// xImaDsp.cpp : DSP functions
/* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it
* CxImage version 6.0.0 02/Feb/2008
*/
#include "ximage.h"
#include "ximaiter.h"
#if CXIMAGE_SUPPORT_DSP
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W.
* The OptimalThreshold() function can be used for calculating the optimal threshold.
* \param level: the lightness threshold.
* \return true if everything is ok
*/
bool CxImage::Threshold(BYTE level)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
GrayScale();
CxImage tmp(head.biWidth,head.biHeight,1);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
for (long y=0;y
level)
tmp.BlindSetPixelIndex(x,y,1);
else
tmp.BlindSetPixelIndex(x,y,0);
}
}
tmp.SetPaletteColor(0,0,0,0);
tmp.SetPaletteColor(1,255,255,255);
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W, using a threshold mask
* \param pThresholdMask: the lightness threshold mask.
* the pThresholdMask image must be grayscale with same with and height of the current image
* \return true if everything is ok
*/
bool CxImage::Threshold(CxImage* pThresholdMask)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
if (!pThresholdMask) return false;
if (!pThresholdMask->IsValid() ||
!pThresholdMask->IsGrayScale() ||
pThresholdMask->GetWidth() != GetWidth() ||
pThresholdMask->GetHeight() != GetHeight()){
strcpy(info.szLastError,"invalid ThresholdMask");
return false;
}
GrayScale();
CxImage tmp(head.biWidth,head.biHeight,1);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
for (long y=0;ypThresholdMask->BlindGetPixelIndex(x,y))
tmp.BlindSetPixelIndex(x,y,1);
else
tmp.BlindSetPixelIndex(x,y,0);
}
}
tmp.SetPaletteColor(0,0,0,0);
tmp.SetPaletteColor(1,255,255,255);
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Filters only the pixels with a lightness less (or more) than the threshold level,
* and preserves the colors for the unfiltered pixels.
* \param level = the lightness threshold.
* \param bDirection = false: filter dark pixels, true: filter light pixels
* \param nBkgndColor = filtered pixels are set to nBkgndColor color
* \param bSetAlpha = if true, sets also the alpha component for the filtered pixels, with nBkgndColor.rgbReserved
* \return true if everything is ok
* \author [DP], [wangsongtao]
*/
////////////////////////////////////////////////////////////////////////////////
bool CxImage::Threshold2(BYTE level, bool bDirection, RGBQUAD nBkgndColor, bool bSetAlpha)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
CxImage tmp(*this, true, false, false);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
tmp.GrayScale();
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y=level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract RGB channels from the image. Each channel is an 8 bit grayscale image.
* \param r,g,b: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitRGB(CxImage* r,CxImage* g,CxImage* b)
{
if (!pDib) return false;
if (r==NULL && g==NULL && b==NULL) return false;
CxImage tmpr(head.biWidth,head.biHeight,8);
CxImage tmpg(head.biWidth,head.biHeight,8);
CxImage tmpb(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long y=0; yTransfer(tmpr);
if (g) g->Transfer(tmpg);
if (b) b->Transfer(tmpb);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract CMYK channels from the image. Each channel is an 8 bit grayscale image.
* \param c,m,y,k: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitCMYK(CxImage* c,CxImage* m,CxImage* y,CxImage* k)
{
if (!pDib) return false;
if (c==NULL && m==NULL && y==NULL && k==NULL) return false;
CxImage tmpc(head.biWidth,head.biHeight,8);
CxImage tmpm(head.biWidth,head.biHeight,8);
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpk(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yyTransfer(tmpc);
if (m) m->Transfer(tmpm);
if (y) y->Transfer(tmpy);
if (k) k->Transfer(tmpk);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract YUV channels from the image. Each channel is an 8 bit grayscale image.
* \param y,u,v: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitYUV(CxImage* y,CxImage* u,CxImage* v)
{
if (!pDib) return false;
if (y==NULL && u==NULL && v==NULL) return false;
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpu(head.biWidth,head.biHeight,8);
CxImage tmpv(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yyTransfer(tmpy);
if (u) u->Transfer(tmpu);
if (v) v->Transfer(tmpv);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract YIQ channels from the image. Each channel is an 8 bit grayscale image.
* \param y,i,q: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitYIQ(CxImage* y,CxImage* i,CxImage* q)
{
if (!pDib) return false;
if (y==NULL && i==NULL && q==NULL) return false;
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpi(head.biWidth,head.biHeight,8);
CxImage tmpq(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yyTransfer(tmpy);
if (i) i->Transfer(tmpi);
if (q) q->Transfer(tmpq);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract XYZ channels from the image. Each channel is an 8 bit grayscale image.
* \param x,y,z: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitXYZ(CxImage* x,CxImage* y,CxImage* z)
{
if (!pDib) return false;
if (x==NULL && y==NULL && z==NULL) return false;
CxImage tmpx(head.biWidth,head.biHeight,8);
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpz(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yyTransfer(tmpx);
if (y) y->Transfer(tmpy);
if (z) z->Transfer(tmpz);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract HSL channels from the image. Each channel is an 8 bit grayscale image.
