// xImaDsp.cpp : DSP functions /* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it * CxImage version 6.0.0 02/Feb/2008 */ #include "ximage.h" #include "ximaiter.h" #if CXIMAGE_SUPPORT_DSP //////////////////////////////////////////////////////////////////////////////// /** * Converts the image to B&W. * The OptimalThreshold() function can be used for calculating the optimal threshold. * \param level: the lightness threshold. * \return true if everything is ok */ bool CxImage::Threshold(BYTE level) { if (!pDib) return false; if (head.biBitCount == 1) return true; GrayScale(); CxImage tmp(head.biWidth,head.biHeight,1); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } for (long y=0;ylevel) tmp.BlindSetPixelIndex(x,y,1); else tmp.BlindSetPixelIndex(x,y,0); } } tmp.SetPaletteColor(0,0,0,0); tmp.SetPaletteColor(1,255,255,255); Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Converts the image to B&W, using a threshold mask * \param pThresholdMask: the lightness threshold mask. * the pThresholdMask image must be grayscale with same with and height of the current image * \return true if everything is ok */ bool CxImage::Threshold(CxImage* pThresholdMask) { if (!pDib) return false; if (head.biBitCount == 1) return true; if (!pThresholdMask) return false; if (!pThresholdMask->IsValid() || !pThresholdMask->IsGrayScale() || pThresholdMask->GetWidth() != GetWidth() || pThresholdMask->GetHeight() != GetHeight()){ strcpy(info.szLastError,"invalid ThresholdMask"); return false; } GrayScale(); CxImage tmp(head.biWidth,head.biHeight,1); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } for (long y=0;ypThresholdMask->BlindGetPixelIndex(x,y)) tmp.BlindSetPixelIndex(x,y,1); else tmp.BlindSetPixelIndex(x,y,0); } } tmp.SetPaletteColor(0,0,0,0); tmp.SetPaletteColor(1,255,255,255); Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Filters only the pixels with a lightness less (or more) than the threshold level, * and preserves the colors for the unfiltered pixels. * \param level = the lightness threshold. * \param bDirection = false: filter dark pixels, true: filter light pixels * \param nBkgndColor = filtered pixels are set to nBkgndColor color * \param bSetAlpha = if true, sets also the alpha component for the filtered pixels, with nBkgndColor.rgbReserved * \return true if everything is ok * \author [DP], [wangsongtao] */ //////////////////////////////////////////////////////////////////////////////// bool CxImage::Threshold2(BYTE level, bool bDirection, RGBQUAD nBkgndColor, bool bSetAlpha) { if (!pDib) return false; if (head.biBitCount == 1) return true; CxImage tmp(*this, true, false, false); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } tmp.GrayScale(); long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; y=level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha); } } } return true; } //////////////////////////////////////////////////////////////////////////////// /** * Extract RGB channels from the image. Each channel is an 8 bit grayscale image. * \param r,g,b: pointers to CxImage objects, to store the splited channels * \return true if everything is ok */ bool CxImage::SplitRGB(CxImage* r,CxImage* g,CxImage* b) { if (!pDib) return false; if (r==NULL && g==NULL && b==NULL) return false; CxImage tmpr(head.biWidth,head.biHeight,8); CxImage tmpg(head.biWidth,head.biHeight,8); CxImage tmpb(head.biWidth,head.biHeight,8); RGBQUAD color; for(long y=0; yTransfer(tmpr); if (g) g->Transfer(tmpg); if (b) b->Transfer(tmpb); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Extract CMYK channels from the image. Each channel is an 8 bit grayscale image. * \param c,m,y,k: pointers to CxImage objects, to store the splited channels * \return true if everything is ok */ bool CxImage::SplitCMYK(CxImage* c,CxImage* m,CxImage* y,CxImage* k) { if (!pDib) return false; if (c==NULL && m==NULL && y==NULL && k==NULL) return false; CxImage tmpc(head.biWidth,head.biHeight,8); CxImage tmpm(head.biWidth,head.biHeight,8); CxImage tmpy(head.biWidth,head.biHeight,8); CxImage tmpk(head.biWidth,head.biHeight,8); RGBQUAD color; for(long yy=0; yyTransfer(tmpc); if (m) m->Transfer(tmpm); if (y) y->Transfer(tmpy); if (k) k->Transfer(tmpk); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Extract YUV channels from the image. Each channel is an 8 bit grayscale image. * \param y,u,v: pointers to CxImage objects, to store the splited channels * \return true if everything is ok */ bool CxImage::SplitYUV(CxImage* y,CxImage* u,CxImage* v) { if (!pDib) return false; if (y==NULL && u==NULL && v==NULL) return false; CxImage