITCOIN_HEADERSSYNC_H
+
+#include <arith_uint256.h>
+#include <chain.h>
+#include <consensus/params.h>
+#include <net.h> // For NodeId
+#include <primitives/block.h>
+#include <uint256.h>
+#include <util/bitdeque.h>
+#include <util/hasher.h>
+
+#include <deque>
+#include <vector>
+
+// A compressed CBlockHeader, which leaves out the prevhash
+struct CompressedHeader {
+ // header
+ int32_t nVersion{0};
+ uint256 hashMerkleRoot;
+ uint32_t nTime{0};
+ uint32_t nBits{0};
+ uint32_t nNonce{0};
+
+ CompressedHeader()
+ {
+ hashMerkleRoot.SetNull();
+ }
+
+ CompressedHeader(const CBlockHeader& header)
+ {
+ nVersion = header.nVersion;
+ hashMerkleRoot = header.hashMerkleRoot;
+ nTime = header.nTime;
+ nBits = header.nBits;
+ nNonce = header.nNonce;
+ }
+
+ CBlockHeader GetFullHeader(const uint256& hash_prev_block) {
+ CBlockHeader ret;
+ ret.nVersion = nVersion;
+ ret.hashPrevBlock = hash_prev_block;
+ ret.hashMerkleRoot = hashMerkleRoot;
+ ret.nTime = nTime;
+ ret.nBits = nBits;
+ ret.nNonce = nNonce;
+ return ret;
+ };
+};
+
+/** HeadersSyncState:
+ *
+ * We wish to download a peer's headers chain in a DoS-resistant way.
+ *
+ * The Bitcoin protocol does not offer an easy way to determine the work on a
+ * peer's chain. Currently, we can query a peer's headers by using a GETHEADERS
+ * message, and our peer can return a set of up to 2000 headers that connect to
+ * something we know. If a peer's chain has more than 2000 blocks, then we need
+ * a way to verify that the chain actually has enough work on it to be useful to
+ * us -- by being above our anti-DoS minimum-chain-work threshold -- before we
+ * commit to storing those headers in memory. Otherwise, it would be cheap for
+ * an attacker to waste all our memory by serving us low-work headers
+ * (particularly for a new node coming online for the first time).
+ *
+ * To prevent memory-DoS with low-work headers, while still always being
+ * able to reorg to whatever the most-work chain is, we require that a chain
+ * meet a work threshold before committing it to memory. We can do this by
+ * downloading a peer's headers twice, whenever we are not sure that the chain
+ * has sufficient work:
+ *
+ * - In the first download phase, called pre-synchronization, we can calculate
+ * the work on the chain as we go (just by checking the nBits value on each
+ * header, and validating the proof-of-work).
+ *
+ * - Once we have reached a header where the cumulative chain work is
+ * sufficient, we switch to downloading the headers a second time, this time
+ * processing them fully, and possibly storing them in memory.
+ *
+ * To prevent an attacker from using (eg) the honest chain to convince us that
+ * they have a high-work chain, but then feeding us an alternate set of
+ * low-difficulty headers in the second phase, we store commitments to the
+ * chain we see in the first download phase that we check in the second phase,
+ * as follows:
+ *
+ * - In phase 1 (presync), store 1 bit (using a salted hash function) for every
+ * N headers that we see. With a reasonable choice of N, this uses relatively
+ * little memory even for a very long chain.
+ *
+ * - In phase 2 (redownload), keep a lookahead buffer and only accept headers
+ * from that buffer into the block index (permanent memory usage) once they
+ * have some target number of verified commitments on top of them. With this
+ * parametrization, we can achieve a given security target for potential
+ * permanent memory usage, while choosing N to minimize memory use during the
+ * sync (temporary, per-peer storage).