* \param h,s,l: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitHSL(CxImage* h,CxImage* s,CxImage* l)
{
if (!pDib) return false;
if (h==NULL && s==NULL && l==NULL) return false;
CxImage tmph(head.biWidth,head.biHeight,8);
CxImage tmps(head.biWidth,head.biHeight,8);
CxImage tmpl(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long y=0; yTransfer(tmph);
if (s) s->Transfer(tmps);
if (l) l->Transfer(tmpl);
return true;
}
////////////////////////////////////////////////////////////////////////////////
#define HSLMAX 255 /* H,L, and S vary over 0-HSLMAX */
#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
/* HSLMAX BEST IF DIVISIBLE BY 6 */
/* RGBMAX, HSLMAX must each fit in a BYTE. */
/* Hue is undefined if Saturation is 0 (grey-scale) */
/* This value determines where the Hue scrollbar is */
/* initially set for achromatic colors */
#define HSLUNDEFINED (HSLMAX*2/3)
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoHSL(RGBQUAD lRGBColor)
{
BYTE R,G,B; /* input RGB values */
BYTE H,L,S; /* output HSL values */
BYTE cMax,cMin; /* max and min RGB values */
WORD Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max*/
R = lRGBColor.rgbRed; /* get R, G, and B out of DWORD */
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
cMax = max( max(R,G), B); /* calculate lightness */
cMin = min( min(R,G), B);
L = (BYTE)((((cMax+cMin)*HSLMAX)+RGBMAX)/(2*RGBMAX));
if (cMax==cMin){ /* r=g=b --> achromatic case */
S = 0; /* saturation */
H = HSLUNDEFINED; /* hue */
} else { /* chromatic case */
if (L <= (HSLMAX/2)) /* saturation */
S = (BYTE)((((cMax-cMin)*HSLMAX)+((cMax+cMin)/2))/(cMax+cMin));
else
S = (BYTE)((((cMax-cMin)*HSLMAX)+((2*RGBMAX-cMax-cMin)/2))/(2*RGBMAX-cMax-cMin));
/* hue */
Rdelta = (WORD)((((cMax-R)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
Gdelta = (WORD)((((cMax-G)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
Bdelta = (WORD)((((cMax-B)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
if (R == cMax)
H = (BYTE)(Bdelta - Gdelta);
else if (G == cMax)
H = (BYTE)((HSLMAX/3) + Rdelta - Bdelta);
else /* B == cMax */
H = (BYTE)(((2*HSLMAX)/3) + Gdelta - Rdelta);
// if (H < 0) H += HSLMAX; //always false
if (H > HSLMAX) H -= HSLMAX;
}
RGBQUAD hsl={L,S,H,0};
return hsl;
}
////////////////////////////////////////////////////////////////////////////////
float CxImage::HueToRGB(float n1,float n2, float hue)
{
// fixed implementation for HSL2RGB routine
float rValue;
if (hue > 360)
hue = hue - 360;
else if (hue < 0)
hue = hue + 360;
if (hue < 60)
rValue = n1 + (n2-n1)*hue/60.0f;
else if (hue < 180)
rValue = n2;
else if (hue < 240)
rValue = n1+(n2-n1)*(240-hue)/60;
else
rValue = n1;
return rValue;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::HSLtoRGB(COLORREF cHSLColor)
{
return HSLtoRGB(RGBtoRGBQUAD(cHSLColor));
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::HSLtoRGB(RGBQUAD lHSLColor)
{
// fixed implementation for HSL2RGB routine
float h,s,l;
float m1,m2;
BYTE r,g,b;
h = (float)lHSLColor.rgbRed * 360.0f/255.0f;
s = (float)lHSLColor.rgbGreen/255.0f;
l = (float)lHSLColor.rgbBlue/255.0f;
if (l <= 0.5) m2 = l * (1+s);
else m2 = l + s - l*s;
m1 = 2 * l - m2;
if (s == 0) {
r=g=b=(BYTE)(l*255.0f);
} else {
r = (BYTE)(HueToRGB(m1,m2,h+120) * 255.0f);
g = (BYTE)(HueToRGB(m1,m2,h) * 255.0f);
b = (BYTE)(HueToRGB(m1,m2,h-120) * 255.0f);
}
RGBQUAD rgb = {b,g,r,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::YUVtoRGB(RGBQUAD lYUVColor)
{
int U,V,R,G,B;
float Y = lYUVColor.rgbRed;
U = lYUVColor.rgbGreen - 128;
V = lYUVColor.rgbBlue - 128;
// R = (int)(1.164 * Y + 2.018 * U);
// G = (int)(1.164 * Y - 0.813 * V - 0.391 * U);
// B = (int)(1.164 * Y + 1.596 * V);
R = (int)( Y + 1.403f * V);
G = (int)( Y - 0.344f * U - 0.714f * V);
B = (int)( Y + 1.770f * U);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoYUV(RGBQUAD lRGBColor)
{
int Y,U,V,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
// Y = (int)( 0.257 * R + 0.504 * G + 0.098 * B);
// U = (int)( 0.439 * R - 0.368 * G - 0.071 * B + 128);
// V = (int)(-0.148 * R - 0.291 * G + 0.439 * B + 128);
Y = (int)(0.299f * R + 0.587f * G + 0.114f * B);
U = (int)((B-Y) * 0.565f + 128);
V = (int)((R-Y) * 0.713f + 128);
Y= min(255,max(0,Y));
U= min(255,max(0,U));
V= min(255,max(0,V));
RGBQUAD yuv={(BYTE)V,(BYTE)U,(BYTE)Y,0};
return yuv;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::YIQtoRGB(RGBQUAD lYIQColor)
{
int I,Q,R,G,B;
float Y = lYIQColor.rgbRed;
I = lYIQColor.rgbGreen - 128;
Q = lYIQColor.rgbBlue - 128;
R = (int)( Y + 0.956f * I + 0.621f * Q);
G = (int)( Y - 0.273f * I - 0.647f * Q);
B = (int)( Y - 1.104f * I + 1.701f * Q);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoYIQ(RGBQUAD lRGBColor)
{
int Y,I,Q,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
Y = (int)( 0.2992f * R + 0.5868f * G + 0.1140f * B);
I = (int)( 0.5960f * R - 0.2742f * G - 0.3219f * B + 128);
Q = (int)( 0.2109f * R - 0.5229f * G + 0.3120f * B + 128);
Y= min(255,max(0,Y));
I= min(255,max(0,I));
Q= min(255,max(0,Q));
RGBQUAD yiq={(BYTE)Q,(BYTE)I,(BYTE)Y,0};
return yiq;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::XYZtoRGB(RGBQUAD lXYZColor)
{
int X,Y,Z,R,G,B;
X = lXYZColor.rgbRed;
Y = lXYZColor.rgbGreen;
Z = lXYZColor.rgbBlue;
double k=1.088751;
R = (int)( 3.240479f * X - 1.537150f * Y - 0.498535f * Z * k);
G = (int)( -0.969256f * X + 1.875992f * Y + 0.041556f * Z * k);
B = (int)( 0.055648f * X - 0.204043f * Y + 1.057311f * Z * k);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoXYZ(RGBQUAD lRGBColor)
{
int X,Y,Z,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
X = (int)( 0.412453f * R + 0.357580f * G + 0.180423f * B);
Y = (int)( 0.212671f * R + 0.715160f * G + 0.072169f * B);
Z = (int)((0.019334f * R + 0.119193f * G + 0.950227f * B)*0.918483657f);
//X= min(255,max(0,X));
//Y= min(255,max(0,Y));
//Z= min(255,max(0,Z));
RGBQUAD xyz={(BYTE)Z,(BYTE)Y,(BYTE)X,0};
return xyz;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Generates a "rainbow" palette with saturated colors
* \param correction: 1 generates a single hue spectrum. 0.75 is nice for scientific applications.