tmpy(head.biWidth,head.biHeight,8); CxImage tmpu(head.biWidth,head.biHeight,8); CxImage tmpv(head.biWidth,head.biHeight,8); RGBQUAD color; for(long yy=0; yyTransfer(tmpy); if (u) u->Transfer(tmpu); if (v) v->Transfer(tmpv); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Extract YIQ channels from the image. Each channel is an 8 bit grayscale image. * \param y,i,q: pointers to CxImage objects, to store the splited channels * \return true if everything is ok */ bool CxImage::SplitYIQ(CxImage* y,CxImage* i,CxImage* q) { if (!pDib) return false; if (y==NULL && i==NULL && q==NULL) return false; CxImage tmpy(head.biWidth,head.biHeight,8); CxImage tmpi(head.biWidth,head.biHeight,8); CxImage tmpq(head.biWidth,head.biHeight,8); RGBQUAD color; for(long yy=0; yyTransfer(tmpy); if (i) i->Transfer(tmpi); if (q) q->Transfer(tmpq); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Extract XYZ channels from the image. Each channel is an 8 bit grayscale image. * \param x,y,z: pointers to CxImage objects, to store the splited channels * \return true if everything is ok */ bool CxImage::SplitXYZ(CxImage* x,CxImage* y,CxImage* z) { if (!pDib) return false; if (x==NULL && y==NULL && z==NULL) return false; CxImage tmpx(head.biWidth,head.biHeight,8); CxImage tmpy(head.biWidth,head.biHeight,8); CxImage tmpz(head.biWidth,head.biHeight,8); RGBQUAD color; for(long yy=0; yyTransfer(tmpx); if (y) y->Transfer(tmpy); if (z) z->Transfer(tmpz); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Extract HSL channels from the image. Each channel is an 8 bit grayscale image. * \param h,s,l: pointers to CxImage objects, to store the splited channels * \return true if everything is ok */ bool CxImage::SplitHSL(CxImage* h,CxImage* s,CxImage* l) { if (!pDib) return false; if (h==NULL && s==NULL && l==NULL) return false; CxImage tmph(head.biWidth,head.biHeight,8); CxImage tmps(head.biWidth,head.biHeight,8); CxImage tmpl(head.biWidth,head.biHeight,8); RGBQUAD color; for(long y=0; yTransfer(tmph); if (s) s->Transfer(tmps); if (l) l->Transfer(tmpl); return true; } //////////////////////////////////////////////////////////////////////////////// #define HSLMAX 255 /* H,L, and S vary over 0-HSLMAX */ #define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */ /* HSLMAX BEST IF DIVISIBLE BY 6 */ /* RGBMAX, HSLMAX must each fit in a BYTE. */ /* Hue is undefined if Saturation is 0 (grey-scale) */ /* This value determines where the Hue scrollbar is */ /* initially set for achromatic colors */ #define HSLUNDEFINED (HSLMAX*2/3) //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::RGBtoHSL(RGBQUAD lRGBColor) { BYTE R,G,B; /* input RGB values */ BYTE H,L,S; /* output HSL values */ BYTE cMax,cMin; /* max and min RGB values */ WORD Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max*/ R = lRGBColor.rgbRed; /* get R, G, and B out of DWORD */ G = lRGBColor.rgbGreen; B = lRGBColor.rgbBlue; cMax = max( max(R,G), B); /* calculate lightness */ cMin = min( min(R,G), B); L = (BYTE)((((cMax+cMin)*HSLMAX)+RGBMAX)/(2*RGBMAX)); if (cMax==cMin){ /* r=g=b --> achromatic case */ S = 0; /* saturation */ H = HSLUNDEFINED; /* hue */ } else { /* chromatic case */ if (L <= (HSLMAX/2)) /* saturation */ S = (BYTE)((((cMax-cMin)*HSLMAX)+((cMax+cMin)/2))/(cMax+cMin)); else S = (BYTE)((((cMax-cMin)*HSLMAX)+((2*RGBMAX-cMax-cMin)/2))/(2*RGBMAX-cMax-cMin)); /* hue */ Rdelta = (WORD)((((cMax-R)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin)); Gdelta = (WORD)((((cMax-G)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin)); Bdelta = (WORD)((((cMax-B)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin)); if (R == cMax) H = (BYTE)(Bdelta - Gdelta); else if (G == cMax) H = (BYTE)((HSLMAX/3) + Rdelta - Bdelta); else /* B == cMax */ H = (BYTE)(((2*HSLMAX)/3) + Gdelta - Rdelta); // if (H < 0) H += HSLMAX; //always false if (H > HSLMAX) H -= HSLMAX; } RGBQUAD hsl={L,S,H,0}; return hsl; } //////////////////////////////////////////////////////////////////////////////// float CxImage::HueToRGB(float n1,float n2, float hue) { // fixed implementation for HSL2RGB routine float rValue; if (hue > 360) hue = hue - 360; else if (hue < 0) hue = hue + 360; if (hue < 60) rValue = n1 + (n2-n1)*hue/60.0f; else if (hue < 180) rValue = n2; else if (hue < 240) rValue = n1+(n2-n1)*(240-hue)/60; else rValue = n1; return rValue; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::HSLtoRGB(COLORREF cHSLColor) { return HSLtoRGB(RGBtoRGBQUAD(cHSLColor)); } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::HSLtoRGB(RGBQUAD lHSLColor) { // fixed implementation for HSL2RGB routine float