+ */
+
+class HeadersSyncState {
+public:
+ ~HeadersSyncState() {}
+
+ enum class State {
+ /** PRESYNC means the peer has not yet demonstrated their chain has
+ * sufficient work and we're only building commitments to the chain they
+ * serve us. */
+ PRESYNC,
+ /** REDOWNLOAD means the peer has given us a high-enough-work chain,
+ * and now we're redownloading the headers we saw before and trying to
+ * accept them */
+ REDOWNLOAD,
+ /** We're done syncing with this peer and can discard any remaining state */
+ FINAL
+ };
+
+ /** Return the current state of our download */
+ State GetState() const { return m_download_state; }
+
+ /** Construct a HeadersSyncState object representing a headers sync via this
+ * download-twice mechanism).
+ *
+ * id: node id (for logging)
+ * consensus_params: parameters needed for difficulty adjustment validation
+ * chain_start: best known fork point that the peer's headers branch from
+ * minimum_required_work: amount of chain work required to accept the chain
+ */
+ HeadersSyncState(NodeId id, const Consensus::Params& consensus_params,
+ const CBlockIndex* chain_start, const arith_uint256& minimum_required_work);
+
+ /** Result data structure for ProcessNextHeaders. */
+ struct ProcessingResult {
+ std::vector<CBlockHeader> pow_validated_headers;
+ bool success{false};
+ bool request_more{false};
+ };
+
+ /** Process a batch of headers, once a sync via this mechanism has started
+ *
+ * received_headers: headers that were received over the network for processing.
+ * Assumes the caller has already verified the headers
+ * are continuous, and has checked that each header
+ * satisfies the proof-of-work target included in the
+ * header (but not necessarily verified that the
+ * proof-of-work target is correct and passes consensus
+ * rules).
+ * full_headers_message: true if the message was at max capacity,
+ * indicating more headers may be available
+ * ProcessingResult.pow_validated_headers: will be filled in with any
+ * headers that the caller can fully process and
+ * validate now (because these returned headers are
+ * on a chain with sufficient work)
+ * ProcessingResult.success: set to false if an error is detected and the sync is
+ * aborted; true otherwise.
+ * ProcessingResult.request_more: if true, the caller is suggested to call
+ * NextHeadersRequestLocator and send a getheaders message using it.
+ */
+ ProcessingResult ProcessNextHeaders(const std::vector<CBlockHeader>&
+ received_headers, bool full_headers_message);
+
+ /** Issue the next GETHEADERS message to our peer.
+ *
+ * This will return a locator appropriate for the current sync object, to continue the
+ * synchronization phase it is in.
+ */
+ CBlockLocator NextHeadersRequestLocator() const;
+
+private:
+ /** Clear out all download state that might be in progress (freeing any used
+ * memory), and mark this object as no longer usable.
+ */
+ void Finalize();
+
+ /**
+ * Only called in PRESYNC.
+ * Validate the work on the headers we received from the network, and
+ * store commitments for later. Update overall state with successfully
+ * processed headers.
+ * On failure, this invokes Finalize() and returns false.
+ */
+ bool ValidateAndStoreHeadersCommitments(const std::vector<CBlockHeader>& headers);
+
+ /** In PRESYNC, process and update state for a single header */
+ bool ValidateAndProcessSingleHeader(const CBlockHeader& current);
+
+ /** In REDOWNLOAD, check a header's commitment (if applicable) and add to
+ * buffer for later processing */
+ bool ValidateAndStoreRedownloadedHeader(const CBlockHeader& header);
+
+ /** Return a set of headers that satisfy our proof-of-work threshold */
+ std::vector<CBlockHeader> PopHeadersReadyForAcceptance();
+
+private:
+ /** NodeId of the peer (used for log messages) **/
+ const NodeId m_id;
+
+ /** We use the consensus params in our anti-DoS calculations */
+ const Consensus::Params& m_consensus_params;
+
+ /** Store the last block in our block index that the peer's chain builds from */
+ const CBlockIndex* m_chain_start{nullptr};
+
+ /** Minimum work that we're looking for on this chain. */
+ const arith_uint256 m_minimum_required_work;
+
+ /** Work that we've seen so far on the peer's chain */
+ arith_uint256 m_current_chain_work;
+
+ /** m_hasher is a salted hasher for making our 1-bit commitments to headers we've seen. */
+ const SaltedTxidHasher m_hasher;
+
+ /** A queue of commitment bits, created during the 1st phase, and verified during the 2nd. */
+ bitdeque<> m_header_commitments;
+
+ /** The (secret) offset on the heights for which to create commitments.