*/
void CxImage::HuePalette(float correction)
{
if (head.biClrUsed==0) return;
for(DWORD j=0; j 1.0f) blend = 1.0f;
int a0 = (int)(256*blend);
int a1 = 256 - a0;
bool bFullBlend = false;
if (blend > 0.999f) bFullBlend = true;
RGBQUAD color,hsl;
if (head.biClrUsed==0){
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y>8);
color.rgbBlue = (BYTE)((hsl.rgbBlue * a0 + color.rgbBlue * a1)>>8);
color.rgbGreen = (BYTE)((hsl.rgbGreen * a0 + color.rgbGreen * a1)>>8);
BlindSetPixelColor(x,y,color);
}
}
}
}
} else {
for(DWORD j=0; j
for (int i=0;i<256;i++) {
cTable[i] = (BYTE)max(0,min(255,(int)((i-128)*c + brightness + 0.5f)));
}
return Lut(cTable);
}
////////////////////////////////////////////////////////////////////////////////
/**
* \return mean lightness of the image. Useful with Threshold() and Light()
*/
float CxImage::Mean()
{
if (!pDib) return 0;
CxImage tmp(*this,true);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
tmp.GrayScale();
float sum=0;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax) return (float)0.0;
BYTE *iSrc=tmp.info.pImage;
iSrc += tmp.info.dwEffWidth*ymin; // necessary for selections
for(long y=ymin; y
for(long x=xmin; x(y+j) || (y+j)>=head.biHeight) continue;
iY = iY2+x;
for(long k=-k2;k(x+k) || (x+k)>=head.biWidth) continue;
i=kernel[iCount];
b += cPtr[iY+k] * i;
ksumcur += i;
}
}
if (Kfactor==0 || ksumcur==0){
cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b + Koffset)));
} else if (ksumtot == ksumcur) {
cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b/Kfactor + Koffset)));
} else {
cPtr2[iY1] = (BYTE)min(255, max(0,(int)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
}
}
}
}
}
else
{
for(long y=ymin; y r) r=c.rgbRed;
if (c.rgbGreen > g) g=c.rgbGreen;
if (c.rgbBlue > b) b=c.rgbBlue;
}
}
c.rgbRed = r;
c.rgbGreen = g;
c.rgbBlue = b;
tmp.BlindSetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the variations between adjacent pixels.
* Similar results can be achieved using Filter(),
* but the algorithms are different both in Edge() and in Contour().
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Edge(long Ksize)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
BYTE r,g,b,rr,gg,bb;
RGBQUAD c;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y r) r=c.rgbRed;
if (c.rgbGreen > g) g=c.rgbGreen;
if (c.rgbBlue > b) b=c.rgbBlue;
if (c.rgbRed < rr) rr=c.rgbRed;
if (c.rgbGreen < gg) gg=c.rgbGreen;
if (c.rgbBlue < bb) bb=c.rgbBlue;
}
}
c.rgbRed = (BYTE)(255-abs(r-rr));
c.rgbGreen = (BYTE)(255-abs(g-gg));
c.rgbBlue = (BYTE)(255-abs(b-bb));
tmp.BlindSetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Blends two images
* \param imgsrc2: image to be mixed with this
* \param op: blending method; see ImageOpType
* \param lXOffset, lYOffset: image displacement
* \param bMixAlpha: if true and imgsrc2 has a valid alpha layer, it will be mixed in the destination image.
* \return true if everything is ok
*
* thanks to Mwolski
*/
//
void CxImage::Mix(CxImage & imgsrc2, ImageOpType op, long lXOffset, long lYOffset, bool bMixAlpha)
{
long lWide = min(GetWidth(),imgsrc2.GetWidth()-lXOffset);
long lHeight = min(GetHeight(),imgsrc2.GetHeight()-lYOffset);
bool bEditAlpha = imgsrc2.AlphaIsValid() & bMixAlpha;
if (bEditAlpha && AlphaIsValid()==false){
AlphaCreate();
}
RGBQUAD rgbBackgrnd1 = GetTransColor();
RGBQUAD rgb1, rgb2, rgbDest;
for(long lY=0;lY
for(x = 0; x < width; x++) {
for(y = 0; y < height; y++) {
SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts separately the red, green, and blue values in the image.
* \param r, g, b: can be from -255 to +255.
* \return true if everything is ok
*/
bool CxImage::ShiftRGB(long r, long g, long b)
{
if (!pDib) return false;
RGBQUAD color;
if (head.biClrUsed==0){
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y
for (int i=0;i<256;i++) {
cTable[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
}
return Lut(cTable);
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts the color balance indipendent for each color channel
* \param gammaR, gammaG, gammaB can be from 0.1 to 5.
* \return true if everything is ok
* \sa Gamma
*/
bool CxImage::GammaRGB(float gammaR, float gammaG, float gammaB)
{
if (!pDib) return false;
if (gammaR <= 0.0f) return false;
if (gammaG <= 0.0f) return false;
if (gammaB <= 0.0f) return false;
double dinvgamma, dMax;
int i;
dinvgamma = 1/gammaR;
dMax = pow(255.0, dinvgamma) / 255.0;
BYTE cTableR[256];
for (i=0;i<256;i++) {
cTableR[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
}
dinvgamma = 1/gammaG;
dMax = pow(255.0, dinvgamma) / 255.0;
BYTE cTableG[256];
for (i=0;i<256;i++) {
cTableG[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
}
dinvgamma = 1/gammaB;
dMax = pow(255.0, dinvgamma) / 255.0;
BYTE cTableB[256];
for (i=0;i<256;i++) {
cTableB[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
}
return Lut(cTableR, cTableG, cTableB);
}
////////////////////////////////////////////////////////////////////////////////
//#if !defined (_WIN32_WCE)
/**
* Adjusts the intensity of each pixel to the median intensity of its surrounding pixels.