h,s,l; float m1,m2; BYTE r,g,b; h = (float)lHSLColor.rgbRed * 360.0f/255.0f; s = (float)lHSLColor.rgbGreen/255.0f; l = (float)lHSLColor.rgbBlue/255.0f; if (l <= 0.5) m2 = l * (1+s); else m2 = l + s - l*s; m1 = 2 * l - m2; if (s == 0) { r=g=b=(BYTE)(l*255.0f); } else { r = (BYTE)(HueToRGB(m1,m2,h+120) * 255.0f); g = (BYTE)(HueToRGB(m1,m2,h) * 255.0f); b = (BYTE)(HueToRGB(m1,m2,h-120) * 255.0f); } RGBQUAD rgb = {b,g,r,0}; return rgb; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::YUVtoRGB(RGBQUAD lYUVColor) { int U,V,R,G,B; float Y = lYUVColor.rgbRed; U = lYUVColor.rgbGreen - 128; V = lYUVColor.rgbBlue - 128; // R = (int)(1.164 * Y + 2.018 * U); // G = (int)(1.164 * Y - 0.813 * V - 0.391 * U); // B = (int)(1.164 * Y + 1.596 * V); R = (int)( Y + 1.403f * V); G = (int)( Y - 0.344f * U - 0.714f * V); B = (int)( Y + 1.770f * U); R= min(255,max(0,R)); G= min(255,max(0,G)); B= min(255,max(0,B)); RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0}; return rgb; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::RGBtoYUV(RGBQUAD lRGBColor) { int Y,U,V,R,G,B; R = lRGBColor.rgbRed; G = lRGBColor.rgbGreen; B = lRGBColor.rgbBlue; // Y = (int)( 0.257 * R + 0.504 * G + 0.098 * B); // U = (int)( 0.439 * R - 0.368 * G - 0.071 * B + 128); // V = (int)(-0.148 * R - 0.291 * G + 0.439 * B + 128); Y = (int)(0.299f * R + 0.587f * G + 0.114f * B); U = (int)((B-Y) * 0.565f + 128); V = (int)((R-Y) * 0.713f + 128); Y= min(255,max(0,Y)); U= min(255,max(0,U)); V= min(255,max(0,V)); RGBQUAD yuv={(BYTE)V,(BYTE)U,(BYTE)Y,0}; return yuv; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::YIQtoRGB(RGBQUAD lYIQColor) { int I,Q,R,G,B; float Y = lYIQColor.rgbRed; I = lYIQColor.rgbGreen - 128; Q = lYIQColor.rgbBlue - 128; R = (int)( Y + 0.956f * I + 0.621f * Q); G = (int)( Y - 0.273f * I - 0.647f * Q); B = (int)( Y - 1.104f * I + 1.701f * Q); R= min(255,max(0,R)); G= min(255,max(0,G)); B= min(255,max(0,B)); RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0}; return rgb; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::RGBtoYIQ(RGBQUAD lRGBColor) { int Y,I,Q,R,G,B; R = lRGBColor.rgbRed; G = lRGBColor.rgbGreen; B = lRGBColor.rgbBlue; Y = (int)( 0.2992f * R + 0.5868f * G + 0.1140f * B); I = (int)( 0.5960f * R - 0.2742f * G - 0.3219f * B + 128); Q = (int)( 0.2109f * R - 0.5229f * G + 0.3120f * B + 128); Y= min(255,max(0,Y)); I= min(255,max(0,I)); Q= min(255,max(0,Q)); RGBQUAD yiq={(BYTE)Q,(BYTE)I,(BYTE)Y,0}; return yiq; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::XYZtoRGB(RGBQUAD lXYZColor) { int X,Y,Z,R,G,B; X = lXYZColor.rgbRed; Y = lXYZColor.rgbGreen; Z = lXYZColor.rgbBlue; double k=1.088751; R = (int)( 3.240479f * X - 1.537150f * Y - 0.498535f * Z * k); G = (int)( -0.969256f * X + 1.875992f * Y + 0.041556f * Z * k); B = (int)( 0.055648f * X - 0.204043f * Y + 1.057311f * Z * k); R= min(255,max(0,R)); G= min(255,max(0,G)); B= min(255,max(0,B)); RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0}; return rgb; } //////////////////////////////////////////////////////////////////////////////// RGBQUAD CxImage::RGBtoXYZ(RGBQUAD lRGBColor) { int X,Y,Z,R,G,B; R = lRGBColor.rgbRed; G = lRGBColor.rgbGreen; B = lRGBColor.rgbBlue; X = (int)( 0.412453f * R + 0.357580f * G + 0.180423f * B); Y = (int)( 0.212671f * R + 0.715160f * G + 0.072169f * B); Z = (int)((0.019334f * R + 0.119193f * G + 0.950227f * B)*0.918483657f); //X= min(255,max(0,X)); //Y= min(255,max(0,Y)); //Z= min(255,max(0,Z)); RGBQUAD xyz={(BYTE)Z,(BYTE)Y,(BYTE)X,0}; return xyz; } //////////////////////////////////////////////////////////////////////////////// /** * Generates a "rainbow" palette with saturated colors * \param correction: 1 generates a single hue spectrum. 0.75 is nice for scientific applications. */ void CxImage::HuePalette(float correction) { if (head.biClrUsed==0) return; for(DWORD j=0; j 1.0f) blend = 1.0f; int a0 = (int)(256*blend); int a1 = 256 - a0; bool bFullBlend = false; if (blend > 0.999f) bFullBlend = true; RGBQUAD color,hsl; if (head.biClrUsed==0){ long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; y>8); color.rgbBlue = (BYTE)((hsl.rgbBlue * a0 + color.rgbBlue * a1)>>8); color.rgbGreen = (BYTE)((hsl.rgbGreen * a0 + color.rgbGreen * a1)>>8); BlindSetPixelColor(x,y,color); } } } } } else { for(DWORD j=0; j for (int i=0;i<256;i++) { cTable[i] = (BYTE)max(0,min(255,(int)((i-128)*c + brightness + 0.5f))); } return Lut(cTable); } //////////////////////////////////////////////////////////////////////////////// /** * \return mean lightness of the image. Useful with Threshold() and Light() */ float CxImage::Mean() { if (!pDib) return 0; CxImage tmp(*this,true); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } tmp.GrayScale(); float sum=0; long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } if (xmin==xmax || ymin==ymax) return (float)0.0; BYTE *iSrc=tmp.info.pImage; iSrc += tmp.info.dwEffWidth*ymin; // necessary for selections for(long y=ymin; y for(long x=xmin; x(y+j) || (y+j)>=head.biHeight) continue; iY = iY2+x; for(long k=-k2;k(x+k) || (x+k)>=head.biWidth) continue; i=kernel[iCount]; b += cPtr[iY+k] * i; ksumcur += i; } } if (Kfactor==0 || ksumcur==0){ cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b + Koffset))); } else if (ksumtot == ksumcur) { cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b/Kfactor + Koffset))); } else { cPtr2[iY1] = (BYTE)min(255, max(0,(int)((b*ksumtot)/(ksumcur*Kfactor) + Koffset))); } } } } } else { for(long y=ymin; y r) r=c.rgbRed; if (c.rgbGreen > g) g=c.rgbGreen; if (c.rgbBlue > b) b=c.rgbBlue; } } c.rgbRed = r; c.rgbGreen = g; c.rgbBlue = b; tmp.BlindSetPixelColor(x,y,c); } } } Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Enhance the variations between adjacent pixels. * Similar results can be achieved using Filter(), * but the algorithms are different both in Edge() and in Contour(). * \param Ksize: size of the kernel. * \return true if everything is ok */ bool CxImage::Edge(long Ksize) { if (!pDib) return false; long k2 = Ksize/2; long kmax= Ksize-k2; BYTE r,g,b,rr,gg,bb; RGBQUAD c; CxImage tmp(*this); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; y r) r=c.rgbRed; if (c.rgbGreen > g) g=c.rgbGreen; if (c.rgbBlue > b) b=c.rgbBlue; if (c.rgbRed < rr) rr=c.rgbRed; if (c.rgbGreen < gg) gg=c.rgbGreen; if (c.rgbBlue < bb) bb=c.rgbBlue; } } c.rgbRed = (BYTE)(255-abs(r-rr)); c.rgbGreen = (BYTE)(255-abs(g-gg)); c.rgbBlue = (BYTE)(255-abs(b-bb)); tmp.BlindSetPixelColor(x,y,c); } } } Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Blends two images * \param imgsrc2: image to be mixed with this * \param op: blending method; see ImageOpType * \param lXOffset, lYOffset: image displacement * \param bMixAlpha: if true and imgsrc2 has a valid alpha layer, it will be mixed in the destination image. * \return true if everything is ok * * thanks to Mwolski */ // void CxImage::Mix(CxImage & imgsrc2, ImageOpType op, long lXOffset, long lYOffset, bool bMixAlpha) { long lWide = min(GetWidth(),imgsrc2.GetWidth()-lXOffset); long lHeight = min(GetHeight(),imgsrc2.GetHeight()-lYOffset); bool bEditAlpha = imgsrc2.AlphaIsValid() & bMixAlpha; if (bEditAlpha && AlphaIsValid()==false){ AlphaCreate(); } RGBQUAD rgbBackgrnd1 = GetTransColor(); RGBQUAD rgb1, rgb2, rgbDest; for(long lY=0;lY for(x = 0; x < width; x++) { for(y = 0; y < height; y++) { SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y)); } } } } //////////////////////////////////////////////////////////////////////////////// /** * Adjusts separately the red, green, and blue values in the image. * \param r, g, b: can be from -255 to +255. * \return true if everything is ok */ bool CxImage::ShiftRGB(long r, long g, long b) { if (!pDib) return false; RGBQUAD color; if (head.biClrUsed==0){ long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; y for (int i=0;i<256;i++) { cTable[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax))); } return Lut(cTable); } //////////////////////////////////////////////////////////////////////////////// /** * Adjusts the color balance indipendent for each color channel * \param gammaR, gammaG, gammaB can be from 0.1 to 5. * \return true if everything is ok * \sa Gamma */ bool CxImage::GammaRGB(float gammaR, float gammaG, float gammaB) { if (!pDib) return false; if (gammaR <= 0.0f) return false; if (gammaG <= 0.0f) return false; if (gammaB <= 0.0f) return false; double dinvgamma, dMax; int i; dinvgamma = 1/gammaR; dMax = pow(255.0, dinvgamma) / 255.0; BYTE cTableR[256]; for (i=0;i<256;i++) { cTableR[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax))); } dinvgamma = 1/gammaG; dMax = pow(255.0, dinvgamma) / 255.0; BYTE cTableG[256]; for (i=0;i<256;i++) { cTableG[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax))); } dinvgamma = 1/gammaB; dMax = pow(255.0, dinvgamma) / 255.0; BYTE cTableB[256]; for (i=0;i<256;i++) { cTableB[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax))); } return Lut(cTableR, cTableG, cTableB); } //////////////////////////////////////////////////////////////////////////////// //#if !defined (_WIN32_WCE) /** * Adjusts the intensity of each pixel to the median intensity of its surrounding pixels. * \param Ksize: size of the kernel. * \return true if everything is ok */ bool CxImage::Median(long Ksize) { if (!pDib) return false; long k2 = Ksize/2; long kmax= Ksize-k2; long i,j,k; RGBQUAD* kernel = (RGBQUAD*)malloc(Ksize*Ksize*sizeof(RGBQUAD)); CxImage tmp(*this); if (!tmp.IsValid()){ free(kernel); strcpy(info.szLastError,tmp.GetLastError()); return false; } long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; y for(long x=xmin; xGetWidth(); h=srcReal->GetHeight(); } else { w=srcImag->GetWidth(); h=srcImag->GetHeight(); } bool bXpow2 = IsPowerof2(w); bool bYpow2 = IsPowerof2(h); //if bForceFFT, width AND height must be powers of 2 if (bForceFFT && !