+ *
+ * m_header_commitments entries are created at any height h for which
+ * (h % HEADER_COMMITMENT_PERIOD) == m_commit_offset. */
+ const unsigned m_commit_offset;
+
+ /** m_max_commitments is a bound we calculate on how long an honest peer's chain could be,
+ * given the MTP rule.
+ *
+ * Any peer giving us more headers than this will have its sync aborted. This serves as a
+ * memory bound on m_header_commitments. */
+ uint64_t m_max_commitments{0};
+
+ /** Store the latest header received while in PRESYNC (initialized to m_chain_start) */
+ CBlockHeader m_last_header_received;
+
+ /** Height of m_last_header_received */
+ int64_t m_current_height{0};
+
+ /** During phase 2 (REDOWNLOAD), we buffer redownloaded headers in memory
+ * until enough commitments have been verified; those are stored in
+ * m_redownloaded_headers */
+ std::deque<CompressedHeader> m_redownloaded_headers;
+
+ /** Height of last header in m_redownloaded_headers */
+ int64_t m_redownload_buffer_last_height{0};
+
+ /** Hash of last header in m_redownloaded_headers (initialized to
+ * m_chain_start). We have to cache it because we don't have hashPrevBlock
+ * available in a CompressedHeader.
+ */
+ uint256 m_redownload_buffer_last_hash;
+
+ /** The hashPrevBlock entry for the first header in m_redownloaded_headers
+ * We need this to reconstruct the full header when it's time for
+ * processing.
+ */
+ uint256 m_redownload_buffer_first_prev_hash;
+
+ /** The accumulated work on the redownloaded chain. */
+ arith_uint256 m_redownload_chain_work;
+
+ /** Set this to true once we encounter the target blockheader during phase
+ * 2 (REDOWNLOAD). At this point, we can process and store all remaining
+ * headers still in m_redownloaded_headers.
+ */
+ bool m_process_all_remaining_headers{false};
+
+ /** Current state of our headers sync. */
+ State m_download_state{State::PRESYNC};
+};
+
+#endif // BITCOIN_HEADERSSYNC_H
diff --git a/src/logging.cpp b/src/logging.cpp
index 73c4e458bd..92fc31917f 100644
--- a/src/logging.cpp
+++ b/src/logging.cpp
@@ -165,6 +165,7 @@ const CLogCategoryDesc LogCategories[] =
#endif
{BCLog::UTIL, "util"},
{BCLog::BLOCKSTORE, "blockstorage"},
+ {BCLog::HEADERSSYNC, "headerssync"},
{BCLog::ALL, "1"},
{BCLog::ALL, "all"},
};
@@ -263,6 +264,8 @@ std::string LogCategoryToStr(BCLog::LogFlags category)
return "util";
case BCLog::LogFlags::BLOCKSTORE:
return "blockstorage";
+ case BCLog::LogFlags::HEADERSSYNC:
+ return "headerssync";
case BCLog::LogFlags::ALL:
return "all";
}
diff --git a/src/logging.h b/src/logging.h
index 50869ad89a..a7f18f7560 100644
--- a/src/logging.h
+++ b/src/logging.h
@@ -65,6 +65,7 @@ namespace BCLog {
#endif
UTIL = (1 << 25),
BLOCKSTORE = (1 << 26),
+ HEADERSSYNC = (1 << 27),
ALL = ~(uint32_t)0,
};
enum class Level {
diff --git a/src/net_processing.cpp b/src/net_processing.cpp
index cc8d695369..2b899fdc2b 100644
--- a/src/net_processing.cpp
+++ b/src/net_processing.cpp
@@ -14,6 +14,7 @@
#include <consensus/validation.h>
#include <deploymentstatus.h>
#include <hash.h>
+#include <headerssync.h>
#include <index/blockfilterindex.h>
#include <merkleblock.h>
#include <netbase.h>
@@ -381,6 +382,12 @@ struct Peer {
/** Time of the last getheaders message to this peer */
NodeClock::time_point m_last_getheaders_timestamp{};
+ /** Protects m_headers_sync **/
+ Mutex m_headers_sync_mutex;
+ /** Headers-sync state for this peer (eg for initial sync, or syncing large
+ * reorgs) **/
+ std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
+
explicit Peer(NodeId id, ServiceFlags our_services)
: m_id{id}
, m_our_services{our_services}
@@ -581,18 +588,70 @@ private:
void ProcessOrphanTx(std::set<uint256>& orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans)
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
- /** Process a single headers message from a peer. */
+ /** Process a single headers message from a peer.
