summaryrefslogtreecommitdiff
path: root/bip-0340/reference.py
diff options
context:
space:
mode:
Diffstat (limited to 'bip-0340/reference.py')
-rw-r--r--bip-0340/reference.py239
1 files changed, 239 insertions, 0 deletions
diff --git a/bip-0340/reference.py b/bip-0340/reference.py
new file mode 100644
index 0000000..f24963c
--- /dev/null
+++ b/bip-0340/reference.py
@@ -0,0 +1,239 @@
+from typing import Tuple, Optional, Any
+import hashlib
+import binascii
+
+# Set DEBUG to True to get a detailed debug output including
+# intermediate values during key generation, signing, and
+# verification. This is implemented via calls to the
+# debug_print_vars() function.
+#
+# If you want to print values on an individual basis, use
+# the pretty() function, e.g., print(pretty(foo)).
+DEBUG = False
+
+p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
+n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
+
+# Points are tuples of X and Y coordinates and the point at infinity is
+# represented by the None keyword.
+G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
+
+Point = Tuple[int, int]
+
+# This implementation can be sped up by storing the midstate after hashing
+# tag_hash instead of rehashing it all the time.
+def tagged_hash(tag: str, msg: bytes) -> bytes:
+ tag_hash = hashlib.sha256(tag.encode()).digest()
+ return hashlib.sha256(tag_hash + tag_hash + msg).digest()
+
+def is_infinity(P: Optional[Point]) -> bool:
+ return P is None
+
+def x(P: Point) -> int:
+ return P[0]
+
+def y(P: Point) -> int:
+ return P[1]
+
+def point_add(P1: Optional[Point], P2: Optional[Point]) -> Optional[Point]:
+ if P1 is None:
+ return P2
+ if P2 is None:
+ return P1
+ if (x(P1) == x(P2)) and (y(P1) != y(P2)):
+ return None
+ if P1 == P2:
+ lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p
+ else:
+ lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p
+ x3 = (lam * lam - x(P1) - x(P2)) % p
+ return (x3, (lam * (x(P1) - x3) - y(P1)) % p)
+
+def point_mul(P: Optional[Point], n: int) -> Optional[Point]:
+ R = None
+ for i in range(256):
+ if (n >> i) & 1:
+ R = point_add(R, P)
+ P = point_add(P, P)
+ return R
+
+def bytes_from_int(x: int) -> bytes:
+ return x.to_bytes(32, byteorder="big")
+
+def bytes_from_point(P: Point) -> bytes:
+ return bytes_from_int(x(P))
+
+def xor_bytes(b0: bytes, b1: bytes) -> bytes:
+ return bytes(x ^ y for (x, y) in zip(b0, b1))
+
+def lift_x_square_y(b: bytes) -> Optional[Point]:
+ x = int_from_bytes(b)
+ if x >= p:
+ return None
+ y_sq = (pow(x, 3, p) + 7) % p
+ y = pow(y_sq, (p + 1) // 4, p)
+ if pow(y, 2, p) != y_sq:
+ return None
+ return (x, y)
+
+def lift_x_even_y(b: bytes) -> Optional[Point]:
+ P = lift_x_square_y(b)
+ if P is None:
+ return None
+ else:
+ return (x(P), y(P) if y(P) % 2 == 0 else p - y(P))
+
+def int_from_bytes(b: bytes) -> int:
+ return int.from_bytes(b, byteorder="big")
+
+def hash_sha256(b: bytes) -> bytes:
+ return hashlib.sha256(b).digest()
+
+def is_square(x: int) -> bool:
+ return int(pow(x, (p - 1) // 2, p)) == 1
+
+def has_square_y(P: Optional[Point]) -> bool:
+ infinity = is_infinity(P)
+ if infinity: return False
+ assert P is not None
+ return is_square(y(P))
+
+def has_even_y(P: Point) -> bool:
+ return y(P) % 2 == 0
+
+def pubkey_gen(seckey: bytes) -> bytes:
+ d0 = int_from_bytes(seckey)
+ if not (1 <= d0 <= n - 1):
+ raise ValueError('The secret key must be an integer in the range 1..n-1.')
+ P = point_mul(G, d0)
+ assert P is not None
+ return bytes_from_point(P)
+
+def schnorr_sign(msg: bytes, seckey: bytes, aux_rand: bytes) -> bytes:
+ if len(msg) != 32:
+ raise ValueError('The message must be a 32-byte array.')
+ d0 = int_from_bytes(seckey)
+ if not (1 <= d0 <= n - 1):
+ raise ValueError('The secret key must be an integer in the range 1..n-1.')