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Median(long Ksize)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
long i,j,k;
RGBQUAD* kernel = (RGBQUAD*)malloc(Ksize*Ksize*sizeof(RGBQUAD));
CxImage tmp(*this);
if (!tmp.IsValid()){
free(kernel);
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y
for(long x=xmin; xGetWidth();
h=srcReal->GetHeight();
} else {
w=srcImag->GetWidth();
h=srcImag->GetHeight();
}
bool bXpow2 = IsPowerof2(w);
bool bYpow2 = IsPowerof2(h);
//if bForceFFT, width AND height must be powers of 2
if (bForceFFT && !(bXpow2 && bYpow2)) {
long i;
i=0;
while((1< copy the image
if (srcReal && dstReal) tmpReal->Copy(*srcReal,true,false,false);
if (srcImag && dstImag) tmpImag->Copy(*srcImag,true,false,false);
// dst&&src are empty -> create new one, else turn to GrayScale
if (srcReal==0 && dstReal==0){
tmpReal = new CxImage(w,h,8);
tmpReal->Clear(0);
tmpReal->SetGrayPalette();
} else {
if (!tmpReal->IsGrayScale()) tmpReal->GrayScale();
}
if (srcImag==0 && dstImag==0){
tmpImag = new CxImage(w,h,8);
tmpImag->Clear(0);
tmpImag->SetGrayPalette();
} else {
if (!tmpImag->IsGrayScale()) tmpImag->GrayScale();
}
if (!(tmpReal->IsValid() && tmpImag->IsValid())){
if (srcReal==0 && dstReal==0) delete tmpReal;
if (srcImag==0 && dstImag==0) delete tmpImag;
return false;
}
//resample for FFT, if necessary
tmpReal->Resample(w,h,0);
tmpImag->Resample(w,h,0);
//ok, here we have 2 (w x h), grayscale images ready for a FFT
double* real;
double* imag;
long j,k,m;
_complex **grid;
//double mean = tmpReal->Mean();
/* Allocate memory for the grid */
grid = (_complex **)malloc(w * sizeof(_complex));
for (k=0;kGetPixelIndex(k,j)-128;
grid[k][j].y = tmpImag->GetPixelIndex(k,j)-128;
}
}
//DFT buffers
double *real2,*imag2;
real2 = (double*)malloc(max(w,h) * sizeof(double));
imag2 = (double*)malloc(max(w,h) * sizeof(double));
/* Transform the rows */
real = (double *)malloc(w * sizeof(double));
imag = (double *)malloc(w * sizeof(double));
m=0;
while((1<SetPixelIndex(k,j,(BYTE)max(0,min(255,(nn*(3+log(_cabs(grid[k][j])))))));
if (grid[k][j].x==0){
tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/0.0000000001)*nn)))));
} else {
tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/grid[k][j].x)*nn)))));
}
} else {
tmpReal->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].x*nn))));
tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].y*nn))));
}
}
}
for (k=0;k> 1;
j = 0;
for (i=0;i>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;lGetWidth();
long h = r->GetHeight();
Create(w,h,24);
g->Resample(w,h);
b->Resample(w,h);
if (a) {
a->Resample(w,h);
#if CXIMAGE_SUPPORT_ALPHA
AlphaCreate();
#endif //CXIMAGE_SUPPORT_ALPHA
}
RGBQUAD c;
for (long y=0;y
for (long x=0;xGetPixelIndex(x,y);
c.rgbGreen=g->GetPixelIndex(x,y);
c.rgbBlue=b->GetPixelIndex(x,y);
c.rgbReserved = (BYTE)0;
switch (colorspace){
case 1:
BlindSetPixelColor(x,y,HSLtoRGB(c));
break;
case 2:
BlindSetPixelColor(x,y,YUVtoRGB(c));
break;
case 3:
BlindSetPixelColor(x,y,YIQtoRGB(c));
break;
case 4:
BlindSetPixelColor(x,y,XYZtoRGB(c));
break;
default:
BlindSetPixelColor(x,y,c);
}
#if CXIMAGE_SUPPORT_ALPHA
if (a) AlphaSet(x,y,a->GetPixelIndex(x,y));
#endif //CXIMAGE_SUPPORT_ALPHA
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Smart blurring to remove small defects, dithering or artifacts.
* \param radius: normally between 0.01 and 0.5
* \param niterations: should be trimmed with radius, to avoid blurring should be (radius*niterations)<1
* \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::Repair(float radius, long niterations, long colorspace)
{
if (!IsValid()) return false;
long w = GetWidth();
long h = GetHeight();
CxImage r,g,b;
r.Create(w,h,8);
g.Create(w,h,8);
b.Create(w,h,8);
switch (colorspace){
case 1:
SplitHSL(&r,&g,&b);
break;
case 2:
SplitYUV(&r,&g,&b);
break;
case 3:
SplitYIQ(&r,&g,&b);
break;
case 4:
SplitXYZ(&r,&g,&b);
break;
default:
SplitRGB(&r,&g,&b);
}
for (int i=0; iGetWidth()-1;
long h = ch->GetHeight()-1;
double correction,ix,iy,ixx,ixy,iyy;
int x,y,xy0,xp1,xm1,yp1,ym1;
for(x=1; xBlindGetPixelIndex(x,y);
xm1 = ch->BlindGetPixelIndex(x-1,y);
xp1 = ch->BlindGetPixelIndex(x+1,y);
ym1 = ch->BlindGetPixelIndex(x,y-1);
yp1 = ch->BlindGetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->BlindGetPixelIndex(x+1,y+1) + ch->BlindGetPixelIndex(x-1,y-1) -
ch->BlindGetPixelIndex(x-1,y+1) - ch->BlindGetPixelIndex(x+1,y-1))/4.0;
correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5))));
}
}
for (x=0;x<=w;x++){
for(y=0; y<=h; y+=h){
xy0 = ch->BlindGetPixelIndex(x,y);
xm1 = ch->GetPixelIndex(x-1,y);
xp1 = ch->GetPixelIndex(x+1,y);
ym1 = ch->GetPixelIndex(x,y-1);
yp1 = ch->GetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5))));
}
}
for (x=0;x<=w;x+=w){
for (y=0;y<=h;y++){
xy0 = ch->BlindGetPixelIndex(x,y);
xm1 = ch->GetPixelIndex(x-1,y);
xp1 = ch->GetPixelIndex(x+1,y);
ym1 = ch->GetPixelIndex(x,y-1);
yp1 = ch->GetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5))));
}
}
ch->Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the variations between adjacent pixels.
* Similar results can be achieved using Filter(),
* but the algorithms are different both in Edge() and in Contour().