+ *
+ * @param[in] pfrom CNode of the peer
+ * @param[in] peer The peer sending us the headers
+ * @param[in] headers The headers received. Note that this may be modified within ProcessHeadersMessage.
+ * @param[in] via_compact_block Whether this header came in via compact block handling.
+ */
void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
- const std::vector<CBlockHeader>& headers,
+ std::vector<CBlockHeader>&& headers,
bool via_compact_block)
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
/** Various helpers for headers processing, invoked by ProcessHeadersMessage() */
+ /** Return true if headers are continuous and have valid proof-of-work (DoS points assigned on failure) */
+ bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
+ /** Calculate an anti-DoS work threshold for headers chains */
+ arith_uint256 GetAntiDoSWorkThreshold();
/** Deal with state tracking and headers sync for peers that send the
* occasional non-connecting header (this can happen due to BIP 130 headers
* announcements for blocks interacting with the 2hr (MAX_FUTURE_BLOCK_TIME) rule). */
void HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers);
/** Return true if the headers connect to each other, false otherwise */
bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
+ /** Try to continue a low-work headers sync that has already begun.
+ * Assumes the caller has already verified the headers connect, and has
+ * checked that each header satisfies the proof-of-work target included in
+ * the header.
+ * @param[in] peer The peer we're syncing with.
+ * @param[in] pfrom CNode of the peer
+ * @param[in,out] headers The headers to be processed.
+ * @return True if the passed in headers were successfully processed
+ * as the continuation of a low-work headers sync in progress;
+ * false otherwise.
+ * If false, the passed in headers will be returned back to
+ * the caller.
+ * If true, the returned headers may be empty, indicating
+ * there is no more work for the caller to do; or the headers
+ * may be populated with entries that have passed anti-DoS
+ * checks (and therefore may be validated for block index
+ * acceptance by the caller).
+ */
+ bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
+ std::vector<CBlockHeader>& headers)
+ EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex);
+ /** Check work on a headers chain to be processed, and if insufficient,
+ * initiate our anti-DoS headers sync mechanism.
+ *
+ * @param[in] peer The peer whose headers we're processing.
+ * @param[in] pfrom CNode of the peer
+ * @param[in] chain_start_header Where these headers connect in our index.
+ * @param[in,out] headers The headers to be processed.
+ *
+ * @return True if chain was low work and a headers sync was
+ * initiated (and headers will be empty after calling); false
+ * otherwise.
+ */
+ bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
+ const CBlockIndex* chain_start_header,
+ std::vector<CBlockHeader>& headers)
+ EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex);
+
+ /** Return true if the given header is an ancestor of
+ * m_chainman.m_best_header or our current tip */
+ bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
+
/** Request further headers from this peer with a given locator.
* We don't issue a getheaders message if we have a recent one outstanding.
* This returns true if a getheaders is actually sent, and false otherwise.
@@ -2263,6 +2322,35 @@ void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlo
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCKTXN, resp));
}
+bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
+{
+ // Do these headers have proof-of-work matching what's claimed?
