diff options
author | laanwj <126646+laanwj@users.noreply.github.com> | 2022-04-05 13:02:27 +0200 |
---|---|---|
committer | laanwj <126646+laanwj@users.noreply.github.com> | 2022-04-05 13:22:09 +0200 |
commit | d492dc1cdaabdc52b0766bf4cba4bd73178325d0 (patch) | |
tree | e0d8d1fc7001708b2b6411729beceab444c1df8a | |
parent | 0baf6aded5fa1f98c95cd6bb54089f4412aa6768 (diff) | |
parent | 2da94a4c6f55f7a3621f4a6f70902c52f735c868 (diff) |
Merge bitcoin/bitcoin#24147: Miniscript integration
2da94a4c6f55f7a3621f4a6f70902c52f735c868 fuzz: add a fuzz target for Miniscript decoding from Script (Antoine Poinsot)
f8369996e76dbc41a12f7b7eea14a7e7990a81c1 Miniscript: ops limit and stack size computation (Pieter Wuille)
2e55e88f86d0dd49b35d04af3f57e863498aabae Miniscript: conversion from script (Pieter Wuille)
1ddaa66eae67b102f5e37d212d366a5dcad4aa26 Miniscript: type system, script creation, text notation, tests (Pieter Wuille)
4fe29368c0ded0e62f437cab3a7c904f7fd3ad67 script: expose getter for CScriptNum, add a BuildScript helper (Antoine Poinsot)
f4e289f384efdda6c3f56e1e1c30820a91ac2612 script: move CheckMinimalPush from interpreter to script.h (Antoine Poinsot)
31ec6ae92a5d9910a26d90a6ff20bab27dee5826 script: make IsPushdataOp non-static (Antoine Poinsot)
Pull request description:
Miniscript is a language for writing (a subset of) Bitcoin Scripts in a structured way.
Miniscript permits:
- To safely extend the Output Descriptor language to many more scripting features thanks to the typing system (composition).
- Statical analysis of spending conditions, maximum spending cost of each branch, security properties, third-party malleability.
- General satisfaction of any correctly typed ("valid" [0]) Miniscript. The satisfaction itself is also analyzable.
- To extend the possibilities of external signers, because of all of the above and since it carries enough metadata.
Miniscript guarantees:
- That for any statically-analyzed as "safe" [0] Script, a witness can be constructed in the bounds of the consensus and standardness rules (standardness complete).
- That unless the conditions of the Miniscript are met, no witness can be created for the Script (consensus sound).
- Third-party malleability protection for the satisfaction of a sane Miniscript, which is too complex to summarize here.
For more details around Miniscript (including the specifications), please refer to the [website](https://bitcoin.sipa.be/miniscript/).
Miniscript was designed by Pieter Wuille, Andrew Poelstra and Sanket Kanjalkar.
This PR is an updated and rebased version of #16800. See [the commit history of the Miniscript repository](https://github.com/sipa/miniscript/commits/master) for details about the changes made since September 2019 (TL;DR: bugfixes, introduction of timelock conflicts in the type system, `pk()` and `pkh()` aliases, `thresh_m` renamed to `multi`, all recursive algorithms were made non-recursive).
This PR is also the first in a series of 3:
- The first one (here) integrates the backbone of Miniscript.
- The second one (#24148) introduces support for Miniscript in Output Descriptors, allowing for watch-only support of Miniscript Descriptors in the wallet.
- The third one (#24149) implements signing for these Miniscript Descriptors, using Miniscript's satisfaction algorithm.
Note to reviewers:
- Miniscript is currently defined only for P2WSH. No Taproot yet.
- Miniscript is different from the policy language (a high-level logical representation of a spending policy). A policy->Miniscript compiler is not included here.
- The fuzz target included here is more interestingly extended in the 3rd PR to check a script's satisfaction against `VerifyScript`. I think it could be further improved by having custom mutators as we now have for multisig (see https://github.com/bitcoin/bitcoin/issues/23105). A minified corpus of Miniscript Scripts is available at https://github.com/bitcoin-core/qa-assets/pull/85.
[0] We call "valid" any correctly-typed Miniscript. And "safe" any sane Miniscript, ie one whose satisfaction isn't malleable, which requires a key for any spending path, etc..
ACKs for top commit:
jb55:
ACK 2da94a4c6f55f7a3621f4a6f70902c52f735c868
laanwj:
Light code review ACK 2da94a4c6f55f7a3621f4a6f70902c52f735c868 (mostly reviewed the changes to the existing code and build system)
Tree-SHA512: d3ef558436cfcc699a50ad13caf1e776f7d0addddb433ee28ef38f66ea5c3e581382d8c748ccac9b51768e4b95712ed7a6112b0e3281a6551e0f325331de9167
-rw-r--r-- | src/Makefile.am | 2 | ||||
-rw-r--r-- | src/Makefile.test.include | 2 | ||||
-rw-r--r-- | src/script/interpreter.cpp | 25 | ||||
-rw-r--r-- | src/script/interpreter.h | 2 | ||||
-rw-r--r-- | src/script/miniscript.cpp | 348 | ||||
-rw-r--r-- | src/script/miniscript.h | 1652 | ||||
-rw-r--r-- | src/script/script.cpp | 25 | ||||
-rw-r--r-- | src/script/script.h | 29 | ||||
-rw-r--r-- | src/script/standard.cpp | 5 | ||||
-rw-r--r-- | src/script/standard.h | 5 | ||||
-rw-r--r-- | src/test/fuzz/miniscript_decode.cpp | 72 | ||||
-rw-r--r-- | src/test/miniscript_tests.cpp | 284 |
12 files changed, 2419 insertions, 32 deletions
diff --git a/src/Makefile.am b/src/Makefile.am index bcaad4aaa5..12e4c7d8b7 100644 --- a/src/Makefile.am +++ b/src/Makefile.am @@ -221,6 +221,7 @@ BITCOIN_CORE_H = \ scheduler.h \ script/descriptor.h \ script/keyorigin.h \ + script/miniscript.h \ script/sigcache.h \ script/sign.h \ script/signingprovider.h \ @@ -590,6 +591,7 @@ libbitcoin_common_a_SOURCES = \ rpc/util.cpp \ scheduler.cpp \ script/descriptor.cpp \ + script/miniscript.cpp \ script/sign.cpp \ script/signingprovider.cpp \ script/standard.cpp \ diff --git a/src/Makefile.test.include b/src/Makefile.test.include index 5d25104327..9ae7886a6e 100644 --- a/src/Makefile.test.include +++ b/src/Makefile.test.include @@ -103,6 +103,7 @@ BITCOIN_TESTS =\ test/merkle_tests.cpp \ test/merkleblock_tests.cpp \ test/miner_tests.cpp \ + test/miniscript_tests.cpp \ test/minisketch_tests.cpp \ test/multisig_tests.cpp \ test/net_peer_eviction_tests.cpp \ @@ -266,6 +267,7 @@ test_fuzz_fuzz_SOURCES = \ test/fuzz/locale.cpp \ test/fuzz/merkleblock.cpp \ test/fuzz/message.cpp \ + test/fuzz/miniscript_decode.cpp \ test/fuzz/minisketch.cpp \ test/fuzz/muhash.cpp \ test/fuzz/multiplication_overflow.cpp \ diff --git a/src/script/interpreter.cpp b/src/script/interpreter.cpp index 23fb9b6226..c4d13d7283 100644 --- a/src/script/interpreter.cpp +++ b/src/script/interpreter.cpp @@ -225,31 +225,6 @@ bool static CheckPubKeyEncoding(const valtype &vchPubKey, unsigned int flags, co return true; } -bool CheckMinimalPush(const valtype& data, opcodetype opcode) { - // Excludes OP_1NEGATE, OP_1-16 since they are by definition minimal - assert(0 <= opcode && opcode <= OP_PUSHDATA4); - if (data.size() == 0) { - // Should have used OP_0. - return opcode == OP_0; - } else if (data.size() == 1 && data[0] >= 1 && data[0] <= 16) { - // Should have used OP_1 .. OP_16. - return false; - } else if (data.size() == 1 && data[0] == 0x81) { - // Should have used OP_1NEGATE. - return false; - } else if (data.size() <= 75) { - // Must have used a direct push (opcode indicating number of bytes pushed + those bytes). - return opcode == data.size(); - } else if (data.size() <= 255) { - // Must have used OP_PUSHDATA. - return opcode == OP_PUSHDATA1; - } else if (data.size() <= 65535) { - // Must have used OP_PUSHDATA2. - return opcode == OP_PUSHDATA2; - } - return true; -} - int FindAndDelete(CScript& script, const CScript& b) { int nFound = 0; diff --git a/src/script/interpreter.h b/src/script/interpreter.h index cf1953ad22..fbd904fb7b 100644 --- a/src/script/interpreter.h +++ b/src/script/interpreter.h @@ -344,8 +344,6 @@ bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const C size_t CountWitnessSigOps(const CScript& scriptSig, const CScript& scriptPubKey, const CScriptWitness* witness, unsigned int flags); -bool CheckMinimalPush(const std::vector<unsigned char>& data, opcodetype opcode); - int FindAndDelete(CScript& script, const CScript& b); #endif // BITCOIN_SCRIPT_INTERPRETER_H diff --git a/src/script/miniscript.cpp b/src/script/miniscript.cpp new file mode 100644 index 0000000000..d0bb937885 --- /dev/null +++ b/src/script/miniscript.cpp @@ -0,0 +1,348 @@ +// Copyright (c) 2019 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <string> +#include <vector> +#include <script/script.h> +#include <script/standard.h> +#include <script/miniscript.h> + +#include <assert.h> + +namespace miniscript { +namespace internal { + +Type SanitizeType(Type e) { + int num_types = (e << "K"_mst) + (e << "V"_mst) + (e << "B"_mst) + (e << "W"_mst); + if (num_types == 0) return ""_mst; // No valid type, don't care about the rest + assert(num_types == 1); // K, V, B, W all conflict with each other + bool ok = // Work around a GCC 4.8 bug that breaks user-defined literals in macro calls. + (!(e << "z"_mst) || !(e << "o"_mst)) && // z conflicts with o + (!(e << "n"_mst) || !(e << "z"_mst)) && // n conflicts with z + (!(e << "n"_mst) || !(e << "W"_mst)) && // n conflicts with W + (!(e << "V"_mst) || !(e << "d"_mst)) && // V conflicts with d + (!(e << "K"_mst) || (e << "u"_mst)) && // K implies u + (!(e << "V"_mst) || !(e << "u"_mst)) && // V conflicts with u + (!(e << "e"_mst) || !(e << "f"_mst)) && // e conflicts with f + (!(e << "e"_mst) || (e << "d"_mst)) && // e implies d + (!(e << "V"_mst) || !(e << "e"_mst)) && // V conflicts with e + (!(e << "d"_mst) || !(e << "f"_mst)) && // d conflicts with f + (!(e << "V"_mst) || (e << "f"_mst)) && // V implies f + (!(e << "K"_mst) || (e << "s"_mst)) && // K implies s + (!(e << "z"_mst) || (e << "m"_mst)); // z implies m + assert(ok); + return e; +} + +Type ComputeType(Fragment nodetype, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys) { + // Sanity check on data + if (nodetype == Fragment::SHA256 || nodetype == Fragment::HASH256) { + assert(data_size == 32); + } else if (nodetype == Fragment::RIPEMD160 || nodetype == Fragment::HASH160) { + assert(data_size == 20); + } else { + assert(data_size == 0); + } + // Sanity check on k + if (nodetype == Fragment::OLDER || nodetype == Fragment::AFTER) { + assert(k >= 1 && k < 0x80000000UL); + } else if (nodetype == Fragment::MULTI) { + assert(k >= 1 && k <= n_keys); + } else if (nodetype == Fragment::THRESH) { + assert(k >= 1 && k <= n_subs); + } else { + assert(k == 0); + } + // Sanity check on subs + if (nodetype == Fragment::AND_V || nodetype == Fragment::AND_B || nodetype == Fragment::OR_B || + nodetype == Fragment::OR_C || nodetype == Fragment::OR_I || nodetype == Fragment::OR_D) { + assert(n_subs == 2); + } else if (nodetype == Fragment::ANDOR) { + assert(n_subs == 3); + } else if (nodetype == Fragment::WRAP_A || nodetype == Fragment::WRAP_S || nodetype == Fragment::WRAP_C || + nodetype == Fragment::WRAP_D || nodetype == Fragment::WRAP_V || nodetype == Fragment::WRAP_J || + nodetype == Fragment::WRAP_N) { + assert(n_subs == 1); + } else if (nodetype != Fragment::THRESH) { + assert(n_subs == 0); + } + // Sanity check on keys + if (nodetype == Fragment::PK_K || nodetype == Fragment::PK_H) { + assert(n_keys == 1); + } else if (nodetype == Fragment::MULTI) { + assert(n_keys >= 1 && n_keys <= 20); + } else { + assert(n_keys == 0); + } + + // Below is the per-nodetype logic for computing the expression types. + // It heavily relies on Type's << operator (where "X << a_mst" means + // "X has all properties listed in a"). + switch (nodetype) { + case Fragment::PK_K: return "Konudemsxk"_mst; + case Fragment::PK_H: return "Knudemsxk"_mst; + case Fragment::OLDER: return + "g"_mst.If(k & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) | + "h"_mst.If(!(k & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG)) | + "Bzfmxk"_mst; + case Fragment::AFTER: return + "i"_mst.If(k >= LOCKTIME_THRESHOLD) | + "j"_mst.If(k < LOCKTIME_THRESHOLD) | + "Bzfmxk"_mst; + case Fragment::SHA256: return "Bonudmk"_mst; + case Fragment::RIPEMD160: return "Bonudmk"_mst; + case Fragment::HASH256: return "Bonudmk"_mst; + case Fragment::HASH160: return "Bonudmk"_mst; + case Fragment::JUST_1: return "Bzufmxk"_mst; + case Fragment::JUST_0: return "Bzudemsxk"_mst; + case Fragment::WRAP_A: return + "W"_mst.If(x << "B"_mst) | // W=B_x + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "udfems"_mst) | // u=u_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x + "x"_mst; // x + case Fragment::WRAP_S: return + "W"_mst.If(x << "Bo"_mst) | // W=B_x*o_x + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "udfemsx"_mst); // u=u_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x, x=x_x + case Fragment::WRAP_C: return + "B"_mst.If(x << "K"_mst) | // B=K_x + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "ondfem"_mst) | // o=o_x, n=n_x, d=d_x, f=f_x, e=e_x, m=m_x + "us"_mst; // u, s + case Fragment::WRAP_D: return + "B"_mst.If(x << "Vz"_mst) | // B=V_x*z_x + "o"_mst.If(x << "z"_mst) | // o=z_x + "e"_mst.If(x << "f"_mst) | // e=f_x + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "ms"_mst) | // m=m_x, s=s_x + "nudx"_mst; // n, u, d, x + case Fragment::WRAP_V: return + "V"_mst.If(x << "B"_mst) | // V=B_x + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "zonms"_mst) | // z=z_x, o=o_x, n=n_x, m=m_x, s=s_x + "fx"_mst; // f, x + case Fragment::WRAP_J: return + "B"_mst.If(x << "Bn"_mst) | // B=B_x*n_x + "e"_mst.If(x << "f"_mst) | // e=f_x + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "oums"_mst) | // o=o_x, u=u_x, m=m_x, s=s_x + "ndx"_mst; // n, d, x + case Fragment::WRAP_N: return + (x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x + (x & "Bzondfems"_mst) | // B=B_x, z=z_x, o=o_x, n=n_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x + "ux"_mst; // u, x + case Fragment::AND_V: return + (y & "KVB"_mst).If(x << "V"_mst) | // B=V_x*B_y, V=V_x*V_y, K=V_x*K_y + (x & "n"_mst) | (y & "n"_mst).If(x << "z"_mst) | // n=n_x+z_x*n_y + ((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y + (x & y & "dmz"_mst) | // d=d_x*d_y, m=m_x*m_y, z=z_x*z_y + ((x | y) & "s"_mst) | // s=s_x+s_y + "f"_mst.If((y << "f"_mst) || (x << "s"_mst)) | // f=f_y+s_x + (y & "ux"_mst) | // u=u_y, x=x_y + ((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y + "k"_mst.If(((x & y) << "k"_mst) && + !(((x << "g"_mst) && (y << "h"_mst)) || + ((x << "h"_mst) && (y << "g"_mst)) || + ((x << "i"_mst) && (y << "j"_mst)) || + ((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*!(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y) + case Fragment::AND_B: return + (x & "B"_mst).If(y << "W"_mst) | // B=B_x*W_y + ((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y + (x & "n"_mst) | (y & "n"_mst).If(x << "z"_mst) | // n=n_x+z_x*n_y + (x & y & "e"_mst).If((x & y) << "s"_mst) | // e=e_x*e_y*s_x*s_y + (x & y & "dzm"_mst) | // d=d_x*d_y, z=z_x*z_y, m=m_x*m_y + "f"_mst.If(((x & y) << "f"_mst) || (x << "sf"_mst) || (y << "sf"_mst)) | // f=f_x*f_y + f_x*s_x + f_y*s_y + ((x | y) & "s"_mst) | // s=s_x+s_y + "ux"_mst | // u, x + ((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y + "k"_mst.If(((x & y) << "k"_mst) && + !