* \return true if everything is ok
*/
bool CxImage::Contour()
{
if (!pDib) return false;
long Ksize = 3;
long k2 = Ksize/2;
long kmax= Ksize-k2;
long i,j,k;
BYTE maxr,maxg,maxb;
RGBQUAD pix1,pix2;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; ymaxb) maxb = pix2.rgbBlue;
if ((pix2.rgbGreen-pix1.rgbGreen)>maxg) maxg = pix2.rgbGreen;
if ((pix2.rgbRed-pix1.rgbRed)>maxr) maxr = pix2.rgbRed;
}
}
pix1.rgbBlue=(BYTE)(255-maxb);
pix1.rgbGreen=(BYTE)(255-maxg);
pix1.rgbRed=(BYTE)(255-maxr);
tmp.BlindSetPixelColor(x,y,pix1);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adds a random offset to each pixel in the image
* \param radius: maximum pixel displacement
* \return true if everything is ok
*/
bool CxImage::Jitter(long radius)
{
if (!pDib) return false;
long nx,ny;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y modified scaling, so that matrix_lenght = 1+2*radius parameter
*/
radius = (float)fabs(0.5*radius) + 0.25f;
std_dev = radius;
radius = std_dev * 2;
/* go out 'radius' in each direction */
matrix_length = int (2 * ceil(radius-0.5) + 1);
if (matrix_length <= 0) matrix_length = 1;
matrix_midpoint = matrix_length/2 + 1;
*cmatrix_p = new float[matrix_length];
cmatrix = *cmatrix_p;
/* Now we fill the matrix by doing a numeric integration approximation
* from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
* We do the bottom half, mirror it to the top half, then compute the
* center point. Otherwise asymmetric quantization errors will occur.
* The formula to integrate is e^-(x^2/2s^2).
*/
/* first we do the top (right) half of matrix */
for (i = matrix_length/2 + 1; i < matrix_length; i++)
{
float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f;
sum = 0;
for (j = 1; j <= 50; j++)
{
if ( base_x+0.02*j <= radius )
sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) /
(2*std_dev*std_dev));
}
cmatrix[i] = sum/50;
}
/* mirror the thing to the bottom half */
for (i=0; i<=matrix_length/2; i++) {
cmatrix[i] = cmatrix[matrix_length-1-i];
}
/* find center val -- calculate an odd number of quanta to make it symmetric,
* even if the center point is weighted slightly higher than others. */
sum = 0;
for (j=0; j<=50; j++)
{
sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) /
(2*std_dev*std_dev));
}
cmatrix[matrix_length/2] = sum/51;
/* normalize the distribution by scaling the total sum to one */
sum=0;
for (i=0; i y)
{
for (row = 0; row < y ; row++)
{
scale=0;
/* find the scale factor */
for (j = 0; j < y ; j++)
{
/* if the index is in bounds, add it to the scale counter */
if ((j + cmatrix_middle - row >= 0) &&
(j + cmatrix_middle - row < cmatrix_length))
scale += cmatrix[j + cmatrix_middle - row];
}
for (i = 0; i= row - cmatrix_middle) &&
(j <= row + cmatrix_middle))
sum += cur_col[j*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
}
}
}
else
{
/* for the edge condition, we only use available info and scale to one */
for (row = 0; row < cmatrix_middle; row++)
{
/* find scale factor */
scale=0;
for (j = cmatrix_middle - row; j0; j--)
{
sum += *(ctable_p + *cur_col_p1);
cur_col_p1 += bytes;
ctable_p += 256;
}
cur_col_p++;
*(dest_col_p++) = (BYTE)(0.5f + sum);
}
}
/* for the edge condition , we only use available info, and scale to one */
for (; row < y; row++)
{
/* find scale factor */
scale=0;
for (j = 0; j< y-row + cmatrix_middle; j++)
scale += cmatrix[j];
for (i = 0; ihead.biWidth;
ymax = iSrc->head.biHeight;
if (xmin==xmax || ymin==ymax) return;
nmin = xmin * bytes;
nmax = xmax * bytes;
CImageIterator itSrc(iSrc);
CImageIterator itTmp(iDst);
double dbScaler = 100.0f/(ymax-ymin)/bytes;
for (n=0; n=pivot){
while (z1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (BYTE)((pSrc[x+bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x+m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
}
}
//find lower corner
z=x+bytes;
if (pSrc[x]=pivot){
while (z1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (BYTE)((pSrc[x+bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x+m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
}
}
}
//scan right to left
for (x=nmax-1-n /*,i=(xmax-1)*/; x>0; x-=bytes /*,i--*/)
{
z=x-bytes;
pivot = pSrc[z]-threshold;
//find upper corner
if (pSrc[x]=pivot){
while (z>n && pSrc2[z]1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (BYTE)((pSrc[x-bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x-m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
}
}
//find lower corner
z=x-bytes;
if (pSrc[x]=pivot){
while (z>n && pSrc3[z]1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (BYTE)((pSrc[x-bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x-m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [DP]
*/
bool CxImage::TextBlur(BYTE threshold, BYTE decay, BYTE max_depth, bool bBlurHorizontal, bool bBlurVertical, CxImage* iDst)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
WORD bpp = GetBpp();
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
{
delete [] pPalette;
return false;
}
}
CxImage tmp(*this);
if (!tmp.IsValid()){
delete [] pPalette;
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
if (bBlurHorizontal)
blur_text(threshold, decay, max_depth, this, &tmp, head.biBitCount>>3);
if (bBlurVertical){
CxImage src2(*this);
src2.RotateLeft();
tmp.RotateLeft();
blur_text(threshold, decay, max_depth, &src2, &tmp, head.biBitCount>>3);