+ if (!HasValidProofOfWork(headers, consensusParams)) {
+ Misbehaving(peer, 100, "header with invalid proof of work");
+ return false;
+ }
+
+ // Are these headers connected to each other?
+ if (!CheckHeadersAreContinuous(headers)) {
+ Misbehaving(peer, 20, "non-continuous headers sequence");
+ return false;
+ }
+ return true;
+}
+
+arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
+{
+ arith_uint256 near_chaintip_work = 0;
+ LOCK(cs_main);
+ if (m_chainman.ActiveChain().Tip() != nullptr) {
+ const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
+ // Use a 144 block buffer, so that we'll accept headers that fork from
+ // near our tip.
+ near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
+ }
+ return std::max(near_chaintip_work, arith_uint256(nMinimumChainWork));
+}
+
/**
* Special handling for unconnecting headers that might be part of a block
* announcement.
@@ -2316,6 +2404,104 @@ bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>&
return true;
}
+bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
+{
+ if (peer.m_headers_sync) {
+ auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == MAX_HEADERS_RESULTS);
+ if (result.request_more) {
+ auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
+ // If we were instructed to ask for a locator, it should not be empty.
+ Assume(!locator.vHave.empty());
+ if (!locator.vHave.empty()) {
+ // It should be impossible for the getheaders request to fail,
+ // because we should have cleared the last getheaders timestamp
+ // when processing the headers that triggered this call. But
+ // it may be possible to bypass this via compactblock
+ // processing, so check the result before logging just to be
+ // safe.
+ bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
+ if (sent_getheaders) {
+ LogPrint(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
+ locator.vHave.front().ToString(), pfrom.GetId());
+ } else {
+ LogPrint(BCLog::NET, "error sending next getheaders (from %s) to continue sync with peer=%d\n",
+ locator.vHave.front().ToString(), pfrom.GetId());
+ }
+ }
+ }
+
+ if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
+ peer.m_headers_sync.reset(nullptr);
+ }
+
+ if (result.success) {
+ // We only overwrite the headers passed in if processing was
+ // successful.
+ headers.swap(result.pow_validated_headers);
+ }
+
+ return result.success;
+ }
+ // Either we didn't have a sync in progress, or something went wrong
+ // processing these headers, or we are returning headers to the caller to
+ // process.
+ return false;
+}
+
+bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
+{
+ // Calculate the total work on this chain.
+ arith_uint256 total_work = chain_start_header->nChainWork + CalculateHeadersWork(headers);
+
+ // Our dynamic anti-DoS threshold (minimum work required on a headers chain
+ // before we'll store it)
+ arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
+
+ // Avoid DoS via low-difficulty-headers by only processing if the headers
+ // are part of a chain with sufficient work.
+ if (total_work < minimum_chain_work) {
+ // Only try to sync with this peer if their headers message was full;
+ // otherwise they don't have more headers after this so no point in
+ // trying to sync their too-little-work chain.
+ if (headers.size() == MAX_HEADERS_RESULTS) {
+ // Note: we could advance to the last header in this set that is
+ // known to us, rather than starting at the first header (which we
+ // may already have); however this is unlikely to matter much since
+ // ProcessHeadersMessage() already handles the case where all
+ // headers in a received message are already known and are
+ // ancestors of m_best_header or chainActive.Tip(), by skipping
+ // this logic in that case. So even if the first header in this set
+ // of headers is known, some header in this set must be new, so
+ // advancing to the first unknown header would be a small effect.
+ LOCK(peer.m_headers_sync_mutex);
+ peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
+ chain_start_header, minimum_chain_work));
+
+ // Now a HeadersSyncState object for tracking this synchronization is created,
+ // process the headers using it as normal.
+ return IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
+ } else {
+ LogPrint(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
+ // Since this is a low-work headers chain, no further processing is required.