(((x << "g"_mst) && (y << "h"_mst)) || + ((x << "h"_mst) && (y << "g"_mst)) || + ((x << "i"_mst) && (y << "j"_mst)) || + ((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*!(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y) + case Fragment::OR_B: return + "B"_mst.If(x << "Bd"_mst && y << "Wd"_mst) | // B=B_x*d_x*W_x*d_y + ((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y + (x & y & "m"_mst).If((x | y) << "s"_mst && (x & y) << "e"_mst) | // m=m_x*m_y*e_x*e_y*(s_x+s_y) + (x & y & "zse"_mst) | // z=z_x*z_y, s=s_x*s_y, e=e_x*e_y + "dux"_mst | // d, u, x + ((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y + (x & y & "k"_mst); // k=k_x*k_y + case Fragment::OR_D: return + (y & "B"_mst).If(x << "Bdu"_mst) | // B=B_y*B_x*d_x*u_x + (x & "o"_mst).If(y << "z"_mst) | // o=o_x*z_y + (x & y & "m"_mst).If(x << "e"_mst && (x | y) << "s"_mst) | // m=m_x*m_y*e_x*(s_x+s_y) + (x & y & "zes"_mst) | // z=z_x*z_y, e=e_x*e_y, s=s_x*s_y + (y & "ufd"_mst) | // u=u_y, f=f_y, d=d_y + "x"_mst | // x + ((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y + (x & y & "k"_mst); // k=k_x*k_y + case Fragment::OR_C: return + (y & "V"_mst).If(x << "Bdu"_mst) | // V=V_y*B_x*u_x*d_x + (x & "o"_mst).If(y << "z"_mst) | // o=o_x*z_y + (x & y & "m"_mst).If(x << "e"_mst && (x | y) << "s"_mst) | // m=m_x*m_y*e_x*(s_x+s_y) + (x & y & "zs"_mst) | // z=z_x*z_y, s=s_x*s_y + "fx"_mst | // f, x + ((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y + (x & y & "k"_mst); // k=k_x*k_y + case Fragment::OR_I: return + (x & y & "VBKufs"_mst) | // V=V_x*V_y, B=B_x*B_y, K=K_x*K_y, u=u_x*u_y, f=f_x*f_y, s=s_x*s_y + "o"_mst.If((x & y) << "z"_mst) | // o=z_x*z_y + ((x | y) & "e"_mst).If((x | y) << "f"_mst) | // e=e_x*f_y+f_x*e_y + (x & y & "m"_mst).If((x | y) << "s"_mst) | // m=m_x*m_y*(s_x+s_y) + ((x | y) & "d"_mst) | // d=d_x+d_y + "x"_mst | // x + ((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y + (x & y & "k"_mst); // k=k_x*k_y + case Fragment::ANDOR: return + (y & z & "BKV"_mst).If(x << "Bdu"_mst) | // B=B_x*d_x*u_x*B_y*B_z, K=B_x*d_x*u_x*K_y*K_z, V=B_x*d_x*u_x*V_y*V_z + (x & y & z & "z"_mst) | // z=z_x*z_y*z_z + ((x | (y & z)) & "o"_mst).If((x | (y & z)) << "z"_mst) | // o=o_x*z_y*z_z+z_x*o_y*o_z + (y & z & "u"_mst) | // u=u_y*u_z + (z & "f"_mst).If((x << "s"_mst) || (y << "f"_mst)) | // f=(s_x+f_y)*f_z + (z & "d"_mst) | // d=d_z + (x & z & "e"_mst).If(x << "s"_mst || y << "f"_mst) | // e=e_x*e_z*(s_x+f_y) + (x & y & z & "m"_mst).If(x << "e"_mst && (x | y | z) << "s"_mst) | // m=m_x*m_y*m_z*e_x*(s_x+s_y+s_z) + (z & (x | y) & "s"_mst) | // s=s_z*(s_x+s_y) + "x"_mst | // x + ((x | y | z) & "ghij"_mst) | // g=g_x+g_y+g_z, h=h_x+h_y+h_z, i=i_x+i_y+i_z, j=j_x+j_y_j_z + "k"_mst.If(((x & y & z) << "k"_mst) && + !(((x << "g"_mst) && (y << "h"_mst)) || + ((x << "h"_mst) && (y << "g"_mst)) || + ((x << "i"_mst) && (y << "j"_mst)) || + ((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*k_z* !(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y) + case Fragment::MULTI: return "Bnudemsk"_mst; + case Fragment::THRESH: { + bool all_e = true; + bool all_m = true; + uint32_t args = 0; + uint32_t num_s = 0; + Type acc_tl = "k"_mst; + for (size_t i = 0; i < sub_types.size(); ++i) { + Type t = sub_types[i]; + if (!(t << (i ? "Wdu"_mst : "Bdu"_mst))) return ""_mst; // Require Bdu, Wdu, Wdu, ... + if (!(t << "e"_mst)) all_e = false; + if (!(t << "m"_mst)) all_m = false; + if (t << "s"_mst) num_s += 1; + args += (t << "z"_mst) ? 0 : (t << "o"_mst) ? 1 : 2; + acc_tl = ((acc_tl | t) & "ghij"_mst) | + // Thresh contains a combination of timelocks if it has threshold > 1 and + // it contains two different children that have different types of timelocks + // Note how if any of the children don't have "k", the parent also does not have "k" + "k"_mst.If(((acc_tl & t) << "k"_mst) && ((k <= 1) || + ((k > 1) && !(((acc_tl << "g"_mst) && (t << "h"_mst)) || + ((acc_tl << "h"_mst) && (t << "g"_mst)) || + ((acc_tl << "i"_mst) && (t << "j"_mst)) || + ((acc_tl << "j"_mst) && (t << "i"_mst)))))); + } + return "Bdu"_mst | + "z"_mst.If(args == 0) | // z=all z + "o"_mst.If(args == 1) | // o=all z except one o + "e"_mst.If(all_e && num_s == n_subs) | // e=all e and all s + "m"_mst.If(all_e && all_m && num_s >= n_subs - k) | // m=all e, >=(n-k) s + "s"_mst.If(num_s >= n_subs - k + 1) | // s= >=(n-k+1) s + acc_tl; // timelock info + } + } + assert(false); + return ""_mst; +} + +size_t ComputeScriptLen(Fragment nodetype, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys) { + switch (nodetype) { + case Fragment::JUST_1: + case Fragment::JUST_0: return 1; + case Fragment::PK_K: return 34; + case Fragment::PK_H: return 3 + 21; + case Fragment::OLDER: + case Fragment::AFTER: return 1 + BuildScript(k).size(); + case Fragment::HASH256: + case Fragment::SHA256: return 4 + 2 + 33; + case Fragment::HASH160: + case Fragment::RIPEMD160: return 4 + 2 + 21; + case Fragment::MULTI: return 3 + (n_keys > 16) + (k > 16) + 34 * n_keys; + case Fragment::AND_V: return subsize; + case Fragment::WRAP_V: return subsize + (sub0typ << "x"_mst); + case Fragment::WRAP_S: + case Fragment::WRAP_C: + case Fragment::WRAP_N: + case Fragment::AND_B: + case Fragment::OR_B: return subsize + 1; + case Fragment::WRAP_A: + case Fragment::OR_C: return subsize + 2; + case Fragment::WRAP_D: + case Fragment::OR_D: + case Fragment::OR_I: + case Fragment::ANDOR: return subsize + 3; + case Fragment::WRAP_J: return subsize + 4; + case Fragment::THRESH: return subsize + n_subs + BuildScript(k).size(); + } + assert(false); + return 0; +} + +bool DecomposeScript(const CScript& script, std::vector<std::pair<opcodetype, std::vector<unsigned char>>>& out) +{ + out.clear(); + CScript::const_iterator it = script.begin(), itend = script.end(); + while (it != itend) { + std::vector<unsigned char> push_data; + opcodetype opcode; + if (!script.GetOp(it, opcode, push_data)) { + out.clear(); + return false; + } else if (opcode >= OP_1 && opcode <= OP_16) { + // Deal with OP_n (GetOp does not turn them into pushes). + push_data.assign(1, CScript::DecodeOP_N(opcode)); + } else if (opcode == OP_CHECKSIGVERIFY) { + // Decompose OP_CHECKSIGVERIFY into OP_CHECKSIG OP_VERIFY + out.emplace_back(OP_CHECKSIG, std::vector<unsigned char>()); + opcode = OP_VERIFY; + } else if (opcode == OP_CHECKMULTISIGVERIFY) { + // Decompose OP_CHECKMULTISIGVERIFY into OP_CHECKMULTISIG OP_VERIFY + out.emplace_back(OP_CHECKMULTISIG, std::vector<unsigned char>()); + opcode = OP_VERIFY; + } else if (opcode == OP_EQUALVERIFY) { + // Decompose OP_EQUALVERIFY into OP_EQUAL OP_VERIFY + out.emplace_back(OP_EQUAL, std::vector<unsigned char>()); + opcode = OP_VERIFY; + } else if (IsPushdataOp(opcode)) { + if (!CheckMinimalPush(push_data, opcode)) return false; + } else if (it != itend && (opcode == OP_CHECKSIG || opcode == OP_CHECKMULTISIG || opcode == OP_EQUAL) && (*it == OP_VERIFY)) { + // Rule out non minimal VERIFY sequences + return false; + } + out.emplace_back(opcode, std::move(push_data)); + } + std::reverse(out.begin(), out.end()); + return true; +} + +bool ParseScriptNumber(const std::pair<opcodetype, std::vector<unsigned char>>& in, int64_t& k) { + if (in.first == OP_0) { + k = 0; + return true; + } + if (!in.second.empty()) { + if (IsPushdataOp(in.first) && !CheckMinimalPush(in.second, in.first)) return false; + try { + k = CScriptNum(in.second, true).GetInt64(); + return true; + } catch(const scriptnum_error&) {} + } + return false; +} + +int FindNextChar(Span<const char> sp, const char m) +{ + for (int i = 0; i < (int)sp.size(); ++i) { + if (sp[i] == m) return i; + // We only search within the current parentheses + if (sp[i] == ')') break; + } + return -1; +} + +} // namespace internal +} // namespace miniscript diff --git a/src/script/miniscript.h b/src/script/miniscript.h new file mode 100644 index 0000000000..b54653c548 --- /dev/null +++ b/src/script/miniscript.h @@ -0,0 +1,1652 @@ +// Copyright (c) 2019 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef BITCOIN_SCRIPT_MINISCRIPT_H +#define BITCOIN_SCRIPT_MINISCRIPT_H + +#include <algorithm> +#include <numeric> +#include <memory> +#include <optional> +#include <string> +#include <vector> + +#include <stdlib.h> +#include <assert.h> + +#include <policy/policy.h> +#include <primitives/transaction.h> +#include <script/script.h> +#include <span.h> +#include <util/spanparsing.h> +#include <util/strencodings.h> +#include <util/string.h> +#include <util/vector.h> + +namespace miniscript { + +/** This type encapsulates the miniscript type system properties. + * + * Every miniscript expression is one of 4 basic types, and additionally has + * a number of boolean type properties. + * + * The basic types are: + * - "B" Base: + * - Takes its inputs from the top of the stack. + * - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack. + * - When dissatisfied, pushes a 0 onto the stack. + * - This is used for most expressions, and required for the top level one. + * - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY. + * - "V" Verify: + * - Takes its inputs from the top of the stack. + * - When satisfactied, pushes nothing. + * - Cannot be dissatisfied. + * - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode + * of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY + * and OP_EQUAL), or by combining a V fragment under some conditions. + * - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY + * - "K" Key: + * - Takes its inputs from the top of the stack. + * - Becomes a B when followed by OP_CHECKSIG. + * - Always pushes a public key onto the stack, for which a signature is to be + * provided to satisfy the expression. + * - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY + * - "W" Wrapped: + * - Takes its input from one below the top of the stack. + * - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below. + * - When dissatisfied, pushes 0 op top of the stack or one below. + * - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK". + * - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG + * + * There a type properties that help reasoning about correctness: + * - "z" Zero-arg: + * - Is known to always consume exactly 0 stack elements. + * - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY + * - "o" One-arg: + * - Is known to always consume exactly 1 stack element. + * - Conflicts with property 'z' + * - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL + * - "n" Nonzero: + * - For every way this expression can be satisfied, a satisfaction exists that never needs + * a zero top stack element. + * - Conflicts with property 'z' and with type 'W'. + * - "d" Dissatisfiable: + * - There is an easy way to construct a dissatisfaction for this expression. + * - Conflicts with type 'V'. + * - "u" Unit: + * - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero). + * - Conflicts with type 'V'. + * + * Additional type properties help reasoning about nonmalleability: + * - "e" Expression: + * - This implies property 'd', but the dissatisfaction is nonmalleable. + * - This generally requires 'e' for all subexpressions which are invoked for that + * dissatifsaction, and property 'f' for the unexecuted subexpressions in that case. + * - Conflicts with type 'V'. + * - "f" Forced: + * - Dissatisfactions (if any) for this expression always involve at least one signature. + * - Is always true for type 'V'. + * - "s" Safe: + * - Satisfactions for this expression always involve at least one signature. + * - "m" Nonmalleable: + * - For every way this expression can be satisfied (which may be none), + * a nonmalleable satisfaction exists. + * - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions + * which are dissatisfied when satisfying the parent. + * + * One type property is an implementation detail: + * - "x" Expensive verify: + * - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG. + * - Not having this property means that it can be converted to a V at no cost (by switching to the + * -VERIFY version of the last opcode). + * + * Five more type properties for representing timelock information. Spend paths + * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together. + * This helps users detect if miniscript does not match the semantic behaviour the + * user expects. + * - "g" Whether the branch contains a relative time timelock + * - "h" Whether the branch contains a relative height timelock + * - "i" Whether the branch contains an absolute time timelock + * - "j" Whether the branch contains an absolute height timelock + * - "k" + * - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock + * of the same type. + * - If the miniscript does not have the "k" property, the miniscript template will not match + * the user expectation of the corresponding spending policy. + * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also + * valid in places where an X, a Y, a Z, an XY, ... is expected. +*/ +class Type { + //! Internal bitmap of properties (see ""_mst operator for details). + uint32_t m_flags; + + //! Internal constructor used by the ""_mst operator. + explicit constexpr Type(uint32_t flags) : m_flags(flags) {} + +public: + //! The only way to publicly construct a Type is using this literal operator. + friend constexpr Type operator"" _mst(const char* c, size_t l); + + //! Compute the type with the union of properties. + constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); } + + //! Compute the type with the intersection of properties. + constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); } + + //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right). + constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; } + + //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<). + constexpr bool operator<(Type x) const { return m_flags < x.m_flags; } + + //! Equality operator. + constexpr bool operator==(Type x) const { return m_flags == x.m_flags; } + + //! The empty type if x is false, itself otherwise. + constexpr Type If(bool x) const { return Type(x ? m_flags : 0); } +}; + +//! Literal operator to construct Type objects. +inline constexpr Type operator"" _mst(const char* c, size_t l) { + Type typ{0}; + + for (const char *p = c; p < c + l; p++) { + typ = typ | Type( + *p == 'B' ? 1 << 0 : // Base type + *p == 'V' ? 1 << 1 : // Verify type + *p == 'K' ? 1 << 2 : // Key type + *p == 'W' ? 1 << 3 : // Wrapped type + *p == 'z' ? 1 << 4 : // Zero-arg property + *p == 'o' ? 1 << 5 : // One-arg property + *p == 'n' ? 1 << 6 : // Nonzero arg property + *p == 'd' ? 