tmp.RotateRight();
}
#if CXIMAGE_SUPPORT_SELECTION
//restore the non selected region
if (pSelection){
for(long y=0; yTransfer(tmp);
else Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [nipper]; changes [DP]
*/
bool CxImage::GaussianBlur(float radius /*= 1.0f*/, CxImage* iDst /*= 0*/)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
WORD bpp = GetBpp();
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
{
delete [] pPalette;
return false;
}
}
CxImage tmp_x(*this, false, true, true);
if (!tmp_x.IsValid()){
strcpy(info.szLastError,tmp_x.GetLastError());
delete [] pPalette;
return false;
}
// generate convolution matrix and make sure it's smaller than each dimension
float *cmatrix = NULL;
int cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
// generate lookup table
float *ctable = gen_lookup_table(cmatrix, cmatrix_length);
long x,y;
int bypp = head.biBitCount>>3;
CImageIterator itSrc(this);
CImageIterator itTmp(&tmp_x);
double dbScaler = 50.0f/head.biHeight;
// blur the rows
for (y=0;yTransfer(tmp_y);
else Transfer(tmp_y);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [DP],[nipper]
*/
bool CxImage::SelectiveBlur(float radius, BYTE threshold, CxImage* iDst)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
WORD bpp = GetBpp();
CxImage Tmp(*this, true, true, true);
if (!Tmp.IsValid()){
strcpy(info.szLastError,Tmp.GetLastError());
return false;
}
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!Tmp.IncreaseBpp(24))
{
delete [] pPalette;
return false;
}
}
CxImage Dst(Tmp, true, true, true);
if (!Dst.IsValid()){
delete [] pPalette;
strcpy(info.szLastError,Dst.GetLastError());
return false;
}
//build the difference mask
BYTE thresh_dw = (BYTE)max( 0 ,(int)(128 - threshold));
BYTE thresh_up = (BYTE)min(255,(int)(128 + threshold));
long kernel[]={-100,-100,-100,-100,801,-100,-100,-100,-100};
if (!Tmp.Filter(kernel,3,800,128)){
delete [] pPalette;
strcpy(info.szLastError,Tmp.GetLastError());
return false;
}
//if the image has no selection, build a selection for the whole image
if (!Tmp.SelectionIsValid()){
Tmp.SelectionCreate();
Tmp.SelectionClear(255);
}
long xmin,xmax,ymin,ymax;
xmin = Tmp.info.rSelectionBox.left;
xmax = Tmp.info.rSelectionBox.right;
ymin = Tmp.info.rSelectionBox.bottom;
ymax = Tmp.info.rSelectionBox.top;
//modify the selection where the difference mask is over the threshold
for(long y=ymin; y thresh_up) ||
(c.rgbGreen < thresh_dw || c.rgbGreen > thresh_up) ||
(c.rgbBlue < thresh_dw || c.rgbBlue > thresh_up))
{
Tmp.SelectionSet(x,y,0);
}
}
}
}
//blur the image (only in the selected pixels)
Dst.SelectionCopy(Tmp);
if (!Dst.GaussianBlur(radius)){
delete [] pPalette;
strcpy(info.szLastError,Dst.GetLastError());
return false;
}
//restore the original selection
Dst.SelectionCopy(*this);
//if necessary, restore the original BPP and palette
if (pPalette){
Dst.DecreaseBpp(bpp, false, pPalette);
delete [] pPalette;
}
if (iDst) iDst->Transfer(Dst);
else Transfer(Dst);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* sharpen the image by subtracting a blurred copy from the original image.
* \param radius: width in pixels of the blurring effect. Range: >0; default = 5.
* \param amount: strength of the filter. Range: 0.0 (none) to 1.0 (max); default = 0.5
* \param threshold: difference, between blurred and original pixel, to trigger the filter
* Range: 0 (always triggered) to 255 (never triggered); default = 0.
* \return true if everything is ok
* \author [nipper]; changes [DP]
*/
bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int threshold /*= 0*/)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
WORD bpp = GetBpp();
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
{
delete [] pPalette;
return false;
}
}
CxImage iDst;
if (!GaussianBlur(radius,&iDst))
return false;
CImageIterator itSrc(this);
CImageIterator itDst(&iDst);
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax)
return false;
double dbScaler = 100.0/(ymax-ymin);
int bypp = head.biBitCount>>3;
// merge the source and destination (which currently contains
// the blurred version) images
for (long y=ymin; y
for(long x=xmin; x1.0f) strength = 1.0f;
for(long y=ymin; ylevel){
BlindSetPixelIndex(x,y,255-index);
}
}
}
}
} else { //PALETTE, full image
RGBQUAD* ppal=GetPalette();
for(DWORD i=0;ilevel){
ppal[i].rgbBlue =(BYTE)(255-ppal[i].rgbBlue);
ppal[i].rgbGreen =(BYTE)(255-ppal[i].rgbGreen);
ppal[i].rgbRed =(BYTE)(255-ppal[i].rgbRed);
}
} else {
if (color.rgbBlue>level) ppal[i].rgbBlue =(BYTE)(255-ppal[i].rgbBlue);
if (color.rgbGreen>level) ppal[i].rgbGreen =(BYTE)(255-ppal[i].rgbGreen);
if (color.rgbRed>level) ppal[i].rgbRed =(BYTE)(255-ppal[i].rgbRed);
}
}
}
} else { //RGB, selection
for(long y=ymin; ylevel){
color.rgbRed = (BYTE)(255-color.rgbRed);
color.rgbGreen = (BYTE)(255-color.rgbGreen);
color.rgbBlue = (BYTE)(255-color.rgbBlue);
}
} else {
if (color.rgbBlue>level) color.rgbBlue =(BYTE)(255-color.rgbBlue);
if (color.rgbGreen>level) color.rgbGreen =(BYTE)(255-color.rgbGreen);
if (color.rgbRed>level) color.rgbRed =(BYTE)(255-color.rgbRed);
}
BlindSetPixelColor(x,y,color);
}
}
}
}
//invert transparent color only in case of full image processing
if (pSelection==0 || (!IsGrayScale() && IsIndexed())){
if (bLinkedChannels){
if ((BYTE)RGB2GRAY(info.nBkgndColor.rgbRed,info.nBkgndColor.rgbGreen,info.nBkgndColor.rgbBlue)>level){