+ headers = {};
+ return true;
+ }
+ }
+ return false;
+}
+
+bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
+{
+ if (header == nullptr) {
+ return false;
+ } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
+ return true;
+ } else if (m_chainman.ActiveChain().Contains(header)) {
+ return true;
+ }
+ return false;
+}
+
bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
{
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
@@ -2461,21 +2647,71 @@ void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom,
}
void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
- const std::vector<CBlockHeader>& headers,
+ std::vector<CBlockHeader>&& headers,
bool via_compact_block)
{
- const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
size_t nCount = headers.size();
if (nCount == 0) {
// Nothing interesting. Stop asking this peers for more headers.
+ // If we were in the middle of headers sync, receiving an empty headers
+ // message suggests that the peer suddenly has nothing to give us
+ // (perhaps it reorged to our chain). Clear download state for this peer.
+ LOCK(peer.m_headers_sync_mutex);
+ if (peer.m_headers_sync) {
+ peer.m_headers_sync.reset(nullptr);
+ }
+ return;
+ }
+
+ // Before we do any processing, make sure these pass basic sanity checks.
+ // We'll rely on headers having valid proof-of-work further down, as an
+ // anti-DoS criteria (note: this check is required before passing any
+ // headers into HeadersSyncState).
+ if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
+ // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
+ // just return. (Note that even if a header is announced via compact
+ // block, the header itself should be valid, so this type of error can
+ // always be punished.)
return;
}
const CBlockIndex *pindexLast = nullptr;
+ // We'll set already_validated_work to true if these headers are
+ // successfully processed as part of a low-work headers sync in progress
+ // (either in PRESYNC or REDOWNLOAD phase).
+ // If true, this will mean that any headers returned to us (ie during
+ // REDOWNLOAD) can be validated without further anti-DoS checks.
+ bool already_validated_work = false;
+
+ // If we're in the middle of headers sync, let it do its magic.
+ bool have_headers_sync = false;
+ {
+ LOCK(peer.m_headers_sync_mutex);
+
+ already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
+
+ // The headers we passed in may have been:
+ // - untouched, perhaps if no headers-sync was in progress, or some
+ // failure occurred
+ // - erased, such as if the headers were successfully processed and no
+ // additional headers processing needs to take place (such as if we
+ // are still in PRESYNC)
+ // - replaced with headers that are now ready for validation, such as
+ // during the REDOWNLOAD phase of a low-work headers sync.
+ // So just check whether we still have headers that we need to process,
+ // or not.
+ if (headers.empty()) {
+ return;
+ }
+
+ have_headers_sync = !!peer.m_headers_sync;
+ }
+
// Do these headers connect to something in our block index?
- bool headers_connect_blockindex{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock) != nullptr)};
+ const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
+ bool headers_connect_blockindex{chain_start_header != nullptr};
if (!headers_connect_blockindex) {
if (nCount <= MAX_BLOCKS_TO_ANNOUNCE) {
@@ -2489,16 +2725,38 @@ void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
return;
}
+ // If the headers we received are already in memory and an ancestor of
+ // m_best_header or our tip, skip anti-DoS checks. These headers will not
+ // use any more memory (and we are not leaking information that could be
+ // used to fingerprint us).
+ const CBlockIndex *last_received_header{nullptr};
+ {
+ LOCK(cs_main);
+ last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
+ if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
+ already_validated_work = true;
+ }
+ }
+
// At this point, the headers connect to something in our block index.
- if (!CheckHeadersAreContinuous(headers)) {
- Misbehaving(peer, 20, "non-continuous headers sequence");
+ // Do anti-DoS checks to determine if we should process or store for later
+ // processing.
+ if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
+ chain_start_header, headers)) {
+ // If we successfully started a low-work headers sync, then there
+ // should be no headers to process any further.
+ Assume(headers.empty());
return;
}
+ // At this point, we have a set of headers with sufficient work on them
+ // which can be processed.
+
// If we don't have the last header, then this peer will have given us
// something new (if these headers are valid).
- bool received_new_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash()) == nullptr)};
+ bool received_new_header{last_received_header != nullptr};
+ // Now process all the headers.