+ if len(aux_rand) != 32:
+ raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand))
+ P = point_mul(G, d0)
+ assert P is not None
+ d = d0 if has_even_y(P) else n - d0
+ t = xor_bytes(bytes_from_int(d), tagged_hash("BIP340/aux", aux_rand))
+ k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
+ if k0 == 0:
+ raise RuntimeError('Failure. This happens only with negligible probability.')
+ R = point_mul(G, k0)
+ assert R is not None
+ k = n - k0 if not has_square_y(R) else k0
+ e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
+ sig = bytes_from_point(R) + bytes_from_int((k + e * d) % n)
+ debug_print_vars()
+ if not schnorr_verify(msg, bytes_from_point(P), sig):
+ raise RuntimeError('The created signature does not pass verification.')
+ return sig
+
+def schnorr_verify(msg: bytes, pubkey: bytes, sig: bytes) -> bool:
+ if len(msg) != 32:
+ raise ValueError('The message must be a 32-byte array.')
+ if len(pubkey) != 32:
+ raise ValueError('The public key must be a 32-byte array.')
+ if len(sig) != 64:
+ raise ValueError('The signature must be a 64-byte array.')
+ P = lift_x_even_y(pubkey)
+ r = int_from_bytes(sig[0:32])
+ s = int_from_bytes(sig[32:64])
+ if (P is None) or (r >= p) or (s >= n):
+ debug_print_vars()
+ return False
+ e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
+ R = point_add(point_mul(G, s), point_mul(P, n - e))
+ if (R is None) or (not has_square_y(R)) or (x(R) != r):
+ debug_print_vars()
+ return False
+ debug_print_vars()
+ return True
+
+#
+# The following code is only used to verify the test vectors.
+#
+import csv
+import os
+import sys
+
+def test_vectors() -> bool:
+ all_passed = True
+ with open(os.path.join(sys.path[0], 'test-vectors.csv'), newline='') as csvfile:
+ reader = csv.reader(csvfile)
+ reader.__next__()
+ for row in reader:
+ (index, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row
+ pubkey = bytes.fromhex(pubkey_hex)
+ msg = bytes.fromhex(msg_hex)
+ sig = bytes.fromhex(sig_hex)
+ result = result_str == 'TRUE'
+ print('\nTest vector', ('#' + index).rjust(3, ' ') + ':')
+ if seckey_hex != '':
+ seckey = bytes.fromhex(seckey_hex)
+ pubkey_actual = pubkey_gen(seckey)
+ if pubkey != pubkey_actual:
+ print(' * Failed key generation.')
+ print(' Expected key:', pubkey.hex().upper())
+ print(' Actual key:', pubkey_actual.hex().upper())
+ aux_rand = bytes.fromhex(aux_rand_hex)
+ try:
+ sig_actual = schnorr_sign(msg, seckey, aux_rand)
+ if sig == sig_actual:
+ print(' * Passed signing test.')
+ else:
+ print(' * Failed signing test.')
+ print(' Expected signature:', sig.hex().upper())
+ print(' Actual signature:', sig_actual.hex().upper())
+ all_passed = False
+ except RuntimeError as e:
+ print(' * Signing test raised exception:', e)
+ all_passed = False
+ result_actual = schnorr_verify(msg, pubkey, sig)
+ if result == result_actual:
+ print(' * Passed verification test.')
+ else:
+ print(' * Failed verification test.')
+ print(' Expected verification result:', result)
+ print(' Actual verification result:', result_actual)
+ if comment:
+ print(' Comment:', comment)
+ all_passed = False
+ print()
+ if all_passed:
+ print('All test vectors passed.')
+ else:
+ print('Some test vectors failed.')
+ return all_passed
+
+#
+# The following code is only used for debugging
+#
+import inspect
+
+def pretty(v: Any) -> Any:
+ if isinstance(v, bytes):
+ return '0x' + v.hex()
+ if isinstance(v, int):
+ return pretty(bytes_from_int(v))
+ if isinstance(v, tuple):
+ return tuple(map(pretty, v))
+ return v
+
+def debug_print_vars() -> None:
+ if DEBUG:
+ current_frame = inspect.currentframe()
+ assert current_frame is not None
+ frame = current_frame.f_back
+ assert frame is not None
+ print(' Variables in function ', frame.f_code.co_name, ' at line ', frame.f_lineno, ':', sep='')
+ for var_name, var_val in frame.f_locals.items():
+ print(' ' + var_name.rjust(11, ' '), '==', pretty(var_val))
+
+if __name__ == '__main__':
+ test_vectors()