1 << 7 : // Dissatisfiable property + *p == 'u' ? 1 << 8 : // Unit property + *p == 'e' ? 1 << 9 : // Expression property + *p == 'f' ? 1 << 10 : // Forced property + *p == 's' ? 1 << 11 : // Safe property + *p == 'm' ? 1 << 12 : // Nonmalleable property + *p == 'x' ? 1 << 13 : // Expensive verify + *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time) + *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height) + *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time) + *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height) + *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks + (throw std::logic_error("Unknown character in _mst literal"), 0) + ); + } + + return typ; +} + +template<typename Key> struct Node; +template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>; + +//! Construct a miniscript node as a shared_ptr. +template<typename Key, typename... Args> +NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); } + +//! The different node types in miniscript. +enum class Fragment { + JUST_0, //!< OP_0 + JUST_1, //!< OP_1 + PK_K, //!< [key] + PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY + OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY + AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY + SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL + HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL + RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL + HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL + WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK + WRAP_S, //!< OP_SWAP [X] + WRAP_C, //!< [X] OP_CHECKSIG + WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF + WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X) + WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF + WRAP_N, //!< [X] OP_0NOTEQUAL + AND_V, //!< [X] [Y] + AND_B, //!< [X] [Y] OP_BOOLAND + OR_B, //!< [X] [Y] OP_BOOLOR + OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF + OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF + OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF + ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF + THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL + MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG + // AND_N(X,Y) is represented as ANDOR(X,Y,0) + // WRAP_T(X) is represented as AND_V(X,1) + // WRAP_L(X) is represented as OR_I(0,X) + // WRAP_U(X) is represented as OR_I(X,0) +}; + + +namespace internal { + +//! Helper function for Node::CalcType. +Type ComputeType(Fragment nodetype, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys); + +//! Helper function for Node::CalcScriptLen. +size_t ComputeScriptLen(Fragment nodetype, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys); + +//! A helper sanitizer/checker for the output of CalcType. +Type SanitizeType(Type x); + +//! Class whose objects represent the maximum of a list of integers. +template<typename I> +struct MaxInt { + const bool valid; + const I value; + + MaxInt() : valid(false), value(0) {} + MaxInt(I val) : valid(true), value(val) {} + + friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) { + if (!a.valid || !b.valid) return {}; + return a.value + b.value; + } + + friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) { + if (!a.valid) return b; + if (!b.valid) return a; + return std::max(a.value, b.value); + } +}; + +struct Ops { + //! Non-push opcodes. + uint32_t count; + //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy. + MaxInt<uint32_t> sat; + //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy. + MaxInt<uint32_t> dsat; + + Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {}; +}; + +struct StackSize { + //! Maximum stack size to satisfy; + MaxInt<uint32_t> sat; + //! Maximum stack size to dissatisfy; + MaxInt<uint32_t> dsat; + + StackSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {}; +}; + +} // namespace internal + +//! A node in a miniscript expression. +template<typename Key> +struct Node { + //! What node type this node is. + const Fragment nodetype; + //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M)) + const uint32_t k = 0; + //! The keys used by this expression (only for PK_K/PK_H/MULTI) + const std::vector<Key> keys; + //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10). + const std::vector<unsigned char> data; + //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH) + const std::vector<NodeRef<Key>> subs; + +private: + //! Cached ops counts. + const internal::Ops ops; + //! Cached stack size bounds. + const internal::StackSize ss; + //! Cached expression type (computed by CalcType and fed through SanitizeType). + const Type typ; + //! Cached script length (computed by CalcScriptLen). + const size_t scriptlen; + + //! Compute the length of the script for this miniscript (including children). + size_t CalcScriptLen() const { + size_t subsize = 0; + for (const auto& sub : subs) { + subsize += sub->ScriptSize(); + } + Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst; + return internal::ComputeScriptLen(nodetype, sub0type, subsize, k, subs.size(), keys.size()); + } + + /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls. + * + * The algorithm is defined by two functions: downfn and upfn. Conceptually, the + * result can be thought of as first using downfn to compute a "state" for each node, + * from the root down to the leaves. Then upfn is used to compute a "result" for each + * node, from the leaves back up to the root, which is then returned. In the actual + * implementation, both functions are invoked in an interleaved fashion, performing a + * depth-first traversal of the tree. + * + * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn): + * - root is the state of the root node, of type State. + * - downfn is a callable (State&, const Node&, size_t) -> State, which given a + * node, its state, and an index of one of its children, computes the state of that + * child. It can modify the state. Children of a given node will have downfn() + * called in order. + * - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>, + * which given a node, its state, and a Span of the results of its children, + * computes the result of the node. If std::nullopt is returned by upfn, + * TreeEvalMaybe() immediately returns std::nullopt. + * The return value of TreeEvalMaybe is the result of the root node. + */ + template<typename Result, typename State, typename DownFn, typename UpFn> + std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const + { + /** Entries of the explicit stack tracked in this algorithm. */ + struct StackElem + { + const Node& node; //!< The node being evaluated. + size_t expanded; //!< How many children of this node have been expanded. + State state; //!< The state for that node. + + StackElem(const Node& node_, size_t exp_, State&& state_) : + node(node_), expanded(exp_), state(std::move(state_)) {} + }; + /* Stack of tree nodes being explored. */ + std::vector<StackElem> stack; + /* Results of subtrees so far. Their order and mapping to tree nodes + * is implicitly defined by stack. */ + std::vector<Result> results; + stack.emplace_back(*this, 0, std::move(root_state)); + + /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F). + * State variables are omitted for simplicity. + * + * First: stack=[(A,0)] results=[] + * stack=[(A,1),(B,0)] results=[] + * stack=[(A,1)] results=[B] + * stack=[(A,2),(C,0)] results=[B] + * stack=[(A,2),(C,1),(D,0)] results=[B] + * stack=[(A,2),(C,1)] results=[B,D] + * stack=[(A,2),(C,2),(E,0)] results=[B,D] + * stack=[(A,2),(C,2)] results=[B,D,E] + * stack=[(A,2)] results=[B,C] + * stack=[(A,3),(F,0)] results=[B,C] + * stack=[(A,3)] results=[B,C,F] + * Final: stack=[] results=[A] + */ + while (stack.size()) { + const Node& node = stack.back().node; + if (stack.back().expanded < node.subs.size()) { + /* We encounter a tree node with at least one unexpanded child. + * Expand it. By the time we hit this node again, the result of + * that child (and all earlier children) will be at the end of `results`. */ + size_t child_index = stack.back().expanded++; + State child_state = downfn(stack.back().state, node, child_index); + stack.emplace_back(*node.subs[child_index], 0, std::move(child_state)); + continue; + } + // Invoke upfn with the last node.subs.size() elements of results as input. + assert(results.size() >= node.subs.size()); + std::optional<Result> result{upfn(std::move(stack.back().state), node, + Span<Result>{results}.last(node.subs.size()))}; + // If evaluation returns std::nullopt, abort immediately. + if (!result) return {}; + // Replace the last node.subs.size() elements of results with the new result. + results.erase(results.end() - node.subs.size(), results.end()); + results.push_back(std::move(*result)); + stack.pop_back(); + } + // The final remaining results element is the root result, return it. + assert(results.size() == 1); + return std::move(results[0]); + } + + /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */ + template<typename Result, typename State, typename DownFn, typename UpFn> + Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const + { + // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then + // unconditionally dereference the result (it cannot be std::nullopt). + return std::move(*TreeEvalMaybe<Result>(std::move(root_state), + std::forward<DownFn>(downfn), + [&upfn](State&& state, const Node& node, Span<Result> subs) { + Result res{upfn(std::move(state), node, subs)}; + return std::optional<Result>(std::move(res)); + } + )); + } + + //! Compute the type for this miniscript. + Type CalcType() const { + using namespace internal; + + // THRESH has a variable number of subexpressions + std::vector<Type> sub_types; + if (nodetype == Fragment::THRESH) { + for (const auto& sub : subs) sub_types.push_back(sub->GetType()); + } + // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions. + Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst; + Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst; + Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst; + + return SanitizeType(ComputeType(nodetype, x, y, z, sub_types, k, data.size(), subs.size(), keys.size())); + } + +public: + template<typename Ctx> + CScript ToScript(const Ctx& ctx) const + { + // To construct the CScript for a Miniscript object, we use the TreeEval algorithm. + // The State is a boolean: whether or not the node's script expansion is followed + // by an OP_VERIFY (which may need to be combined with the last script opcode). + auto downfn = [](bool verify, const Node& node, size_t index) { + // For WRAP_V, the subexpression is certainly followed by OP_VERIFY. + if (node.nodetype == Fragment::WRAP_V) return true; + // The subexpression of WRAP_S, and the last subexpression of AND_V + // inherit the followed-by-OP_VERIFY property from the parent. + if (node.nodetype == Fragment::WRAP_S || + (node.nodetype == Fragment::AND_V && index == 1)) return verify; + return false; + }; + // The upward function computes for a node, given its followed-by-OP_VERIFY status + // and the CScripts of its child nodes, the CScript of the node. + auto upfn = [&ctx](bool verify, const Node& node, Span<CScript> subs) -> CScript { + switch (node.nodetype) { + case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0])); + case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY); + case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY); + case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY); + case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); + case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); + case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); + case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); + case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK); + case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]); + case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG); + case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF); + case Fragment::WRAP_V: { + if (node.subs[0]->GetType() << "x"_mst) { + return BuildScript(std::move(subs[0]), OP_VERIFY); + } else { + return std::move(subs[0]); + } + } + case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF); + case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL); + case Fragment::JUST_1: return BuildScript(OP_1); + case Fragment::JUST_0: return BuildScript(OP_0); + case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]); + case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND); + case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR); + case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF); + case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF); + case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF); + case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF); + case Fragment::MULTI: { + CScript script = BuildScript(node.k); + for (const auto& key : node.keys) { + script = BuildScript(std::move(script), ctx.ToPKBytes(key)); + } + return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG); + } + case Fragment::THRESH: { + CScript script = std::move(subs[0]); + for (size_t i = 1; i < subs.size(); ++i) { + script = BuildScript(std::move(script), subs[i], OP_ADD); + } + return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL); + } + } + assert(false); + return {}; + }; + return TreeEval<CScript>(false, downfn, upfn); + } + + template<typename CTx> + bool ToString(const CTx& ctx, std::string& ret) const { + // To construct the std::string representation for a Miniscript object, we use + // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a + // wrapper. If so, non-wrapper expressions must be prefixed with a ":". + auto downfn = [](bool, const Node& node, size_t) { + return (node.nodetype == Fragment::WRAP_A || node.nodetype == Fragment::WRAP_S || + node.nodetype == Fragment::WRAP_D || node.nodetype == Fragment::WRAP_V || + node.nodetype == Fragment::WRAP_J || node.nodetype == Fragment::WRAP_N || + node.nodetype == Fragment::WRAP_C || + (node.nodetype == Fragment::AND_V && node.subs[1]->nodetype == Fragment::JUST_1) || + (node.nodetype == Fragment::OR_I && node.subs[0]->nodetype == Fragment::JUST_0) || + (node.nodetype == Fragment::OR_I && node.subs[1]->nodetype == Fragment::JUST_0)); + }; + // The upward function computes for a node, given whether its parent is a wrapper, + // and the string representations of its child nodes, the string representation of the node. + auto upfn = [&ctx](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> { + std::string ret = wrapped ? ":" : ""; + + switch (node.nodetype) { + case Fragment::WRAP_A: return "a" + std::move(subs[0]); + case Fragment::WRAP_S: return "s" + std::move(subs[0]); + case Fragment::WRAP_C: + if (node.subs[0]->nodetype == Fragment::PK_K) { + // pk(K) is syntactic sugar for c:pk_k(K) + std::string key_str; + if (!ctx.ToString(node.subs[0]->keys[0], key_str)) return {}; + return std::move(ret) + "pk(" + std::move(key_str) + ")"; + } + if (node.subs[0]->nodetype == Fragment::PK_H) { + // pkh(K) is syntactic sugar for c:pk_h(K) + std::string key_str; + if (!ctx.ToString(node.subs[0]->keys[0], key_str)) return {}; + return std::move(ret) + "pkh(" + std::move(key_str) + ")"; + } + return "c" + std::move(subs[0]); + case Fragment::WRAP_D: return "d" + std::move(subs[0]); + case Fragment::WRAP_V: return "v" + std::move(subs[0]); + case Fragment::WRAP_J: return "j" + std::move(subs[0]); + case Fragment::WRAP_N: return "n" + std::move(subs[0]); + case Fragment::AND_V: + // t:X is syntactic sugar for and_v(X,1). + if (node.subs[1]->nodetype == Fragment::JUST_1) return "t" + std::move(subs[0]); + break; + case Fragment::OR_I: + if (node.subs[0]->nodetype == Fragment::JUST_0) return "l" + std::move(subs[1]); + if (node.subs[1]->nodetype == Fragment::JUST_0) return "u" + std::move(subs[0]); + break; + default: break; + } + switch (node.nodetype) { + case Fragment::PK_K: { + std::string key_str; + if (!ctx.ToString(node.keys[0], key_str)) return {}; + return std::move(ret) + "pk_k(" + std::move(key_str) + ")"; + } + case Fragment::PK_H: { + std::string key_str; + if (!ctx.ToString(node.keys[0], key_str)) return {}; + return std::move(ret) + "pk_h(" + std::move(key_str) + ")"; + } + case Fragment::AFTER: return std::move(ret) + "after(" + ::ToString(node.k) + ")"; + case Fragment::OLDER: return std::move(ret) + "older(" + ::ToString(node.k) + ")"; + case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")"; + case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")"; + case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")"; + case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")"; + case Fragment::JUST_1: return std::move(ret) + "1"; + case Fragment::JUST_0: return std::move(ret) + "0"; + case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + case Fragment::ANDOR: + // and_n(X,Y) is syntactic sugar for andor(X,Y,0). + if (node.subs[2]->nodetype == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")"; + case Fragment::MULTI: { + auto str = std::move(ret) + "multi(" + ::ToString(node.k); + for (const auto& key : node.keys) { + std::string key_str; + if (!ctx.ToString(key, key_str)) return {}; + str += "," + std::move(key_str); + } + return std::move(str) + ")"; + } + case Fragment::THRESH: { + auto str = std::move(ret) + "thresh(" + ::ToString(node.k); + for (auto& sub : subs) { + str += "," + std::move(sub); + } + return std::move(str) + ")"; + } + default: assert(false); + } + return ""; // Should never be reached. + }; + + auto res = TreeEvalMaybe<std::string>(false, downfn, upfn); + if (res.has_value()) ret = std::move(*res); + return res.has_value(); + } + + internal::Ops CalcOps() const { + switch (nodetype) { + case Fragment::JUST_1: return {0, 0, {}}; + case Fragment::JUST_0: return {0, {}, 0}; + case Fragment::PK_K: return {0, 0, 0}; + case Fragment::PK_H: return {3, 0, 0}; + case Fragment::OLDER: + case Fragment::AFTER: return {1, 0, {}}; + case Fragment::SHA256: + case Fragment::RIPEMD160: + case Fragment::HASH256: + case Fragment::HASH160: return {4, 0, {}}; + case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}}; + case Fragment::AND_B: { + const auto count{1 + subs[0]->ops.count + subs[1]->ops.count}; + const auto sat{subs[0]->ops.sat + subs[1]->ops.sat}; + const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; + return {count, sat, dsat}; + } + case Fragment::OR_B: { + const auto count{1 + subs[0]->ops.count + subs[1]->ops.count}; + const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)}; + const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; + return {count, sat, dsat}; + } + case Fragment::OR_D: { + const auto count{3 + subs[0]->ops.count + subs[1]->ops.count}; + const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)}; + const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; + return {count, sat, dsat}; + } + case Fragment::OR_C: { + const auto count{2 + subs[0]->ops.count + subs[1]->ops.count}; + const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)}; + return {count, sat, {}}; + } + case Fragment::OR_I: { + const auto count{3 + subs[0]->ops.count + subs[1]->ops.count}; + const auto sat{subs[0]->ops.sat | subs[1]->ops.sat}; + const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat}; + return {count, sat, dsat}; + } + case Fragment::ANDOR: { + const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count}; + const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)}; + const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat}; + return {count, sat, dsat}; + } + case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()}; + case Fragment::WRAP_S: + case Fragment::WRAP_C: + case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat}; + case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat}; + case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0}; + case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0}; + case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}}; + case Fragment::THRESH: { + uint32_t count = 0; + auto sats = Vector(internal::MaxInt<uint32_t>(0)); + for (const auto& sub : subs) { + count += sub->ops.count + 1; + auto next_sats = Vector(sats[0] + sub->ops.dsat); + for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat)); + next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat); + sats = std::move(next_sats); + } + assert(k <= sats.size()); + return {count, sats[k], sats[0]}; + } + } + assert(false); + return {0, {}, {}}; + } + + internal::StackSize CalcStackSize() const { + switch (nodetype) { + case Fragment::JUST_0: return {{}, 0}; + case Fragment::JUST_1: + case Fragment::OLDER: + case Fragment::AFTER: return {0, {}}; + case Fragment::PK_K: return {1, 1}; + case Fragment::PK_H: return {2, 2}; + case Fragment::SHA256: + case Fragment::RIPEMD160: + case Fragment::HASH256: + case Fragment::HASH160: return {1, {}}; + case Fragment::ANDOR: { + const auto sat{(subs[0]->ss.sat + subs[1]->ss.sat) | (subs[0]->ss.dsat + subs[2]->ss.sat)}; + const auto dsat{subs[0]->ss.dsat + subs[2]->ss.dsat}; + return {sat, dsat}; + } + case Fragment::AND_V: return {subs[0]->ss.sat + subs[1]->ss.sat, {}}; + case Fragment::AND_B: return {subs[0]->ss.sat + subs[1]->ss.sat, subs[0]->ss.dsat + subs[1]->ss.dsat}; + case Fragment::OR_B: { + const auto sat{(subs[0]->ss.dsat + subs[1]->ss.sat) | (subs[0]->ss.sat + subs[1]->ss.dsat)}; + const auto dsat{subs[0]->ss.dsat + subs[1]->ss.dsat}; + return {sat, dsat}; + } + case Fragment::OR_C: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), {}}; + case Fragment::OR_D: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), subs[0]->ss.dsat + subs[1]->ss.dsat}; + case Fragment::OR_I: return {(subs[0]->ss.sat + 1) | (subs[1]->ss.sat + 1), (subs[0]->ss.dsat + 1) | (subs[1]->ss.dsat + 1)}; + case Fragment::MULTI: return {k + 1, k + 1}; + case Fragment::WRAP_A: + case Fragment::WRAP_N: + case Fragment::WRAP_S: + case Fragment::WRAP_C: return subs[0]->ss; + case Fragment::WRAP_D: return {1 + subs[0]->ss.sat, 1}; + case Fragment::WRAP_V: return {subs[0]->ss.sat, {}}; + case Fragment::WRAP_J: return {subs[0]->ss.sat, 1}; + case Fragment::THRESH: { + auto sats = Vector(internal::MaxInt<uint32_t>(0)); + for (const auto& sub : subs) { + auto next_sats = Vector(sats[0] + sub->ss.dsat); + for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ss.dsat) | (sats[j - 1] + sub->ss.sat)); + next_sats.push_back(sats[sats.size() - 1] + sub->ss.sat); + sats = std::move(next_sats); + } + assert(k <= sats.size()); + return {sats[k], sats[0]}; + } + } + assert(false); + return {{}, {}}; + } + +public: + //! Return the size of the script for this expression (faster than ToScript().size()). + size_t ScriptSize() const { return scriptlen; } + + //! Return the maximum number of ops needed to satisfy this script non-malleably. + uint32_t GetOps() const { return ops.count + ops.sat.value; } + + //! Check the ops limit of this script against the consensus limit. + bool CheckOpsLimit() const { return GetOps() <= MAX_OPS_PER_SCRIPT; } + + /** Return the maximum number of stack elements needed to satisfy this script non-malleably, including + * the script push. */ + uint32_t GetStackSize() const { return ss.sat.value + 1; } + + //! Check the maximum stack size for this script against the policy limit. + bool CheckStackSize() const { return GetStackSize() - 1 <= MAX_STANDARD_P2WSH_STACK_ITEMS; } + + //! Return the expression type. + Type GetType() const { return typ; } + + //! Check whether this node is valid at all. + bool IsValid() const { return !(GetType() == ""_mst) && ScriptSize() <= MAX_STANDARD_P2WSH_SCRIPT_SIZE; } + + //! Check whether this node is valid as a script on its own. + bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; } + + //! Check whether this script can always be satisfied in a non-malleable way. + bool IsNonMalleable() const { return GetType() << "m"_mst; } + + //! Check whether this script always needs a signature. + bool NeedsSignature() const { return GetType() << "s"_mst; } + + //! Do all sanity checks. + bool IsSane() const { return IsValid() && GetType() << "mk"_mst && CheckOpsLimit() && CheckStackSize(); } + + //! Check whether this node is safe as a script on its own. + bool IsSaneTopLevel() const { return IsValidTopLevel() && IsSane() && NeedsSignature(); } + + //! Equality testing. + bool operator==(const Node<Key>& arg) const + { + if (nodetype != arg.nodetype) return false; + if (k != arg.k) return false; + if (data != arg.data) return false; + if (keys != arg.keys) return false; + if (subs.size() != arg.subs.size()) return false; + for (size_t i = 0; i < subs.size(); ++i) { + if (!(*subs[i] == *arg.subs[i])) return false; + } + assert(scriptlen == arg.scriptlen); + assert(typ == arg.typ); + return true; + } + + // Constructors with various argument combinations. + Node(Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) : nodetype(nt), k(val), data(std::move(arg)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} + Node(Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) : nodetype(nt), k(val), data(std::move(arg)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} + Node(Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) : nodetype(nt), k(val), keys(std::move(key)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} + Node(Fragment nt, std::vector<Key> key, uint32_t val = 0) : nodetype(nt), k(val), keys(std::move(key)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} + Node(Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) : nodetype(nt), k(val), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} + Node(Fragment nt, uint32_t val = 0) : nodetype(nt), k(val), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} +}; + +namespace internal { + +enum class ParseContext { + /** An expression which may be begin with wrappers followed by a colon. */ + WRAPPED_EXPR, + /** A miniscript expression which does not begin with wrappers. */ + EXPR, + + /** SWAP wraps the top constructed node with s: */ + SWAP, + /** ALT wraps the top constructed node with a: */ + ALT, + /** CHECK wraps the top constructed node with c: */ + CHECK, + /** DUP_IF wraps the top constructed node with d: */ + DUP_IF, + /** VERIFY wraps the top constructed node with v: */ + VERIFY, + /** NON_ZERO wraps the top constructed node with j: */ + NON_ZERO, + /** ZERO_NOTEQUAL wraps the top constructed node with n: */ + ZERO_NOTEQUAL, + /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */ + WRAP_U, + /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */ + WRAP_T, + + /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */ + AND_N, + /** AND_V will construct an and_v node from the last two constructed nodes. */ + AND_V, + /** AND_B will construct an and_b node from the last two constructed nodes. */ + AND_B, + /** ANDOR will construct an andor node from the last three constructed nodes. */ + ANDOR, + /** OR_B will construct an or_b node from the last two constructed nodes. */ + OR_B, + /** OR_C will construct an or_c node from the last two constructed nodes. */ + OR_C, + /** OR_D will construct an or_d node from the last two constructed nodes. */ + OR_D, + /** OR_I will construct an or_i node from the last two constructed nodes. */ + OR_I, + + /** THRESH will read a wrapped expression, and then look for a COMMA. If + * no comma follows, it will construct a thresh node from the appropriate + * number of constructed children. Otherwise, it will recurse with another + * THRESH. */ + THRESH, + + /** COMMA expects the next element to be ',' and fails if not. */ + COMMA, + /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */ + CLOSE_BRACKET, +}; + +int FindNextChar(Span<const char> in, const char m); + +/** Parse a key string ending with a ')' or ','. */ +template<typename Key, typename Ctx> +std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx) +{ + Key key; + int key_size = FindNextChar(in, ')'); + if (key_size < 1) return {}; + if (!ctx.FromString(in.begin(), in.begin() + key_size, key)) return {}; + return {{std::move(key), key_size}}; +} + +/** Parse a hex string ending at the end of the fragment's text representation. */ +template<typename Ctx> +std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size, + const Ctx& ctx) +{ + int hash_size = FindNextChar(in, ')'); + if (hash_size < 1) return {}; + std::string val = std::string(in.begin(), in.begin() + hash_size); + if (!IsHex(val)) return {}; + auto hash = ParseHex(val); + if (hash.size() != expected_size) return {}; + return {{std::move(hash), hash_size}}; +} + +/** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */ +template<typename Key> +void BuildBack(Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false) +{ + NodeRef<Key> child = std::move(constructed.back()); + constructed.pop_back(); + if (reverse) { + constructed.back() = MakeNodeRef<Key>(nt, Vector(std::move(child), std::move(constructed.back()))); + } else { + constructed.back() = MakeNodeRef<Key>(nt, Vector(std::move(constructed.back()), std::move(child))); + } +} + +//! Parse a miniscript from its textual descriptor form. +template<typename Key, typename Ctx> +inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx) +{ + using namespace spanparsing; + + // The two integers are used to hold state for thresh() + std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse; + std::vector<NodeRef<Key>> constructed; + + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + + while (!to_parse.empty()) { + // Get the current context we are decoding within + auto [cur_context, n, k] = to_parse.back(); + to_parse.pop_back(); + + switch (cur_context) { + case ParseContext::WRAPPED_EXPR: { + int colon_index = -1; + for (int i = 1; i < (int)in.size(); ++i) { + if (in[i] == ':') { + colon_index = i; + break; + } + if (in[i] < 'a' || in[i] > 'z') break; + } + // If there is no colon, this loop won't execute + for (int j = 0; j < colon_index; ++j) { + if (in[j] == 'a') { + to_parse.emplace_back(ParseContext::ALT, -1, -1); + } else if (in[j] == 's') { + to_parse.emplace_back(ParseContext::SWAP, -1, -1); + } else if (in[j] == 'c') { + to_parse.emplace_back(ParseContext::CHECK, -1, -1); + } else if (in[j] == 'd') { + to_parse.emplace_back(ParseContext::DUP_IF, -1, -1); + } else if (in[j] == 'j') { + to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1); + } else if (in[j] == 'n') { + to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1); + } else if (in[j] == 'v') { + to_parse.emplace_back(ParseContext::VERIFY, -1, -1); + } else if (in[j] == 'u') { + to_parse.emplace_back(ParseContext::WRAP_U, -1, -1); + } else if (in[j] == 't') { + to_parse.emplace_back(ParseContext::WRAP_T, -1, -1); + } else if (in[j] == 'l') { + // The l: wrapper is equivalent to or_i(0,X) + constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0)); + to_parse.emplace_back(ParseContext::OR_I, -1, -1); + } else { + return {}; + } + } + to_parse.emplace_back(ParseContext::EXPR, -1, -1); + in = in.subspan(colon_index + 1); + break; + } + case ParseContext::EXPR: { + if (Const("0", in)) { + constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0)); + } else if (Const("1", in)) { + constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_1)); + } else if (Const("pk(", in)) { + auto res = ParseKeyEnd<Key, Ctx>(in, ctx); + if (!res) return {}; + auto& [key, key_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::WRAP_C, Vector(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key)))))); + in = in.subspan(key_size + 1); + } else if (Const("pkh(", in)) { + auto res = ParseKeyEnd<Key>(in, ctx); + if (!res) return {}; + auto& [key, key_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::WRAP_C, Vector(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key)))))); + in = in.subspan(key_size + 1); + } else if (Const("pk_k(", in)) { + auto res = ParseKeyEnd<Key>(in, ctx); + if (!res) return {}; + auto& [key, key_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key)))); + in = in.subspan(key_size + 1); + } else if (Const("pk_h(", in)) { + auto res = ParseKeyEnd<Key>(in, ctx); + if (!res) return {}; + auto& [key, key_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key)))); + in = in.subspan(key_size + 1); + } else if (Const("sha256(", in)) { + auto res = ParseHexStrEnd(in, 32, ctx); + if (!res) return {}; + auto& [hash, hash_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::SHA256, std::move(hash))); + in = in.subspan(hash_size + 1); + } else if (Const("ripemd160(", in)) { + auto res = ParseHexStrEnd(in, 20, ctx); + if (!res) return {}; + auto& [hash, hash_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::RIPEMD160, std::move(hash))); + in = in.subspan(hash_size + 1); + } else if (Const("hash256(", in)) { + auto res = ParseHexStrEnd(in, 32, ctx); + if (!res) return {}; + auto& [hash, hash_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::HASH256, std::move(hash))); + in = in.subspan(hash_size + 1); + } else if (Const("hash160(", in)) { + auto res = ParseHexStrEnd(in, 20, ctx); + if (!res) return {}; + auto& [hash, hash_size] = *res; + constructed.push_back(MakeNodeRef<Key>(Fragment::HASH160, std::move(hash))); + in = in.subspan(hash_size + 1); + } else if (Const("after(", in)) { + int arg_size = FindNextChar(in, ')'); + if (arg_size < 1) return {}; + int64_t num; + if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {}; + if (num < 1 || num >= 0x80000000L) return {}; + constructed.push_back(MakeNodeRef<Key>(Fragment::AFTER, num)); + in = in.subspan(arg_size + 1); + } else if (Const("older(", in)) { + int arg_size = FindNextChar(in, ')'); + if (arg_size < 1) return {}; + int64_t num; + if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {}; + if (num < 1 || num >= 0x80000000L) return {}; + constructed.push_back(MakeNodeRef<Key>(Fragment::OLDER, num)); + in = in.subspan(arg_size + 1); + } else if (Const("multi(", in)) { + // Get threshold + int next_comma = FindNextChar(in, ','); + if (next_comma < 1) return {}; + if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {}; + in = in.subspan(next_comma + 1); + // Get keys + std::vector<Key> keys; + while (next_comma != -1) { + Key key; + next_comma = FindNextChar(in, ','); + int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma; + if (key_length < 1) return {}; + if (!ctx.FromString(in.begin(), in.begin() + key_length, key)) return {}; + keys.push_back(std::move(key)); + in = in.subspan(key_length + 1); + } + if (keys.size() < 1 || keys.size() > 20) return {}; + if (k < 1 || k > (int64_t)keys.size()) return {}; + constructed.push_back(MakeNodeRef<Key>(Fragment::MULTI, std::move(keys), k)); + } else if (Const("thresh(", in)) { + int next_comma = FindNextChar(in, ','); + if (next_comma < 1) return {}; + if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {}; + if (k < 1) return {}; + in = in.subspan(next_comma + 1); + // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH + to_parse.emplace_back(ParseContext::THRESH, 1, k); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + } else if (Const("andor(", in)) { + to_parse.emplace_back(ParseContext::ANDOR, -1, -1); + to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + to_parse.emplace_back(ParseContext::COMMA, -1, -1); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + to_parse.emplace_back(ParseContext::COMMA, -1, -1); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + } else { + if (Const("and_n(", in)) { + to_parse.emplace_back(ParseContext::AND_N, -1, -1); + } else if (Const("and_b(", in)) { + to_parse.emplace_back(ParseContext::AND_B, -1, -1); + } else if (Const("and_v(", in)) { + to_parse.emplace_back(ParseContext::AND_V, -1, -1); + } else if (Const("or_b(", in)) { + to_parse.emplace_back(ParseContext::OR_B, -1, -1); + } else if (Const("or_c(", in)) { + to_parse.emplace_back(ParseContext::OR_C, -1, -1); + } else if (Const("or_d(", in)) { + to_parse.emplace_back(ParseContext::OR_D, -1, -1); + } else if (Const("or_i(", in)) { + to_parse.emplace_back(ParseContext::OR_I, -1, -1); + } else { + return {}; + } + to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + to_parse.emplace_back(ParseContext::COMMA, -1, -1); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + } + break; + } + case ParseContext::ALT: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_A, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::SWAP: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_S, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::CHECK: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_C, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::DUP_IF: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_D, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::NON_ZERO: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_J, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::ZERO_NOTEQUAL: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_N, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::VERIFY: { + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_V, Vector(std::move(constructed.back()))); + break; + } + case ParseContext::WRAP_U: { + constructed.back() = MakeNodeRef<Key>(Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(Fragment::JUST_0))); + break; + } + case ParseContext::WRAP_T: { + constructed.back() = MakeNodeRef<Key>(Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(Fragment::JUST_1))); + break; + } + case ParseContext::AND_B: { + BuildBack(Fragment::AND_B, constructed); + break; + } + case ParseContext::AND_N: { + auto mid = std::move(constructed.back()); + constructed.pop_back(); + constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(Fragment::JUST_0))); + break; + } + case ParseContext::AND_V: { + BuildBack(Fragment::AND_V, constructed); + break; + } + case ParseContext::OR_B: { + BuildBack(Fragment::OR_B, constructed); + break; + } + case ParseContext::OR_C: { + BuildBack(Fragment::OR_C, constructed); + break; + } + case ParseContext::OR_D: { + BuildBack(Fragment::OR_D, constructed); + break; + } + case ParseContext::OR_I: { + BuildBack(Fragment::OR_I, constructed); + break; + } + case ParseContext::ANDOR: { + auto right = std::move(constructed.back()); + constructed.pop_back(); + auto mid = std::move(constructed.back()); + constructed.pop_back(); + constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right))); + break; + } + case ParseContext::THRESH: { + if (in.size() < 1) return {}; + if (in[0] == ',') { + in = in.subspan(1); + to_parse.emplace_back(ParseContext::THRESH, n+1, k); + to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); + } else if (in[0] == ')') { + if (k > n) return {}; + in = in.subspan(1); + // Children are constructed in reverse order, so iterate from end to beginning + std::vector<NodeRef<Key>> subs; + for (int i = 0; i < n; ++i) { + subs.push_back(std::move(constructed.back())); + constructed.pop_back(); + } + std::reverse(subs.begin(), subs.end()); + constructed.push_back(MakeNodeRef<Key>(Fragment::THRESH, std::move(subs), k)); + } else { + return {}; + } + break; + } + case ParseContext::COMMA: { + if (in.size() < 1 || in[0] != ',') return {}; + in = in.subspan(1); + break; + } + case ParseContext::CLOSE_BRACKET: { + if (in.size() < 1 || in[0] != ')') return {}; + in = in.subspan(1); + break; + } + } + } + + // Sanity checks on the produced miniscript + assert(constructed.size() == 1); + if (in.size() > 0) return {}; + const NodeRef<Key> tl_node = std::move(constructed.front()); + if (!tl_node->IsValidTopLevel()) return {}; + return tl_node; +} + +/** Decode a script into opcode/push pairs. + * + * Construct a vector with one element per opcode in the script, in reverse order. + * Each element is a pair consisting of the opcode, as well as the data pushed by + * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY, + * and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG, OP_EQUAL + * respectively, plus OP_VERIFY. + */ +bool DecomposeScript(const CScript& script, std::vector<std::pair<opcodetype, std::vector<unsigned char>>>& out); + +/** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */ +bool ParseScriptNumber(const std::pair<opcodetype, std::vector<unsigned char>>& in, int64_t& k); + +enum class DecodeContext { + /** A single expression of type B, K, or V. Specifically, this can't be an + * and_v or an expression of type W (a: and s: wrappers). */ + SINGLE_BKV_EXPR, + /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple) + * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */ + BKV_EXPR, + /** An expression of type W (a: or s: wrappers). */ + W_EXPR, + + /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that + * didn't end with FROMALTSTACK), and wraps the top of the constructed stack + * with s: */ + SWAP, + /** ALT expects the next element to be TOALTSTACK (we must have already read a + * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */ + ALT, + /** CHECK wraps the top constructed node with c: */ + CHECK, + /** DUP_IF wraps the top constructed node with d: */ + DUP_IF, + /** VERIFY wraps the top constructed node with v: */ + VERIFY, + /** NON_ZERO wraps the top constructed node with j: */ + NON_ZERO, + /** ZERO_NOTEQUAL wraps the top constructed node with n: */ + ZERO_NOTEQUAL, + + /** MAYBE_AND_V will check if the next part of the script could be a valid + * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR + * to decode it and construct the and_v node. This is recursive, to deal with + * multiple and_v nodes inside each other. */ + MAYBE_AND_V, + /** AND_V will construct an and_v node from the last two constructed nodes. */ + AND_V, + /** AND_B will construct an and_b node from the last two constructed nodes. */ + AND_B, + /** ANDOR will construct an andor node from the last three constructed nodes. */ + ANDOR, + /** OR_B will construct an or_b node from the last two constructed nodes. */ + OR_B, + /** OR_C will construct an or_c node from the last two constructed nodes. */ + OR_C, + /** OR_D will construct an or_d node from the last two constructed nodes. */ + OR_D, + + /** In a thresh expression, all sub-expressions other than the first are W-type, + * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR + * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */ + THRESH_W, + /** THRESH_E constructs a thresh node from the appropriate number of constructed + * children. */ + THRESH_E, + + /** ENDIF signals that we are inside some sort of OP_IF structure, which could be + * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read + * a BKV_EXPR and then deal with the next opcode case-by-case. */ + ENDIF, + /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE, + * we could either be in an or_d or an or_c node. We then check for IFDUP to + * distinguish these cases. */ + ENDIF_NOTIF, + /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an + * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an + * OP_NOTIF. */ + ENDIF_ELSE, +}; + +//! Parse a miniscript from a bitcoin script +template<typename Key, typename Ctx, typename I> +inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx) +{ + // The two integers are used to hold state for thresh() + std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse; + std::vector<NodeRef<Key>> constructed; + + // This is the top level, so we assume the type is B + // (in particular, disallowing top level W expressions) + to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); + + while (!to_parse.empty()) { + // Exit early if the Miniscript is not going to be valid. + if (!constructed.empty() && !constructed.back()->IsValid()) return {}; + + // Get the current context we are decoding within + auto [cur_context, n, k] = to_parse.back(); + to_parse.pop_back(); + + switch(cur_context) { + case DecodeContext::SINGLE_BKV_EXPR: { + if (in >= last) return {}; + + // Constants + if (in[0].first == OP_1) { + ++in; + constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_1)); + break; + } + if (in[0].first == OP_0) { + ++in; + constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0)); + break; + } + // Public keys + if (in[0].second.size() == 33) { + Key key; + if (!ctx.FromPKBytes(in[0].second.begin(), in[0].second.end(), key)) return {}; + ++in; + constructed.push_back(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key)))); + break; + } + if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) { + Key key; + if (!ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end(), key)) return {}; + in += 5; + constructed.push_back(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key)))); + break; + } + // Time locks + if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && ParseScriptNumber(in[1], k)) { + in += 2; + if (k < 1 || k > 0x7FFFFFFFL) return {}; + constructed.push_back(MakeNodeRef<Key>(Fragment::OLDER, k)); + break; + } + if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && ParseScriptNumber(in[1], k)) { + in += 2; + if (k < 1 || k > 0x7FFFFFFFL) return {}; + constructed.push_back(MakeNodeRef<Key>(Fragment::AFTER, k)); + break; + } + // Hashes + if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && ParseScriptNumber(in[5], k) && k == 32 && in[6].first == OP_SIZE) { + if (in[2].first == OP_SHA256 && in[1].second.size() == 32) { + constructed.push_back(MakeNodeRef<Key>(Fragment::SHA256, in[1].second)); + in += 7; + break; + } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) { + constructed.push_back(MakeNodeRef<Key>(Fragment::RIPEMD160, in[1].second)); + in += 7; + break; + } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) { + constructed.push_back(MakeNodeRef<Key>(Fragment::HASH256, in[1].second)); + in += 7; + break; + } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) { + constructed.push_back(MakeNodeRef<Key>(Fragment::HASH160, in[1].second)); + in += 7; + break; + } + } + // Multi + if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) { + std::vector<Key> keys; + if (!ParseScriptNumber(in[1], n)) return {}; + if (last - in < 3 + n) return {}; + if (n < 1 || n > 20) return {}; + for (int i = 0; i < n; ++i) { + Key key; + if (in[2 + i].second.size() != 33) return {}; + if (!ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end(), key)) return {}; + keys.push_back(std::move(key)); + } + if (!ParseScriptNumber(in[2 + n], k)) return {}; + if (k < 1 || k > n) return {}; + in += 3 + n; + std::reverse(keys.begin(), keys.end()); + constructed.push_back(MakeNodeRef<Key>(Fragment::MULTI, std::move(keys), k)); + break; + } + /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather + * than BKV_EXPR, because and_v commutes with these wrappers. For example, + * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */ + // c: wrapper + if (in[0].first == OP_CHECKSIG) { + ++in; + to_parse.emplace_back(DecodeContext::CHECK, -1, -1); + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + break; + } + // v: wrapper + if (in[0].first == OP_VERIFY) { + ++in; + to_parse.emplace_back(DecodeContext::VERIFY, -1, -1); + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + break; + } + // n: wrapper + if (in[0].first == OP_0NOTEQUAL) { + ++in; + to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1); + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + break; + } + // Thresh + if (last - in >= 3 && in[0].first == OP_EQUAL && ParseScriptNumber(in[1], k)) { + if (k < 1) return {}; + in += 2; + to_parse.emplace_back(DecodeContext::THRESH_W, 0, k); + break; + } + // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I + if (in[0].first == OP_ENDIF) { + ++in; + to_parse.emplace_back(DecodeContext::ENDIF, -1, -1); + to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); + break; + } + /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because + * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as + * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as + * miniscript, while the latter is valid. So we leave the and_v "outside" + * while decoding. */ + // and_b + if (in[0].first == OP_BOOLAND) { + ++in; + to_parse.emplace_back(DecodeContext::AND_B, -1, -1); + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1); + break; + } + // or_b + if (in[0].first == OP_BOOLOR) { + ++in; + to_parse.emplace_back(DecodeContext::OR_B, -1, -1); + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1); + break; + } + // Unrecognised expression + return {}; + } + case DecodeContext::BKV_EXPR: { + to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1); + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + break; + } + case DecodeContext::W_EXPR: { + // a: wrapper + if (in >= last) return {}; + if (in[0].first == OP_FROMALTSTACK) { + ++in; + to_parse.emplace_back(DecodeContext::ALT, -1, -1); + } else { + to_parse.emplace_back(DecodeContext::SWAP, -1, -1); + } + to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); + break; + } + case DecodeContext::MAYBE_AND_V: { + // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child + // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node. + if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) { + to_parse.emplace_back(DecodeContext::AND_V, -1, -1); + // BKV_EXPR can contain more AND_V nodes + to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); + } + break; + } + case DecodeContext::SWAP: { + if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {}; + ++in; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_S, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::ALT: { + if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {}; + ++in; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_A, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::CHECK: { + if (constructed.empty()) return {}; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_C, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::DUP_IF: { + if (constructed.empty()) return {}; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_D, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::VERIFY: { + if (constructed.empty()) return {}; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_V, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::NON_ZERO: { + if (constructed.empty()) return {}; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_J, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::ZERO_NOTEQUAL: { + if (constructed.empty()) return {}; + constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_N, Vector(std::move(constructed.back()))); + break; + } + case DecodeContext::AND_V: { + if (constructed.size() < 2) return {}; + BuildBack(Fragment::AND_V, constructed, /* reverse */ true); + break; + } + case DecodeContext::AND_B: { + if (constructed.size() < 2) return {}; + BuildBack(Fragment::AND_B, constructed, /* reverse */ true); + break; + } + case DecodeContext::OR_B: { + if (constructed.size() < 2) return {}; + BuildBack(Fragment::OR_B, constructed, /* reverse */ true); + break; + } + case DecodeContext::OR_C: { + if (constructed.size() < 2) return {}; + BuildBack(Fragment::OR_C, constructed, /* reverse */ true); + break; + } + case DecodeContext::OR_D: { + if (constructed.size() < 2) return {}; + BuildBack(Fragment::OR_D, constructed, /* reverse */ true); + break; + } + case DecodeContext::ANDOR: { + if (constructed.size() < 3) return {}; + NodeRef<Key> left = std::move(constructed.back()); + constructed.pop_back(); + NodeRef<Key> right = std::move(constructed.back()); + constructed.pop_back(); + NodeRef<Key> mid = std::move(constructed.back()); + constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right))); + break; + } + case DecodeContext::THRESH_W: { + if (in >= last) return {}; + if (in[0].first == OP_ADD) { + ++in; + to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k); + to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1); + } else { + to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k); + // All children of thresh have type modifier d, so cannot be and_v + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + } + break; + } + case DecodeContext::THRESH_E: { + if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {}; + std::vector<NodeRef<Key>> subs; + for (int i = 0; i < n; ++i) { + NodeRef<Key> sub = std::move(constructed.back()); + constructed.pop_back(); + subs.push_back(std::move(sub)); + } + constructed.push_back(MakeNodeRef<Key>(Fragment::THRESH, std::move(subs), k)); + break; + } + case DecodeContext::ENDIF: { + if (in >= last) return {}; + + // could be andor or or_i + if (in[0].first == OP_ELSE) { + ++in; + to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1); + to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); + } + // could be j: or d: wrapper + else if (in[0].first == OP_IF) { + if (last - in >= 2 && in[1].first == OP_DUP) { + in += 2; + to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1); + } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) { + in += 3; + to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1); + } + else { + return {}; + } + // could be or_c or or_d + } else if (in[0].first == OP_NOTIF) { + ++in; + to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1); + } + else { + return {}; + } + break; + } + case DecodeContext::ENDIF_NOTIF: { + if (in >= last) return {}; + if (in[0].first == OP_IFDUP) { + ++in; + to_parse.emplace_back(DecodeContext::OR_D, -1, -1); + } else { + to_parse.emplace_back(DecodeContext::OR_C, -1, -1); + } + // or_c and or_d both require X to have type modifier d so, can't contain and_v + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + break; + } + case DecodeContext::ENDIF_ELSE: { + if (in >= last) return {}; + if (in[0].first == OP_IF) { + ++in; + BuildBack(Fragment::OR_I, constructed, /* reverse */ true); + } else if (in[0].first == OP_NOTIF) { + ++in; + to_parse.emplace_back(DecodeContext::ANDOR, -1, -1); + // andor requires X to have type modifier d, so it can't be and_v + to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); + } else { + return {}; + } + break; + } + } + } + if (constructed.size() != 1) return {}; + const NodeRef<Key> tl_node = std::move(constructed.front()); + // Note that due to how ComputeType works (only assign the type to the node if the + // subs' types are valid) this would fail if any node of tree is badly typed. + if (!tl_node->IsValidTopLevel()) return {}; + return tl_node; +} + +} // namespace internal + +template<typename Ctx> +inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) { + return internal::Parse<typename Ctx::Key>(str, ctx); +} + +template<typename Ctx> +inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) { + using namespace internal; + std::vector<std::pair<opcodetype, std::vector<unsigned char>>> decomposed; + if (!DecomposeScript(script, decomposed)) return {}; + auto it = decomposed.begin(); + auto ret = DecodeScript<typename Ctx::Key>(it, decomposed.end(), ctx); + if (!ret) return {}; + if (it != decomposed.end()) return {}; + return ret; +} + +} // namespace miniscript + +#endif // BITCOIN_SCRIPT_MINISCRIPT_H diff --git a/src/script/script.cpp b/src/script/script.cpp index 9a6419088b..88b4bc2f44 100644 --- a/src/script/script.cpp +++ b/src/script/script.cpp @@ -339,3 +339,28 @@ bool IsOpSuccess(const opcodetype& opcode) (opcode >= 141 && opcode <= 142) || (opcode >= 149 && opcode <= 153) || (opcode >= 187 && opcode <= 254); } + +bool CheckMinimalPush(const std::vector<unsigned char>& data, opcodetype opcode) { + // Excludes OP_1NEGATE, OP_1-16 since they are by definition minimal + assert(0 <= opcode && opcode <= OP_PUSHDATA4); + if (data.size() == 0) { + // Should have used OP_0. + return opcode == OP_0; + } else if (data.size() == 1 && data[0] >= 1 && data[0] <= 16) { + // Should have used OP_1 .. OP_16. + return false; + } else if (data.size() == 1 && data[0] == 0x81) { + // Should have used OP_1NEGATE. + return false; + } else if (data.size() <= 75) { + // Must have used a direct push (opcode indicating number of bytes pushed + those bytes). + return opcode == data.size(); + } else if (data.size() <= 255) { + // Must have used OP_PUSHDATA. + return opcode == OP_PUSHDATA1; + } else if (data.size() <= 65535) { + // Must have used OP_PUSHDATA2. + return opcode == OP_PUSHDATA2; + } + return true; +} diff --git a/src/script/script.h b/src/script/script.h index a89c987306..3b799ad637 100644 --- a/src/script/script.h +++ b/src/script/script.h @@ -335,6 +335,8 @@ public: return m_value; } + int64_t GetInt64() const { return m_value; } + std::vector<unsigned char> getvch() const { return serialize(m_value); @@ -576,4 +578,31 @@ struct CScriptWitness /** Test for OP_SUCCESSx opcodes as defined by BIP342. */ bool IsOpSuccess(const opcodetype& opcode); +bool CheckMinimalPush(const std::vector<unsigned char>& data, opcodetype opcode); + +/** Build a script by concatenating other scripts, or any argument accepted by CScript::operator<<. */ +template<typename... Ts> +CScript BuildScript(Ts&&... inputs) +{ + CScript ret; + int cnt{0}; + + ([&ret, &cnt] (Ts&& input) { + cnt++; + if constexpr (std::is_same_v<std::remove_cv_t<std::remove_reference_t<Ts>>, CScript>) { + // If it is a CScript, extend ret with it. Move or copy the first element instead. + if (cnt == 0) { + ret = std::forward<Ts>(input); + } else { + ret.insert(ret.end(), input.begin(), input.end()); + } + } else { + // Otherwise invoke CScript::operator<<. + ret << input; + } + } (std::forward<Ts>(inputs)), ...); + + return ret; +} + #endif // BITCOIN_SCRIPT_SCRIPT_H diff --git a/src/script/standard.cpp b/src/script/standard.cpp index b77c78769f..e25155d3dd 100644 --- a/src/script/standard.cpp +++ b/src/script/standard.cpp @@ -91,11 +91,6 @@ static constexpr bool IsSmallInteger(opcodetype opcode) return opcode >= OP_1 && opcode <= OP_16; } -static constexpr bool IsPushdataOp(opcodetype opcode) -{ - return opcode > OP_FALSE && opcode <= OP_PUSHDATA4; -} - /** Retrieve a minimally-encoded number in range [min,max] from an (opcode, data) pair, * whether it's OP_n or through a push. */ static std::optional<int> GetScriptNumber(opcodetype opcode, valtype data, int min, int max) diff --git a/src/script/standard.h b/src/script/standard.h index 75bfe2db38..f0b143c52b 100644 --- a/src/script/standard.h +++ b/src/script/standard.h @@ -162,6 +162,11 @@ bool IsValidDestination(const CTxDestination& dest); /** Get the name of a TxoutType as a string */ std::string GetTxnOutputType(TxoutType t); +constexpr bool IsPushdataOp(opcodetype opcode) +{ + return opcode > OP_FALSE && opcode <= OP_PUSHDATA4; +} + /** * Parse a scriptPubKey and identify script type for standard scripts. If * successful, returns script type and parsed pubkeys or hashes, depending on diff --git a/src/test/fuzz/miniscript_decode.cpp b/src/test/fuzz/miniscript_decode.cpp new file mode 100644 index 0000000000..4cc0a1be8f --- /dev/null +++ b/src/test/fuzz/miniscript_decode.cpp @@ -0,0 +1,72 @@ +// Copyright (c) 2022 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <core_io.h> +#include <hash.h> +#include <key.h> +#include <script/miniscript.h> +#include <script/script.h> +#include <span.h> +#include <test/fuzz/FuzzedDataProvider.h> +#include <test/fuzz/fuzz.h> +#include <test/fuzz/util.h> +#include <util/strencodings.h> + +#include <optional> + +using miniscript::operator""_mst; + + +struct Converter { + typedef CPubKey Key; + + bool ToString(const Key& key, std::string& ret) const { + ret = HexStr(key); + return true; + } + const std::vector<unsigned char> ToPKBytes(const Key& key) const { + return {key.begin(), key.end()}; + } + const std::vector<unsigned char> ToPKHBytes(const Key& key) const { + const auto h = Hash160(key); + return {h.begin(), h.end()}; + } + + template<typename I> + bool FromString(I first, I last, Key& key) const { + const auto bytes = ParseHex(std::string(first, last)); + key.Set(bytes.begin(), bytes.end()); + return key.IsValid(); + } + template<typename I> + bool FromPKBytes(I first, I last, CPubKey& key) const { + key.Set(first, last); + return key.IsValid(); + } + template<typename I> + bool FromPKHBytes(I first, I last, CPubKey& key) const { + assert(last - first == 20); + return false; + } +}; + +const Converter CONVERTER; + +FUZZ_TARGET(miniscript_decode) +{ + FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size()); + const std::optional<CScript> script = ConsumeDeserializable<CScript>(fuzzed_data_provider); + if (!script) return; + + const auto ms = miniscript::FromScript(*script, CONVERTER); + if (!ms) return; + + // We can roundtrip it to its string representation. + std::string ms_str; + assert(ms->ToString(CONVERTER, ms_str)); + assert(*miniscript::FromString(ms_str, CONVERTER) == *ms); + // The Script representation must roundtrip since we parsed it this way the first time. + const CScript ms_script = ms->ToScript(CONVERTER); + assert(ms_script == *script); +} diff --git a/src/test/miniscript_tests.cpp b/src/test/miniscript_tests.cpp new file mode 100644 index 0000000000..949d30dfd5 --- /dev/null +++ b/src/test/miniscript_tests.cpp @@ -0,0 +1,284 @@ +// Copyright (c) 2019 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + + +#include <string> + +#include <test/util/setup_common.h> +#include <boost/test/unit_test.hpp> + +#include <hash.h> +#include <pubkey.h> +#include <uint256.h> +#include <crypto/ripemd160.h> +#include <crypto/sha256.h> +#include <script/miniscript.h> + +namespace { + +/** TestData groups various kinds of precomputed data necessary in this test. */ +struct TestData { + //! The only public keys used in this test. + std::vector<CPubKey> pubkeys; + //! A map from the public keys to their CKeyIDs (faster than hashing every time). + std::map<CPubKey, CKeyID> pkhashes; + std::map<CKeyID, CPubKey> pkmap; + + // Various precomputed hashes + std::vector<std::vector<unsigned char>> sha256; + std::vector<std::vector<unsigned char>> ripemd160; + std::vector<std::vector<unsigned char>> hash256; + std::vector<std::vector<unsigned char>> hash160; + + TestData() + { + // We generate 255 public keys and 255 hashes of each type. + for (int i = 1; i <= 255; ++i) { + // This 32-byte array functions as both private key data and hash preimage (31 zero bytes plus any nonzero byte). + unsigned char keydata[32] = {0}; + keydata[31] = i; + + // Compute CPubkey and CKeyID + CKey key; + key.Set(keydata, keydata + 32, true); + CPubKey pubkey = key.GetPubKey(); + CKeyID keyid = pubkey.GetID(); + pubkeys.push_back(pubkey); + pkhashes.emplace(pubkey, keyid); + pkmap.emplace(keyid, pubkey); + + // Compute various hashes + std::vector<unsigned char> hash; + hash.resize(32); + CSHA256().Write(keydata, 32).Finalize(hash.data()); + sha256.push_back(hash); + CHash256().Write(keydata).Finalize(hash); + hash256.push_back(hash); + hash.resize(20); + CRIPEMD160().Write(keydata, 32).Finalize(hash.data()); + ripemd160.push_back(hash); + CHash160().Write(keydata).Finalize(hash); + hash160.push_back(hash); + } + } +}; + +//! Global TestData object +std::unique_ptr<const TestData> g_testdata; + +/** A class encapsulating conversion routing for CPubKey. */ +struct KeyConverter { + typedef CPubKey Key; + + //! Convert a public key to bytes. + std::vector<unsigned char> ToPKBytes(const CPubKey& key) const { return {key.begin(), key.end()}; } + + //! Convert a public key to its Hash160 bytes (precomputed). + std::vector<unsigned char> ToPKHBytes(const CPubKey& key) const + { + auto it = g_testdata->pkhashes.find(key); + assert(it != g_testdata->pkhashes.end()); + return {it->second.begin(), it->second.end()}; + } + + //! Parse a public key from a range of hex characters. + template<typename I> + bool FromString(I first, I last, CPubKey& key) const { + auto bytes = ParseHex(std::string(first, last)); + key.Set(bytes.begin(), bytes.end()); + return key.IsValid(); + } + + template<typename I> + bool FromPKBytes(I first, I last, CPubKey& key) const { + key.Set(first, last); + return key.IsValid(); + } + + template<typename I> + bool FromPKHBytes(I first, I last, CPubKey& key) const { + assert(last - first == 20); + CKeyID keyid; + std::copy(first, last, keyid.begin()); + auto it = g_testdata->pkmap.find(keyid); + assert(it != g_testdata->pkmap.end()); + key = it->second; + return true; + } +}; + +//! Singleton instance of KeyConverter. +const KeyConverter CONVERTER{}; + +using miniscript::operator"" _mst; + +enum TestMode : int { + TESTMODE_INVALID = 0, + TESTMODE_VALID = 1, + TESTMODE_NONMAL = 2, + TESTMODE_NEEDSIG = 4, + TESTMODE_TIMELOCKMIX = 8 +}; + +void Test(const std::string& ms, const std::string& hexscript, int mode, int opslimit = -1, int stacklimit = -1) +{ + auto node = miniscript::FromString(ms, CONVERTER); + if (mode == TESTMODE_INVALID) { + BOOST_CHECK_MESSAGE(!node || !node->IsValid(), "Unexpectedly valid: " + ms); + } else { + BOOST_CHECK_MESSAGE(node, "Unparseable: " + ms); + BOOST_CHECK_MESSAGE(node->IsValid(), "Invalid: " + ms); + BOOST_CHECK_MESSAGE(node->IsValidTopLevel(), "Invalid top level: " + ms); + auto computed_script = node->ToScript(CONVERTER); + BOOST_CHECK_MESSAGE(node->ScriptSize() == computed_script.size(), "Script size mismatch: " + ms); + if (hexscript != "?") BOOST_CHECK_MESSAGE(HexStr(computed_script) == hexscript, "Script mismatch: " + ms + " (" + HexStr(computed_script) + " vs " + hexscript + ")"); + BOOST_CHECK_MESSAGE(node->IsNonMalleable() == !!(mode & TESTMODE_NONMAL), "Malleability mismatch: " + ms); + BOOST_CHECK_MESSAGE(node->NeedsSignature() == !!(mode & TESTMODE_NEEDSIG), "Signature necessity mismatch: " + ms); + BOOST_CHECK_MESSAGE((node->GetType() << "k"_mst) == !(mode & TESTMODE_TIMELOCKMIX), "Timelock mix mismatch: " + ms); + auto inferred_miniscript = miniscript::FromScript(computed_script, CONVERTER); + BOOST_CHECK_MESSAGE(inferred_miniscript, "Cannot infer miniscript from script: " + ms); + BOOST_CHECK_MESSAGE(inferred_miniscript->ToScript(CONVERTER) == computed_script, "Roundtrip failure: miniscript->script != miniscript->script->miniscript->script: " + ms); + if (opslimit != -1) BOOST_CHECK_MESSAGE((int)node->GetOps() == opslimit, "Ops limit mismatch: " << ms << " (" << node->GetOps() << " vs " << opslimit << ")"); + if (stacklimit != -1) BOOST_CHECK_MESSAGE((int)node->GetStackSize() == stacklimit, "Stack limit mismatch: " << ms << " (" << node->GetStackSize() << " vs " << stacklimit << ")"); + } +} +} // namespace + +BOOST_FIXTURE_TEST_SUITE(miniscript_tests, BasicTestingSetup) + +BOOST_AUTO_TEST_CASE(fixed_tests) +{ + g_testdata.reset(new TestData()); + + // Validity rules + Test("l:older(1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // older(1): valid + Test("l:older(0)", "?", TESTMODE_INVALID); // older(0): k must be at least 1 + Test("l:older(2147483647)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // older(2147483647): valid + Test("l:older(2147483648)", "?", TESTMODE_INVALID); // older(2147483648): k must be below 2^31 + Test("u:after(1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // after(1): valid + Test("u:after(0)", "?", TESTMODE_INVALID); // after(0): k must be at least 1 + Test("u:after(2147483647)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // after(2147483647): valid + Test("u:after(2147483648)", "?", TESTMODE_INVALID); // after(2147483648): k must be below 2^31 + Test("andor(0,1,1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // andor(Bdu,B,B): valid + Test("andor(a:0,1,1)", "?", TESTMODE_INVALID); // andor(Wdu,B,B): X must be B + Test("andor(0,a:1,a:1)", "?", TESTMODE_INVALID); // andor(Bdu,W,W): Y and Z must be B/V/K + Test("andor(1,1,1)", "?", TESTMODE_INVALID); // andor(Bu,B,B): X must be d + Test("andor(n:or_i(0,after(1)),1,1)", "?", TESTMODE_VALID); // andor(Bdu,B,B): valid + Test("andor(or_i(0,after(1)),1,1)", "?", TESTMODE_INVALID); // andor(Bd,B,B): X must be u + Test("c:andor(0,pk_k(03a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7),pk_k(036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a00))", "?", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG); // andor(Bdu,K,K): valid + Test("t:andor(0,v:1,v:1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // andor(Bdu,V,V): valid + Test("and_v(v:1,1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // and_v(V,B): valid + Test("t:and_v(v:1,v:1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // and_v(V,V): valid + Test("c:and_v(v:1,pk_k(036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a00))", "?", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG); // and_v(V,K): valid + Test("and_v(1,1)", "?", TESTMODE_INVALID); // and_v(B,B): X must be V + Test("and_v(pk_k(02352bbf4a4cdd12564f93fa332ce333301d9ad40271f8107181340aef25be59d5),1)", "?", TESTMODE_INVALID); // and_v(K,B): X must be V + Test("and_v(v:1,a:1)", "?", TESTMODE_INVALID); // and_v(K,W): Y must be B/V/K + Test("and_b(1,a:1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // and_b(B,W): valid + Test("and_b(1,1)", "?", TESTMODE_INVALID); // and_b(B,B): Y must W + Test("and_b(v:1,a:1)", "?", TESTMODE_INVALID); // and_b(V,W): X must be B + Test("and_b(a:1,a:1)", "?", TESTMODE_INVALID); // and_b(W,W): X must be B + Test("and_b(pk_k(025601570cb47f238d2b0286db4a990fa0f3ba28d1a319f5e7cf55c2a2444da7cc),a:1)", "?", TESTMODE_INVALID); // and_b(K,W): X must be B + Test("or_b(0,a:0)", "?", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG); // or_b(Bd,Wd): valid + Test("or_b(1,a:0)", "?", TESTMODE_INVALID); // or_b(B,Wd): X must be d + Test("or_b(0,a:1)", "?", TESTMODE_INVALID); // or_b(Bd,W): Y must be d + Test("or_b(0,0)", "?", TESTMODE_INVALID); // or_b(Bd,Bd): Y must W + Test("or_b(v:0,a:0)", "?", TESTMODE_INVALID); // or_b(V,Wd): X must be B + Test("or_b(a:0,a:0)", "?", TESTMODE_INVALID); // or_b(Wd,Wd): X must be B + Test("or_b(pk_k(025601570cb47f238d2b0286db4a990fa0f3ba28d1a319f5e7cf55c2a2444da7cc),a:0)", "?", TESTMODE_INVALID); // or_b(Kd,Wd): X must be B + Test("t:or_c(0,v:1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // or_c(Bdu,V): valid + Test("t:or_c(a:0,v:1)", "?", TESTMODE_INVALID); // or_c(Wdu,V): X must be B + Test("t:or_c(1,v:1)", "?", TESTMODE_INVALID); // or_c(Bu,V): X must be d + Test("t:or_c(n:or_i(0,after(1)),v:1)", "?", TESTMODE_VALID); // or_c(Bdu,V): valid + Test("t:or_c(or_i(0,after(1)),v:1)", "?", TESTMODE_INVALID); // or_c(Bd,V): X must be u + Test("t:or_c(0,1)", "?", TESTMODE_INVALID); // or_c(Bdu,B): Y must be V + Test("or_d(0,1)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // or_d(Bdu,B): valid + Test("or_d(a:0,1)", "?", TESTMODE_INVALID); // or_d(Wdu,B): X must be B + Test("or_d(1,1)", "?", TESTMODE_INVALID); // or_d(Bu,B): X must be d + Test("or_d(n:or_i(0,after(1)),1)", "?", TESTMODE_VALID); // or_d(Bdu,B): valid + Test("or_d(or_i(0,after(1)),1)", "?", TESTMODE_INVALID); // or_d(Bd,B): X must be u + Test("or_d(0,v:1)", "?", TESTMODE_INVALID); // or_d(Bdu,V): Y must be B + Test("or_i(1,1)", "?", TESTMODE_VALID); // or_i(B,B): valid + Test("t:or_i(v:1,v:1)", "?", TESTMODE_VALID); // or_i(V,V): valid + Test("c:or_i(pk_k(03a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7),pk_k(036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a00))", "?", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG); // or_i(K,K): valid + Test("or_i(a:1,a:1)", "?", TESTMODE_INVALID); // or_i(W,W): X and Y must be B/V/K + Test("or_b(l:after(100),al:after(1000000000))", "?", TESTMODE_VALID); // or_b(timelock, heighlock) valid + Test("and_b(after(100),a:after(1000000000))", "?", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_TIMELOCKMIX); // and_b(timelock, heighlock) invalid + Test("pk(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65)", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG); // alias to c:pk_k + Test("pkh(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65)", "76a914fcd35ddacad9f2d5be5e464639441c6065e6955d88ac", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG); // alias to c:pk_h + + + // Randomly generated test set that covers the majority of type and node type combinations + Test("lltvln:after(1231488000)", "6300676300676300670400046749b1926869516868", TESTMODE_VALID | TESTMODE_NONMAL, 12, 4); + Test("uuj:and_v(v:multi(2,03d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85a,025601570cb47f238d2b0286db4a990fa0f3ba28d1a319f5e7cf55c2a2444da7cc),after(1231488000))", "6363829263522103d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85a21025601570cb47f238d2b0286db4a990fa0f3ba28d1a319f5e7cf55c2a2444da7cc52af0400046749b168670068670068", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG, 14, 6); + Test("or_b(un:multi(2,03daed4f2be3a8bf278e70132fb0beb7522f570e144bf615c07e996d443dee8729,024ce119c96e2fa357200b559b2f7dd5a5f02d5290aff74b03f3e471b273211c97),al:older(16))", "63522103daed4f2be3a8bf278e70132fb0beb7522f570e144bf615c07e996d443dee872921024ce119c96e2fa357200b559b2f7dd5a5f02d5290aff74b03f3e471b273211c9752ae926700686b63006760b2686c9b", TESTMODE_VALID, 14, 6); + Test("j:and_v(vdv:after(1567547623),older(2016))", "829263766304e7e06e5db169686902e007b268", TESTMODE_VALID | TESTMODE_NONMAL, 11, 2); + Test("t:and_v(vu:hash256(131772552c01444cd81360818376a040b7c3b2b7b0a53550ee3edde216cec61b),v:sha256(ec4916dd28fc4c10d78e287ca5d9cc51ee1ae73cbfde08c6b37324cbfaac8bc5))", "6382012088aa20131772552c01444cd81360818376a040b7c3b2b7b0a53550ee3edde216cec61b876700686982012088a820ec4916dd28fc4c10d78e287ca5d9cc51ee1ae73cbfde08c6b37324cbfaac8bc58851", TESTMODE_VALID | TESTMODE_NONMAL, 12, 4); + Test("t:andor(multi(3,02d7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e,03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556,02e493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd13),v:older(4194305),v:sha256(9267d3dbed802941483f1afa2a6bc68de5f653128aca9bf1461c5d0a3ad36ed2))", "532102d7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e2103fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a14602975562102e493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd1353ae6482012088a8209267d3dbed802941483f1afa2a6bc68de5f653128aca9bf1461c5d0a3ad36ed2886703010040b2696851", TESTMODE_VALID | TESTMODE_NONMAL, 13, 