BlockValidationState state;
if (!m_chainman.ProcessNewBlockHeaders(headers, state, &pindexLast)) {
if (state.IsInvalid()) {
@@ -2508,8 +2766,8 @@ void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
}
Assume(pindexLast);
- // Consider fetching more headers.
- if (nCount == MAX_HEADERS_RESULTS) {
+ // Consider fetching more headers if we are not using our headers-sync mechanism.
+ if (nCount == MAX_HEADERS_RESULTS && !have_headers_sync) {
// Headers message had its maximum size; the peer may have more headers.
if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
LogPrint(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
@@ -4046,7 +4304,7 @@ void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type,
ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
}
- return ProcessHeadersMessage(pfrom, *peer, headers, /*via_compact_block=*/false);
+ return ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
}
if (msg_type == NetMsgType::BLOCK)
diff --git a/src/validation.cpp b/src/validation.cpp
index f4cae07b9e..cb8ac664d8 100644
--- a/src/validation.cpp
+++ b/src/validation.cpp
@@ -3432,6 +3432,22 @@ std::vector<unsigned char> ChainstateManager::GenerateCoinbaseCommitment(CBlock&
return commitment;
}
+bool HasValidProofOfWork(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams)
+{
+ return std::all_of(headers.cbegin(), headers.cend(),
+ [&](const auto& header) { return CheckProofOfWork(header.GetHash(), header.nBits, consensusParams);});
+}
+
+arith_uint256 CalculateHeadersWork(const std::vector<CBlockHeader>& headers)
+{
+ arith_uint256 total_work{0};
+ for (const CBlockHeader& header : headers) {
+ CBlockIndex dummy(header);
+ total_work += GetBlockProof(dummy);
+ }
+ return total_work;
+}
+
/** Context-dependent validity checks.
* By "context", we mean only the previous block headers, but not the UTXO
* set; UTXO-related validity checks are done in ConnectBlock().
diff --git a/src/validation.h b/src/validation.h
index b1b6689c46..64217e6a11 100644
--- a/src/validation.h
+++ b/src/validation.h
@@ -340,6 +340,12 @@ bool TestBlockValidity(BlockValidationState& state,
bool fCheckPOW = true,
bool fCheckMerkleRoot = true) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
+/** Check with the proof of work on each blockheader matches the value in nBits */
+bool HasValidProofOfWork(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams);
+
+/** Return the sum of the work on a given set of headers */
+arith_uint256 CalculateHeadersWork(const std::vector<CBlockHeader>& headers);
+
/** RAII wrapper for VerifyDB: Verify consistency of the block and coin databases */
class CVerifyDB {
public:
diff --git a/test/functional/p2p_dos_header_tree.py b/test/functional/p2p_dos_header_tree.py
index fde1e4bfa2..7e26994511 100755
--- a/test/functional/p2p_dos_header_tree.py
+++ b/test/functional/p2p_dos_header_tree.py
@@ -22,6 +22,7 @@ class RejectLowDifficultyHeadersTest(BitcoinTestFramework):
self.setup_clean_chain = True
self.chain = 'testnet3' # Use testnet chain because it has an early checkpoint
self.num_nodes = 2
+ self.extra_args = [["-minimumchainwork=0x0"], ["-minimumchainwork=0x0"]]
def add_options(self, parser):
parser.add_argument(
@@ -62,7 +63,7 @@ class RejectLowDifficultyHeadersTest(BitcoinTestFramework):
self.log.info("Feed all fork headers (succeeds without checkpoint)")
# On node 0 it succeeds because checkpoints are disabled
- self.restart_node(0, extra_args=['-nocheckpoints'])
+ self.restart_node(0, extra_args=['-nocheckpoints', "-minimumchainwork=0x0"])
peer_no_checkpoint = self.nodes[0].add_p2p_connection(P2PInterface())
peer_no_checkpoint.send_and_ping(msg_headers(self.headers_fork))
assert {