(bXpow2 && bYpow2)) { long i; i=0; while((1< copy the image if (srcReal && dstReal) tmpReal->Copy(*srcReal,true,false,false); if (srcImag && dstImag) tmpImag->Copy(*srcImag,true,false,false); // dst&&src are empty -> create new one, else turn to GrayScale if (srcReal==0 && dstReal==0){ tmpReal = new CxImage(w,h,8); tmpReal->Clear(0); tmpReal->SetGrayPalette(); } else { if (!tmpReal->IsGrayScale()) tmpReal->GrayScale(); } if (srcImag==0 && dstImag==0){ tmpImag = new CxImage(w,h,8); tmpImag->Clear(0); tmpImag->SetGrayPalette(); } else { if (!tmpImag->IsGrayScale()) tmpImag->GrayScale(); } if (!(tmpReal->IsValid() && tmpImag->IsValid())){ if (srcReal==0 && dstReal==0) delete tmpReal; if (srcImag==0 && dstImag==0) delete tmpImag; return false; } //resample for FFT, if necessary tmpReal->Resample(w,h,0); tmpImag->Resample(w,h,0); //ok, here we have 2 (w x h), grayscale images ready for a FFT double* real; double* imag; long j,k,m; _complex **grid; //double mean = tmpReal->Mean(); /* Allocate memory for the grid */ grid = (_complex **)malloc(w * sizeof(_complex)); for (k=0;kGetPixelIndex(k,j)-128; grid[k][j].y = tmpImag->GetPixelIndex(k,j)-128; } } //DFT buffers double *real2,*imag2; real2 = (double*)malloc(max(w,h) * sizeof(double)); imag2 = (double*)malloc(max(w,h) * sizeof(double)); /* Transform the rows */ real = (double *)malloc(w * sizeof(double)); imag = (double *)malloc(w * sizeof(double)); m=0; while((1<SetPixelIndex(k,j,(BYTE)max(0,min(255,(nn*(3+log(_cabs(grid[k][j]))))))); if (grid[k][j].x==0){ tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/0.0000000001)*nn))))); } else { tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/grid[k][j].x)*nn))))); } } else { tmpReal->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].x*nn)))); tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].y*nn)))); } } } for (k=0;k> 1; j = 0; for (i=0;i>= 1; } j += k; } /* Compute the FFT */ c1 = -1.0; c2 = 0.0; l2 = 1; for (l=0;lGetWidth(); long h = r->GetHeight(); Create(w,h,24); g->Resample(w,h); b->Resample(w,h); if (a) { a->Resample(w,h); #if CXIMAGE_SUPPORT_ALPHA AlphaCreate(); #endif //CXIMAGE_SUPPORT_ALPHA } RGBQUAD c; for (long y=0;y for (long x=0;xGetPixelIndex(x,y); c.rgbGreen=g->GetPixelIndex(x,y); c.rgbBlue=b->GetPixelIndex(x,y); c.rgbReserved = (BYTE)0; switch (colorspace){ case 1: BlindSetPixelColor(x,y,HSLtoRGB(c)); break; case 2: BlindSetPixelColor(x,y,YUVtoRGB(c)); break; case 3: BlindSetPixelColor(x,y,YIQtoRGB(c)); break; case 4: BlindSetPixelColor(x,y,XYZtoRGB(c)); break; default: BlindSetPixelColor(x,y,c); } #if CXIMAGE_SUPPORT_ALPHA if (a) AlphaSet(x,y,a->GetPixelIndex(x,y)); #endif //CXIMAGE_SUPPORT_ALPHA } } return true; } //////////////////////////////////////////////////////////////////////////////// /** * Smart blurring to remove small defects, dithering or artifacts. * \param radius: normally between 0.01 and 0.5 * \param niterations: should be trimmed with radius, to avoid blurring should be (radius*niterations)<1 * \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ * \return true if everything is ok */ bool CxImage::Repair(float radius, long niterations, long colorspace) { if (!IsValid()) return false; long w = GetWidth(); long h = GetHeight(); CxImage r,g,b; r.Create(w,h,8); g.Create(w,h,8); b.Create(w,h,8); switch (colorspace){ case 1: SplitHSL(&r,&g,&b); break; case 2: SplitYUV(&r,&g,&b); break; case 3: SplitYIQ(&r,&g,&b); break; case 4: SplitXYZ(&r,&g,&b); break; default: SplitRGB(&r,&g,&b); } for (int i=0; iGetWidth()-1; long h = ch->GetHeight()-1; double correction,ix,iy,ixx,ixy,iyy; int x,y,xy0,xp1,xm1,yp1,ym1; for(x=1; xBlindGetPixelIndex(x,y); xm1 = ch->BlindGetPixelIndex(x-1,y); xp1 = ch->BlindGetPixelIndex(x+1,y); ym1 = ch->BlindGetPixelIndex(x,y-1); yp1 = ch->BlindGetPixelIndex(x,y+1); ix= (xp1-xm1)/2.0; iy= (yp1-ym1)/2.0; ixx= xp1 - 2.0 * xy0 + xm1; iyy= yp1 - 2.0 * xy0 + ym1; ixy=(ch->BlindGetPixelIndex(x+1,y+1) + ch->BlindGetPixelIndex(x-1,y-1) - ch->BlindGetPixelIndex(x-1,y+1) - ch->BlindGetPixelIndex(x+1,y-1))/4.0; correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy); tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5)))); } } for (x=0;x<=w;x++){ for(y=0; y<=h; y+=h){ xy0 = ch->BlindGetPixelIndex(x,y); xm1 = ch->GetPixelIndex(x-1,y); xp1 = ch->GetPixelIndex(x+1,y); ym1 = ch->GetPixelIndex(x,y-1); yp1 = ch->GetPixelIndex(x,y+1); ix= (xp1-xm1)/2.0; iy= (yp1-ym1)/2.0; ixx= xp1 - 2.0 * xy0 + xm1; iyy= yp1 - 2.0 * xy0 + ym1; ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) - ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0; correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy); tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5)))); } } for (x=0;x<=w;x+=w){ for (y=0;y<=h;y++){ xy0 = ch->BlindGetPixelIndex(x,y); xm1 = ch->GetPixelIndex(x-1,y); xp1 = ch->GetPixelIndex(x+1,y); ym1 = ch->GetPixelIndex(x,y-1); yp1 = ch->GetPixelIndex(x,y+1); ix= (xp1-xm1)/2.0; iy= (yp1-ym1)/2.0; ixx= xp1 - 2.0 * xy0 + xm1; iyy= yp1 - 2.0 * xy0 + ym1; ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) - ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0; correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy); tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5)))); } } ch->Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Enhance the variations between adjacent pixels. * Similar results can be achieved using Filter(), * but the algorithms are different both in Edge() and in Contour(). * \return true if everything is ok */ bool CxImage::Contour() { if (!pDib) return false; long Ksize = 3; long k2 = Ksize/2; long kmax= Ksize-k2; long i,j,k; BYTE maxr,maxg,maxb; RGBQUAD pix1,pix2; CxImage tmp(*this); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; ymaxb) maxb = pix2.rgbBlue; if ((pix2.rgbGreen-pix1.rgbGreen)>maxg) maxg = pix2.rgbGreen; if ((pix2.rgbRed-pix1.rgbRed)>maxr) maxr = pix2.rgbRed; } } pix1.rgbBlue=(BYTE)(255-maxb); pix1.rgbGreen=(BYTE)(255-maxg); pix1.rgbRed=(BYTE)(255-maxr); tmp.BlindSetPixelColor(x,y,pix1); } } } Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Adds a random offset to each pixel in the image * \param radius: maximum pixel displacement * \return true if everything is ok */ bool CxImage::Jitter(long radius) { if (!pDib) return false; long nx,ny; CxImage tmp(*this); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(long y=ymin; y modified scaling, so that matrix_lenght = 1+2*radius parameter */ radius = (float)fabs(0.5*radius) + 0.25f; std_dev = radius; radius = std_dev * 2; /* go out 'radius' in each direction */ matrix_length = int (2 * ceil(radius-0.5) + 1); if (matrix_length <= 0) matrix_length = 1; matrix_midpoint = matrix_length/2 + 1; *cmatrix_p = new float[matrix_length]; cmatrix = *cmatrix_p; /* Now we fill the matrix by doing a numeric integration approximation * from -2*std_dev to 2*std_dev, sampling 50 points per pixel. * We do the bottom half, mirror it to the top half, then compute the * center point. Otherwise asymmetric quantization errors will occur. * The formula to integrate is e^-(x^2/2s^2). */ /* first we do the top (right) half of matrix */ for (i = matrix_length/2 + 1; i < matrix_length; i++) { float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f; sum = 0; for (j = 1; j <= 50; j++) { if ( base_x+0.02*j <= radius ) sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) / (2*std_dev*std_dev)); } cmatrix[i] = sum/50; } /* mirror the thing to the bottom half */ for (i=0; i<=matrix_length/2; i++) { cmatrix[i] = cmatrix[matrix_length-1-i]; } /* find center val -- calculate an odd number of quanta to make it symmetric, * even if the center point is weighted slightly higher than others. */ sum = 0; for (j=0; j<=50; j++) { sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) / (2*std_dev*std_dev)); } cmatrix[matrix_length/2] = sum/51; /* normalize the distribution by scaling the total sum to one */ sum=0; for (i=0; i y) { for (row = 0; row < y ; row++) { scale=0; /* find the scale factor */ for (j = 0; j < y ; j++) { /* if the index is in bounds, add it to the scale counter */ if ((j + cmatrix_middle - row >= 0) && (j + cmatrix_middle - row < cmatrix_length)) scale += cmatrix[j + cmatrix_middle - row]; } for (i = 0; i= row - cmatrix_middle) && (j <= row + cmatrix_middle)) sum += cur_col[j*bytes + i] * cmatrix[j]; } dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale); } } } else { /* for the edge condition, we only use available info and scale to one */ for (row = 0; row < cmatrix_middle; row++) { /* find scale factor */ scale=0; for (j = cmatrix_middle - row; j0; j--) { sum += *(ctable_p + *cur_col_p1); cur_col_p1 += bytes; ctable_p += 256; } cur_col_p++; *(dest_col_p++) = (BYTE)(0.5f + sum); } } /* for the edge condition , we only use available info, and scale to one */ for (; row < y; row++) { /* find scale factor */ scale=0; for (j = 0; j< y-row + cmatrix_middle; j++) scale += cmatrix[j]; for (i = 0; ihead.biWidth; ymax = iSrc->head.biHeight; if (xmin==xmax || ymin==ymax) return; nmin = xmin * bytes; nmax = xmax * bytes; CImageIterator itSrc(iSrc); CImageIterator itTmp(iDst); double dbScaler = 100.0f/(ymax-ymin)/bytes; for (n=0; n=pivot){ while (z1) ? ((m/bytes)/decay+1) : m/bytes; if (m>max_depth) m = max_depth; step = (BYTE)((pSrc[x+bytes]-pSrc[x])/(m+1)); while (m-->1){ pDst[x+m*bytes] = (BYTE)(pDst[x]+(step*(m+1))); } } //find lower corner z=x+bytes; if (pSrc[x]=pivot){ while (z1) ? ((m/bytes)/decay+1) : m/bytes; if (m>max_depth) m = max_depth; step = (BYTE)((pSrc[x+bytes]-pSrc[x])/(m+1)); while (m-->1){ pDst[x+m*bytes] = (BYTE)(pDst[x]+(step*(m+1))); } } } //scan right to left for (x=nmax-1-n /*,i=(xmax-1)*/; x>0; x-=bytes /*,i--*/) { z=x-bytes; pivot = pSrc[z]-threshold; //find upper corner if (pSrc[x]=pivot){ while (z>n && pSrc2[z]1) ? ((m/bytes)/decay+1) : m/bytes; if (m>max_depth) m = max_depth; step = (BYTE)((pSrc[x-bytes]-pSrc[x])/(m+1)); while (m-->1){ pDst[x-m*bytes] = (BYTE)(pDst[x]+(step*(m+1))); } } //find lower corner z=x-bytes; if (pSrc[x]=pivot){ while (z>n && pSrc3[z]1) ? ((m/bytes)/decay+1) : m/bytes; if (m>max_depth) m = max_depth; step = (BYTE)((pSrc[x-bytes]-pSrc[x])/(m+1)); while (m-->1){ pDst[x-m*bytes] = (BYTE)(pDst[x]+(step*(m+1))); } } } } } } //////////////////////////////////////////////////////////////////////////////// /** * \author [DP] */ bool CxImage::TextBlur(BYTE threshold, BYTE decay, BYTE max_depth, bool bBlurHorizontal, bool bBlurVertical, CxImage* iDst) { if (!pDib) return false; RGBQUAD* pPalette=NULL; WORD bpp = GetBpp(); //the routine is optimized for RGB or GrayScale images if (!(head.biBitCount == 24 || IsGrayScale())){ pPalette = new RGBQUAD[head.biClrUsed]; memcpy(pPalette, GetPalette(),GetPaletteSize()); if (!IncreaseBpp(24)) { delete [] pPalette; return false; } } CxImage tmp(*this); if (!tmp.IsValid()){ delete [] pPalette; strcpy(info.szLastError,tmp.GetLastError()); return false; } if (bBlurHorizontal) blur_text(threshold, decay, max_depth, this, &tmp, head.biBitCount>>3); if (bBlurVertical){ CxImage src2(*this); src2.RotateLeft(); tmp.RotateLeft(); blur_text(threshold, decay, max_depth, &src2, &tmp, head.biBitCount>>3); tmp.RotateRight(); } #if CXIMAGE_SUPPORT_SELECTION //restore the non selected region if (pSelection){ for(long y=0; yTransfer(tmp); else Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * \author [nipper]; changes [DP] */ bool CxImage::GaussianBlur(float radius /*= 1.0f*/, CxImage* iDst /*= 0*/) { if (!pDib) return false; RGBQUAD* pPalette=NULL; WORD bpp = GetBpp(); //the routine is optimized for RGB or GrayScale images if (!(head.biBitCount == 24 || IsGrayScale())){ pPalette = new RGBQUAD[head.biClrUsed]; memcpy(pPalette, GetPalette(),GetPaletteSize()); if (!IncreaseBpp(24)) { delete [] pPalette; return false; } } CxImage tmp_x(*this, false, true, true); if (!tmp_x.IsValid()){ strcpy(info.szLastError,tmp_x.GetLastError()); delete [] pPalette; return false; } // generate convolution matrix and make sure it's smaller than each dimension float *cmatrix = NULL; int cmatrix_length = gen_convolve_matrix(radius, &cmatrix); // generate lookup table float *ctable = gen_lookup_table(cmatrix, cmatrix_length); long x,y; int bypp = head.biBitCount>>3; CImageIterator itSrc(this); CImageIterator itTmp(&tmp_x); double dbScaler = 50.0f/head.biHeight; // blur the rows for (y=0;yTransfer(tmp_y); else Transfer(tmp_y); return true; } //////////////////////////////////////////////////////////////////////////////// /** * \author [DP],[nipper] */ bool CxImage::SelectiveBlur(float radius, BYTE threshold, CxImage* iDst) { if (!pDib) return false; RGBQUAD* pPalette=NULL; WORD bpp = GetBpp(); CxImage Tmp(*this, true, true, true); if (!Tmp.IsValid()){ strcpy(info.szLastError,Tmp.GetLastError()); return false; } //the routine is optimized for RGB or GrayScale images if (!