6); + Test("or_d(multi(1,02f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9),or_b(multi(3,022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a01,032fa2104d6b38d11b0230010559879124e42ab8dfeff5ff29dc9cdadd4ecacc3f,03d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85a),su:after(500000)))", "512102f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f951ae73645321022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a0121032fa2104d6b38d11b0230010559879124e42ab8dfeff5ff29dc9cdadd4ecacc3f2103d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85a53ae7c630320a107b16700689b68", TESTMODE_VALID | TESTMODE_NONMAL, 15, 8); + Test("or_d(sha256(38df1c1f64a24a77b23393bca50dff872e31edc4f3b5aa3b90ad0b82f4f089b6),and_n(un:after(499999999),older(4194305)))", "82012088a82038df1c1f64a24a77b23393bca50dff872e31edc4f3b5aa3b90ad0b82f4f089b68773646304ff64cd1db19267006864006703010040b26868", TESTMODE_VALID, 16, 2); + Test("and_v(or_i(v:multi(2,02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5,03774ae7f858a9411e5ef4246b70c65aac5649980be5c17891bbec17895da008cb),v:multi(2,03e60fce93b59e9ec53011aabc21c23e97b2a31369b87a5ae9c44ee89e2a6dec0a,025cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc)),sha256(d1ec675902ef1633427ca360b290b0b3045a0d9058ddb5e648b4c3c3224c5c68))", "63522102c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee52103774ae7f858a9411e5ef4246b70c65aac5649980be5c17891bbec17895da008cb52af67522103e60fce93b59e9ec53011aabc21c23e97b2a31369b87a5ae9c44ee89e2a6dec0a21025cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc52af6882012088a820d1ec675902ef1633427ca360b290b0b3045a0d9058ddb5e648b4c3c3224c5c6887", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG, 11, 6); + Test("j:and_b(multi(2,0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,024ce119c96e2fa357200b559b2f7dd5a5f02d5290aff74b03f3e471b273211c97),s:or_i(older(1),older(4252898)))", "82926352210279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f8179821024ce119c96e2fa357200b559b2f7dd5a5f02d5290aff74b03f3e471b273211c9752ae7c6351b26703e2e440b2689a68", TESTMODE_VALID | TESTMODE_NEEDSIG, 14, 5); + Test("and_b(older(16),s:or_d(sha256(e38990d0c7fc009880a9c07c23842e886c6bbdc964ce6bdd5817ad357335ee6f),n:after(1567547623)))", "60b27c82012088a820e38990d0c7fc009880a9c07c23842e886c6bbdc964ce6bdd5817ad357335ee6f87736404e7e06e5db192689a", TESTMODE_VALID, 12, 2); + Test("j:and_v(v:hash160(20195b5a3d650c17f0f29f91c33f8f6335193d07),or_d(sha256(96de8fc8c256fa1e1556d41af431cace7dca68707c78dd88c3acab8b17164c47),older(16)))", "82926382012088a91420195b5a3d650c17f0f29f91c33f8f6335193d078882012088a82096de8fc8c256fa1e1556d41af431cace7dca68707c78dd88c3acab8b17164c4787736460b26868", TESTMODE_VALID, 16, 3); + Test("and_b(hash256(32ba476771d01e37807990ead8719f08af494723de1d228f2c2c07cc0aa40bac),a:and_b(hash256(131772552c01444cd81360818376a040b7c3b2b7b0a53550ee3edde216cec61b),a:older(1)))", "82012088aa2032ba476771d01e37807990ead8719f08af494723de1d228f2c2c07cc0aa40bac876b82012088aa20131772552c01444cd81360818376a040b7c3b2b7b0a53550ee3edde216cec61b876b51b26c9a6c9a", TESTMODE_VALID | TESTMODE_NONMAL, 15, 3); + Test("thresh(2,multi(2,03a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7,036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a00),a:multi(1,036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a00),ac:pk_k(022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a01))", "522103a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c721036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a0052ae6b5121036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a0051ae6c936b21022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a01ac6c935287", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG, 13, 7); + Test("and_n(sha256(d1ec675902ef1633427ca360b290b0b3045a0d9058ddb5e648b4c3c3224c5c68),t:or_i(v:older(4252898),v:older(144)))", "82012088a820d1ec675902ef1633427ca360b290b0b3045a0d9058ddb5e648b4c3c3224c5c68876400676303e2e440b26967029000b269685168", TESTMODE_VALID, 14, 3); + Test("or_d(d:and_v(v:older(4252898),v:older(4252898)),sha256(38df1c1f64a24a77b23393bca50dff872e31edc4f3b5aa3b90ad0b82f4f089b6))", "766303e2e440b26903e2e440b26968736482012088a82038df1c1f64a24a77b23393bca50dff872e31edc4f3b5aa3b90ad0b82f4f089b68768", TESTMODE_VALID, 14, 3); + Test("c:and_v(or_c(sha256(9267d3dbed802941483f1afa2a6bc68de5f653128aca9bf1461c5d0a3ad36ed2),v:multi(1,02c44d12c7065d812e8acf28d7cbb19f9011ecd9e9fdf281b0e6a3b5e87d22e7db)),pk_k(03acd484e2f0c7f65309ad178a9f559abde09796974c57e714c35f110dfc27ccbe))", "82012088a8209267d3dbed802941483f1afa2a6bc68de5f653128aca9bf1461c5d0a3ad36ed28764512102c44d12c7065d812e8acf28d7cbb19f9011ecd9e9fdf281b0e6a3b5e87d22e7db51af682103acd484e2f0c7f65309ad178a9f559abde09796974c57e714c35f110dfc27ccbeac", TESTMODE_VALID | TESTMODE_NEEDSIG, 8, 3); + Test("c:and_v(or_c(multi(2,036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a00,02352bbf4a4cdd12564f93fa332ce333301d9ad40271f8107181340aef25be59d5),v:ripemd160(1b0f3c404d12075c68c938f9f60ebea4f74941a0)),pk_k(03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556))", "5221036d2b085e9e382ed10b69fc311a03f8641ccfff21574de0927513a49d9a688a002102352bbf4a4cdd12564f93fa332ce333301d9ad40271f8107181340aef25be59d552ae6482012088a6141b0f3c404d12075c68c938f9f60ebea4f74941a088682103fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556ac", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG, 10, 6); + Test("and_v(andor(hash256(8a35d9ca92a48eaade6f53a64985e9e2afeb74dcf8acb4c3721e0dc7e4294b25),v:hash256(939894f70e6c3a25da75da0cc2071b4076d9b006563cf635986ada2e93c0d735),v:older(50000)),after(499999999))", "82012088aa208a35d9ca92a48eaade6f53a64985e9e2afeb74dcf8acb4c3721e0dc7e4294b2587640350c300b2696782012088aa20939894f70e6c3a25da75da0cc2071b4076d9b006563cf635986ada2e93c0d735886804ff64cd1db1", TESTMODE_VALID, 14, 3); + Test("andor(hash256(5f8d30e655a7ba0d7596bb3ddfb1d2d20390d23b1845000e1e118b3be1b3f040),j:and_v(v:hash160(3a2bff0da9d96868e66abc4427bea4691cf61ccd),older(4194305)),ripemd160(44d90e2d3714c8663b632fcf0f9d5f22192cc4c8))", "82012088aa205f8d30e655a7ba0d7596bb3ddfb1d2d20390d23b1845000e1e118b3be1b3f040876482012088a61444d90e2d3714c8663b632fcf0f9d5f22192cc4c8876782926382012088a9143a2bff0da9d96868e66abc4427bea4691cf61ccd8803010040b26868", TESTMODE_VALID, 20, 3); + Test("or_i(c:and_v(v:after(500000),pk_k(02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5)),sha256(d9147961436944f43cd99d28b2bbddbf452ef872b30c8279e255e7daafc7f946))", "630320a107b1692102c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5ac6782012088a820d9147961436944f43cd99d28b2bbddbf452ef872b30c8279e255e7daafc7f9468768", TESTMODE_VALID | TESTMODE_NONMAL, 10, 3); + Test("thresh(2,c:pk_h(025cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc),s:sha256(e38990d0c7fc009880a9c07c23842e886c6bbdc964ce6bdd5817ad357335ee6f),a:hash160(dd69735817e0e3f6f826a9238dc2e291184f0131))", "76a9145dedfbf9ea599dd4e3ca6a80b333c472fd0b3f6988ac7c82012088a820e38990d0c7fc009880a9c07c23842e886c6bbdc964ce6bdd5817ad357335ee6f87936b82012088a914dd69735817e0e3f6f826a9238dc2e291184f0131876c935287", TESTMODE_VALID, 18, 5); + Test("and_n(sha256(9267d3dbed802941483f1afa2a6bc68de5f653128aca9bf1461c5d0a3ad36ed2),uc:and_v(v:older(144),pk_k(03fe72c435413d33d48ac09c9161ba8b09683215439d62b7940502bda8b202e6ce)))", "82012088a8209267d3dbed802941483f1afa2a6bc68de5f653128aca9bf1461c5d0a3ad36ed28764006763029000b2692103fe72c435413d33d48ac09c9161ba8b09683215439d62b7940502bda8b202e6ceac67006868", TESTMODE_VALID | TESTMODE_NEEDSIG, 13, 4); + Test("and_n(c:pk_k(03daed4f2be3a8bf278e70132fb0beb7522f570e144bf615c07e996d443dee8729),and_b(l:older(4252898),a:older(16)))", "2103daed4f2be3a8bf278e70132fb0beb7522f570e144bf615c07e996d443dee8729ac64006763006703e2e440b2686b60b26c9a68", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG | TESTMODE_TIMELOCKMIX, 12, 3); + Test("c:or_i(and_v(v:older(16),pk_h(02d7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e)),pk_h(026a245bf6dc698504c89a20cfded60853152b695336c28063b61c65cbd269e6b4))", "6360b26976a9149fc5dbe5efdce10374a4dd4053c93af540211718886776a9142fbd32c8dd59ee7c17e66cb6ebea7e9846c3040f8868ac", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG, 12, 4); + Test("or_d(c:pk_h(02e493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd13),andor(c:pk_k(024ce119c96e2fa357200b559b2f7dd5a5f02d5290aff74b03f3e471b273211c97),older(2016),after(1567547623)))", "76a914c42e7ef92fdb603af844d064faad95db9bcdfd3d88ac736421024ce119c96e2fa357200b559b2f7dd5a5f02d5290aff74b03f3e471b273211c97ac6404e7e06e5db16702e007b26868", TESTMODE_VALID | TESTMODE_NONMAL, 13, 4); + Test("c:andor(ripemd160(6ad07d21fd5dfc646f0b30577045ce201616b9ba),pk_h(02d7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e),and_v(v:hash256(8a35d9ca92a48eaade6f53a64985e9e2afeb74dcf8acb4c3721e0dc7e4294b25),pk_h(03d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85a)))", "82012088a6146ad07d21fd5dfc646f0b30577045ce201616b9ba876482012088aa208a35d9ca92a48eaade6f53a64985e9e2afeb74dcf8acb4c3721e0dc7e4294b258876a914dd100be7d9aea5721158ebde6d6a1fd8fff93bb1886776a9149fc5dbe5efdce10374a4dd4053c93af5402117188868ac", TESTMODE_VALID | TESTMODE_NEEDSIG, 18, 4); + Test("c:andor(u:ripemd160(6ad07d21fd5dfc646f0b30577045ce201616b9ba),pk_h(03daed4f2be3a8bf278e70132fb0beb7522f570e144bf615c07e996d443dee8729),or_i(pk_h(022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a01),pk_h(0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)))", "6382012088a6146ad07d21fd5dfc646f0b30577045ce201616b9ba87670068646376a9149652d86bedf43ad264362e6e6eba6eb764508127886776a914751e76e8199196d454941c45d1b3a323f1433bd688686776a91420d637c1a6404d2227f3561fdbaff5a680dba6488868ac", TESTMODE_VALID | TESTMODE_NEEDSIG, 23, 5); + Test("c:or_i(andor(c:pk_h(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),pk_h(022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a01),pk_h(02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5)),pk_k(02d7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e))", "6376a914fcd35ddacad9f2d5be5e464639441c6065e6955d88ac6476a91406afd46bcdfd22ef94ac122aa11f241244a37ecc886776a9149652d86bedf43ad264362e6e6eba6eb7645081278868672102d7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e68ac", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG, 17, 6); + Test("thresh(1,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),altv:after(1000000000),altv:after(100))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac6b6300670400ca9a3bb16951686c936b6300670164b16951686c935187", TESTMODE_VALID, 18, 4); + Test("thresh(2,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),ac:pk_k(03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556),altv:after(1000000000),altv:after(100))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac6b2103fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556ac6c936b6300670400ca9a3bb16951686c936b6300670164b16951686c935287", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_TIMELOCKMIX, 22, 5); + + // Misc unit tests + // A Script with a non minimal push is invalid + std::vector<unsigned char> nonminpush = ParseHex("0000210232780000feff00ffffffffffff21ff005f00ae21ae00000000060602060406564c2102320000060900fe00005f00ae21ae00100000060606060606000000000000000000000000000000000000000000000000000000000000000000"); + const CScript nonminpush_script(nonminpush.begin(), nonminpush.end()); + BOOST_CHECK(miniscript::FromScript(nonminpush_script, CONVERTER) == nullptr); + // A non-minimal VERIFY (<key> CHECKSIG VERIFY 1) + std::vector<unsigned char> nonminverify = ParseHex("2103a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7ac6951"); + const CScript nonminverify_script(nonminverify.begin(), nonminverify.end()); + BOOST_CHECK(miniscript::FromScript(nonminverify_script, CONVERTER) == nullptr); + // A threshold as large as the number of subs is valid. + Test("thresh(2,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),altv:after(100))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac6b6300670164b16951686c935287", TESTMODE_VALID | TESTMODE_NEEDSIG | TESTMODE_NONMAL); + // A threshold of 1 is valid. + Test("thresh(1,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),sc:pk_k(03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac7c2103fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556ac935187", TESTMODE_VALID | TESTMODE_NEEDSIG | TESTMODE_NONMAL); + // A threshold with a k larger than the number of subs is invalid + Test("thresh(3,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),sc:pk_k(03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac7c2103fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556ac935187", TESTMODE_INVALID); + // A threshold with a k null is invalid + Test("thresh(0,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),sc:pk_k(03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac7c2103fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556ac935187", TESTMODE_INVALID); + // For CHECKMULTISIG the OP cost is the number of keys, but the stack size is the number of sigs (+1) + const auto ms_multi = miniscript::FromString("multi(1,03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65,03fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556,0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)", CONVERTER); + BOOST_CHECK(ms_multi); + BOOST_CHECK_EQUAL(ms_multi->GetOps(), 4); // 3 pubkeys + CMS + BOOST_CHECK_EQUAL(ms_multi->GetStackSize(), 3); // 1 sig + dummy elem + script push + + // Timelock tests + Test("after(100)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // only heightlock + Test("after(1000000000)", "?", TESTMODE_VALID | TESTMODE_NONMAL); // only timelock + Test("or_b(l:after(100),al:after(1000000000))", "?", TESTMODE_VALID); // or_b(timelock, heighlock) valid + Test("and_b(after(100),a:after(1000000000))", "?", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_TIMELOCKMIX); // and_b(timelock, heighlock) invalid + /* This is correctly detected as non-malleable but for the wrong reason. The type system assumes that branches 1 and 2 + can be spent together to create a non-malleble witness, but because of mixing of timelocks they cannot be spent together. + But since exactly one of the two after's can be satisfied, the witness involving the key cannot be malleated. + */ + Test("thresh(2,ltv:after(1000000000),altv:after(100),a:pk(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65))", "?", TESTMODE_VALID | TESTMODE_TIMELOCKMIX | TESTMODE_NONMAL); // thresh with k = 2 + // This is actually non-malleable in practice, but we cannot detect it in type system. See above rationale + Test("thresh(1,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),altv:after(1000000000),altv:after(100))", "?", TESTMODE_VALID); // thresh with k = 1 + + + g_testdata.reset(); +} + +BOOST_AUTO_TEST_SUITE_END() |