info.nBkgndColor.rgbBlue = (BYTE)(255-info.nBkgndColor.rgbBlue);
info.nBkgndColor.rgbGreen = (BYTE)(255-info.nBkgndColor.rgbGreen);
info.nBkgndColor.rgbRed = (BYTE)(255-info.nBkgndColor.rgbRed);
}
} else {
if (info.nBkgndColor.rgbBlue>level) info.nBkgndColor.rgbBlue = (BYTE)(255-info.nBkgndColor.rgbBlue);
if (info.nBkgndColor.rgbGreen>level) info.nBkgndColor.rgbGreen = (BYTE)(255-info.nBkgndColor.rgbGreen);
if (info.nBkgndColor.rgbRed>level) info.nBkgndColor.rgbRed = (BYTE)(255-info.nBkgndColor.rgbRed);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the RGB triplets to and from different colorspace
* \param dstColorSpace: destination colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \param srcColorSpace: source colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::ConvertColorSpace(const long dstColorSpace, const long srcColorSpace)
{
if (!pDib)
return false;
if (dstColorSpace == srcColorSpace)
return true;
long w = GetWidth();
long h = GetHeight();
for (long y=0;yIsValid() ||
!pContrastMask->IsGrayScale() ||
pContrastMask->GetWidth() != GetWidth() ||
pContrastMask->GetHeight() != GetHeight()){
strcpy(info.szLastError,"OptimalThreshold invalid ContrastMask");
return -1;
}
}
long xmin,xmax,ymin,ymax;
if (pBox){
xmin = max(pBox->left,0);
xmax = min(pBox->right,head.biWidth);
ymin = max(pBox->bottom,0);
ymax = min(pBox->top,head.biHeight);
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin>=xmax || ymin>=ymax)
return -1;
double p[256];
memset(p, 0, 256*sizeof(double));
//build histogram
for (long y = ymin; yGetBits(y) + xmin;
for (long x = xmin; x0 && p[gray_max]==0) gray_max--;
if (gray_min > gray_max)
return -1;
if (gray_min == gray_max){
if (gray_min == 0)
return 0;
else
return gray_max-1;
}
//compute total moments 0th,1st,2nd order
int i,k;
double w_tot = 0;
double m_tot = 0;
double q_tot = 0;
for (i = gray_min; i <= gray_max; i++){
w_tot += p[i];
m_tot += i*p[i];
q_tot += i*i*p[i];
}
double L, L1max, L2max, L3max, L4max; //objective functions
int th1,th2,th3,th4; //optimal thresholds
L1max = L2max = L3max = L4max = 0;
th1 = th2 = th3 = th4 = -1;
double w1, w2, m1, m2, q1, q2, s1, s2;
w1 = m1 = q1 = 0;
for (i = gray_min; i < gray_max; i++){
w1 += p[i];
w2 = w_tot - w1;
m1 += i*p[i];
m2 = m_tot - m1;
q1 += i*i*p[i];
q2 = q_tot - q1;
s1 = q1/w1-m1*m1/w1/w1; //s1 = q1/w1-pow(m1/w1,2);
s2 = q2/w2-m2*m2/w2/w2; //s2 = q2/w2-pow(m2/w2,2);
//Otsu
L = -(s1*w1 + s2*w2); //implemented as definition
//L = w1 * w2 * (m2/w2 - m1/w1)*(m2/w2 - m1/w1); //implementation that doesn't need s1 & s2
if (L1max < L || th1<0){
L1max = L;
th1 = i;
}
//Kittler and Illingworth
if (s1>0 && s2>0){
L = w1*log(w1/sqrt(s1))+w2*log(w2/sqrt(s2));
//L = w1*log(w1*w1/s1)+w2*log(w2*w2/s2);
if (L2max < L || th2<0){
L2max = L;
th2 = i;
}
}
//max entropy
L = 0;
for (k=gray_min;k<=i;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w1)/w1;
for (;k<=gray_max;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w2)/w2;
if (L3max < L || th3<0){
L3max = L;
th3 = i;
}
//potential difference (based on Electrostatic Binarization method by J. Acharya & G. Sreechakra)
// L=-fabs(vdiff/vsum); è molto selettivo, sembra che L=-fabs(vdiff) o L=-(vsum)
// abbiano lo stesso valore di soglia... il che semplificherebbe molto la routine
double vdiff = 0;
for (k=gray_min;k<=i;k++)
vdiff += p[k]*(i-k)*(i-k);
double vsum = vdiff;
for (;k<=gray_max;k++){
double dv = p[k]*(k-i)*(k-i);
vdiff -= dv;
vsum += dv;
}
if (vsum>0) L = -fabs(vdiff/vsum); else L = 0;
if (L4max < L || th4<0){
L4max = L;
th4 = i;
}
}
int threshold;
switch (method){
case 1: //Otsu
threshold = th1;
break;
case 2: //Kittler and Illingworth
threshold = th2;
break;
case 3: //max entropy
threshold = th3;
break;
case 4: //potential difference
threshold = th4;
break;
default: //auto
{
int nt = 0;
threshold = 0;
if (th1>=0) { threshold += th1; nt++;}
if (th2>=0) { threshold += th2; nt++;}
if (th3>=0) { threshold += th3; nt++;}
if (th4>=0) { threshold += th4; nt++;}
if (nt)
threshold /= nt;
else
threshold = (gray_min+gray_max)/2;
/*better(?) but really expensive alternative:
n = 0:255;
pth1 = c1(th1)/sqrt(2*pi*s1(th1))*exp(-((n - m1(th1)).^2)/2/s1(th1)) + c2(th1)/sqrt(2*pi*s2(th1))*exp(-((n - m2(th1)).^2)/2/s2(th1));
pth2 = c1(th2)/sqrt(2*pi*s1(th2))*exp(-((n - m1(th2)).^2)/2/s1(th2)) + c2(th2)/sqrt(2*pi*s2(th2))*exp(-((n - m2(th2)).^2)/2/s2(th2));
...
mse_th1 = sum((p-pth1).^2);
mse_th2 = sum((p-pth2).^2);
...
select th# that gives minimum mse_th#
*/
}
}
if (threshold <= gray_min || threshold >= gray_max)
threshold = (gray_min+gray_max)/2;
return threshold;
}
///////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W, using an optimal threshold mask
* \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
* \param nBoxSize: the image is divided into "nBoxSize x nBoxSize" blocks, from where the threshold is computed; min = 8; default = 64.
* \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
* \param nBias: global offset added to the threshold mask; default = 0.
* \param fGlobalLocalBalance: balance between local and global threshold. default = 0.5
* fGlobalLocalBalance can be from 0.0 (use only local threshold) to 1.0 (use only global threshold)
* the pContrastMask image must be grayscale with same with and height of the current image,
* \return true if everything is ok.
* \sa OptimalThreshold
*/
bool CxImage::AdaptiveThreshold(long method, long nBoxSize, CxImage* pContrastMask, long nBias, float fGlobalLocalBalance)
{
if (!pDib)
return false;
if (pContrastMask){
if (!pContrastMask->IsValid() ||
!pContrastMask->IsGrayScale() ||
pContrastMask->GetWidth() != GetWidth() ||
pContrastMask->GetHeight() != GetHeight()){
strcpy(info.szLastError,"AdaptiveThreshold invalid ContrastMask");
return false;
}
}
if (nBoxSize<8) nBoxSize = 8;
if (fGlobalLocalBalance<0.0f) fGlobalLocalBalance = 0.0f;
if (fGlobalLocalBalance>1.0f) fGlobalLocalBalance = 1.0f;
long mw = (head.biWidth + nBoxSize - 1)/nBoxSize;
long mh = (head.biHeight + nBoxSize - 1)/nBoxSize;
CxImage mask(mw,mh,8);
if(!mask.GrayScale())
return false;
if(!GrayScale())
return false;
int globalthreshold = OptimalThreshold(method, 0, pContrastMask);
if (globalthreshold <0)
return false;
for (long y=0; y
////////////////////////////////////////////////////////////////////////////////
/**
* Flood Fill
* \param xStart, yStart: starting point
* \param cFillColor: filling color
* \param nTolerance: deviation from the starting point color
* \param nOpacity: can be from 0 (transparent) to 255 (opaque, default)
* \param bSelectFilledArea: if true, the pixels in the region are also set in the selection layer; default = false
* \param nSelectionLevel: if bSelectFilledArea is true, the selected pixels are set to nSelectionLevel; default = 255
* Note: nOpacity=0 && bSelectFilledArea=true act as a "magic wand"
* \return true if everything is ok
*/
#if defined(XBMC) && !defined(_WIN32)
int max(int a, int b) { return a > b ? a : b; }
int min(int a, int b) { return a < b ? a : b; }
#endif
bool CxImage::FloodFill(const long xStart, const long yStart, const RGBQUAD cFillColor, const BYTE nTolerance,
BYTE nOpacity, const bool bSelectFilledArea, const BYTE nSelectionLevel)
{
if (!pDib)
return false;
if (!IsInside(xStart,yStart))
return true;
#if CXIMAGE_SUPPORT_SELECTION
if (!SelectionIsInside(xStart,yStart))
return true;
#endif //CXIMAGE_SUPPORT_SELECTION
RGBQUAD* pPalette=NULL;
WORD bpp = GetBpp();
//nTolerance or nOpacity implemented only for grayscale or 24bpp images
if ((nTolerance || nOpacity != 255) && !(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
{
delete [] pPalette;
return false;
}
}
BYTE* pFillMask = (BYTE*)calloc(head.biWidth * head.biHeight,1);
if (!pFillMask)
{
delete [] pPalette;
return false;
}
//------------------------------------- Begin of Flood Fill
POINT offset[4] = {{-1,0},{0,-1},{1,0},{0,1}};
std::queue q;
POINT point = {(int)xStart,(int)yStart};
q.push(point);
if (IsIndexed()){ //--- Generic indexed image, no tolerance OR Grayscale image with tolerance
BYTE idxRef = GetPixelIndex(xStart,yStart);
BYTE idxFill = GetNearestIndex(cFillColor);
BYTE idxMin = (BYTE)min(255, max(0,(int)(idxRef - nTolerance)));
BYTE idxMax = (BYTE)min(255, max(0,(int)(idxRef + nTolerance)));
while(!q.empty())
{
point = q.front();
q.pop();
for (int z=0; z<4; z++){
int x = point.x + offset[z].x;
int y = point.y + offset[z].y;
if(IsInside(x,y)){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
BYTE idx = BlindGetPixelIndex(x, y);
BYTE* pFill = pFillMask + x + y * head.biWidth;
if (*pFill==0 && idxMin <= idx && idx <= idxMax )
{
if (nOpacity>0){
if (nOpacity == 255)
BlindSetPixelIndex(x, y, idxFill);
else
BlindSetPixelIndex(x, y, (BYTE)((idxFill * nOpacity + idx * (255-nOpacity))>>8));
}
POINT pt = {x,y};
q.push(pt);
*pFill = 1;
}
}
}
}
}
} else { //--- RGB image
RGBQUAD cRef = GetPixelColor(xStart,yStart);
RGBQUAD cRefMin, cRefMax;
cRefMin.rgbRed = (BYTE)min(255, max(0,(int)(cRef.rgbRed - nTolerance)));
cRefMin.rgbGreen = (BYTE)min(255, max(0,(int)(cRef.rgbGreen - nTolerance)));
cRefMin.rgbBlue = (BYTE)min(255, max(0,(int)(cRef.rgbBlue - nTolerance)));
cRefMax.rgbRed = (BYTE)min(255, max(0,(int)(cRef.rgbRed + nTolerance)));
cRefMax.rgbGreen = (BYTE)min(255, max(0,(int)(cRef.rgbGreen + nTolerance)));
cRefMax.rgbBlue = (BYTE)min(255, max(0,(int)(cRef.rgbBlue + nTolerance)));
while(!q.empty())
{
point = q.front();
q.pop();
for (int z=0; z<4; z++){
int x = point.x + offset[z].x;
int y = point.y + offset[z].y;
if(IsInside(x,y)){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
RGBQUAD cc = BlindGetPixelColor(x, y);
BYTE* pFill = pFillMask + x + y * head.biWidth;
if (*pFill==0 &&
cRefMin.rgbRed <= cc.rgbRed && cc.rgbRed <= cRefMax.rgbRed &&
cRefMin.rgbGreen <= cc.rgbGreen && cc.rgbGreen <= cRefMax.rgbGreen &&
cRefMin.rgbBlue <= cc.rgbBlue && cc.rgbBlue <= cRefMax.rgbBlue )
{
if (nOpacity>0){
if (nOpacity == 255)
BlindSetPixelColor(x, y, cFillColor);
else
{
cc.rgbRed = (BYTE)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
cc.rgbGreen = (BYTE)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
cc.rgbBlue = (BYTE)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
BlindSetPixelColor(x, y, cc);
}
}
POINT pt = {x,y};
q.push(pt);
*pFill = 1;
}
}
}
}
}
}
if (pFillMask[xStart+yStart*head.biWidth] == 0 && nOpacity>0){
if (nOpacity == 255)
BlindSetPixelColor(xStart, yStart, cFillColor);
else
{
RGBQUAD cc = BlindGetPixelColor(xStart, yStart);
cc.rgbRed = (BYTE)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
cc.rgbGreen = (BYTE)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
cc.rgbBlue = (BYTE)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
BlindSetPixelColor(xStart, yStart, cc);
}
}
pFillMask[xStart+yStart*head.biWidth] = 1;
//------------------------------------- End of Flood Fill
//if necessary, restore the original BPP and palette
if (pPalette){
DecreaseBpp(bpp, false, pPalette);
delete [] pPalette;
}
#if CXIMAGE_SUPPORT_SELECTION
if (bSelectFilledArea){
if (!SelectionIsValid()){
if (!SelectionCreate()){
return false;
}
SelectionClear();
info.rSelectionBox.right = head.biWidth;
info.rSelectionBox.top = head.biHeight;
info.rSelectionBox.left = info.rSelectionBox.bottom = 0;
}
RECT r;
SelectionGetBox(r);
for (long y = r.bottom; y < r.top; y++){
BYTE* pFill = pFillMask + r.left + y * head.biWidth;
for (long x = r.left; x