(head.biBitCount == 24 || IsGrayScale())){ pPalette = new RGBQUAD[head.biClrUsed]; memcpy(pPalette, GetPalette(),GetPaletteSize()); if (!Tmp.IncreaseBpp(24)) { delete [] pPalette; return false; } } CxImage Dst(Tmp, true, true, true); if (!Dst.IsValid()){ delete [] pPalette; strcpy(info.szLastError,Dst.GetLastError()); return false; } //build the difference mask BYTE thresh_dw = (BYTE)max( 0 ,(int)(128 - threshold)); BYTE thresh_up = (BYTE)min(255,(int)(128 + threshold)); long kernel[]={-100,-100,-100,-100,801,-100,-100,-100,-100}; if (!Tmp.Filter(kernel,3,800,128)){ delete [] pPalette; strcpy(info.szLastError,Tmp.GetLastError()); return false; } //if the image has no selection, build a selection for the whole image if (!Tmp.SelectionIsValid()){ Tmp.SelectionCreate(); Tmp.SelectionClear(255); } long xmin,xmax,ymin,ymax; xmin = Tmp.info.rSelectionBox.left; xmax = Tmp.info.rSelectionBox.right; ymin = Tmp.info.rSelectionBox.bottom; ymax = Tmp.info.rSelectionBox.top; //modify the selection where the difference mask is over the threshold for(long y=ymin; y thresh_up) || (c.rgbGreen < thresh_dw || c.rgbGreen > thresh_up) || (c.rgbBlue < thresh_dw || c.rgbBlue > thresh_up)) { Tmp.SelectionSet(x,y,0); } } } } //blur the image (only in the selected pixels) Dst.SelectionCopy(Tmp); if (!Dst.GaussianBlur(radius)){ delete [] pPalette; strcpy(info.szLastError,Dst.GetLastError()); return false; } //restore the original selection Dst.SelectionCopy(*this); //if necessary, restore the original BPP and palette if (pPalette){ Dst.DecreaseBpp(bpp, false, pPalette); delete [] pPalette; } if (iDst) iDst->Transfer(Dst); else Transfer(Dst); return true; } //////////////////////////////////////////////////////////////////////////////// /** * sharpen the image by subtracting a blurred copy from the original image. * \param radius: width in pixels of the blurring effect. Range: >0; default = 5. * \param amount: strength of the filter. Range: 0.0 (none) to 1.0 (max); default = 0.5 * \param threshold: difference, between blurred and original pixel, to trigger the filter * Range: 0 (always triggered) to 255 (never triggered); default = 0. * \return true if everything is ok * \author [nipper]; changes [DP] */ bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int threshold /*= 0*/) { if (!pDib) return false; RGBQUAD* pPalette=NULL; WORD bpp = GetBpp(); //the routine is optimized for RGB or GrayScale images if (!(head.biBitCount == 24 || IsGrayScale())){ pPalette = new RGBQUAD[head.biClrUsed]; memcpy(pPalette, GetPalette(),GetPaletteSize()); if (!IncreaseBpp(24)) { delete [] pPalette; return false; } } CxImage iDst; if (!GaussianBlur(radius,&iDst)) return false; CImageIterator itSrc(this); CImageIterator itDst(&iDst); long xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } if (xmin==xmax || ymin==ymax) return false; double dbScaler = 100.0/(ymax-ymin); int bypp = head.biBitCount>>3; // merge the source and destination (which currently contains // the blurred version) images for (long y=ymin; y for(long x=xmin; x1.0f) strength = 1.0f; for(long y=ymin; ylevel){ BlindSetPixelIndex(x,y,255-index); } } } } } else { //PALETTE, full image RGBQUAD* ppal=GetPalette(); for(DWORD i=0;ilevel){ ppal[i].rgbBlue =(BYTE)(255-ppal[i].rgbBlue); ppal[i].rgbGreen =(BYTE)(255-ppal[i].rgbGreen); ppal[i].rgbRed =(BYTE)(255-ppal[i].rgbRed); } } else { if (color.rgbBlue>level) ppal[i].rgbBlue =(BYTE)(255-ppal[i].rgbBlue); if (color.rgbGreen>level) ppal[i].rgbGreen =(BYTE)(255-ppal[i].rgbGreen); if (color.rgbRed>level) ppal[i].rgbRed =(BYTE)(255-ppal[i].rgbRed); } } } } else { //RGB, selection for(long y=ymin; ylevel){ color.rgbRed = (BYTE)(255-color.rgbRed); color.rgbGreen = (BYTE)(255-color.rgbGreen); color.rgbBlue = (BYTE)(255-color.rgbBlue); } } else { if (color.rgbBlue>level) color.rgbBlue =(BYTE)(255-color.rgbBlue); if (color.rgbGreen>level) color.rgbGreen =(BYTE)(255-color.rgbGreen); if (color.rgbRed>level) color.rgbRed =(BYTE)(255-color.rgbRed); } BlindSetPixelColor(x,y,color); } } } } //invert transparent color only in case of full image processing if (pSelection==0 || (!IsGrayScale() && IsIndexed())){ if (bLinkedChannels){ if ((BYTE)RGB2GRAY(info.nBkgndColor.rgbRed,info.nBkgndColor.rgbGreen,info.nBkgndColor.rgbBlue)>level){ info.nBkgndColor.rgbBlue = (BYTE)(255-info.nBkgndColor.rgbBlue); info.nBkgndColor.rgbGreen = (BYTE)(255-info.nBkgndColor.rgbGreen); info.nBkgndColor.rgbRed = (BYTE)(255-info.nBkgndColor.rgbRed); } } else { if (info.nBkgndColor.rgbBlue>level) info.nBkgndColor.rgbBlue = (BYTE)(255-info.nBkgndColor.rgbBlue); if (info.nBkgndColor.rgbGreen>level) info.nBkgndColor.rgbGreen = (BYTE)(255-info.nBkgndColor.rgbGreen); if (info.nBkgndColor.rgbRed>level) info.nBkgndColor.rgbRed = (BYTE)(255-info.nBkgndColor.rgbRed); } } return true; } //////////////////////////////////////////////////////////////////////////////// /** * Converts the RGB triplets to and from different colorspace * \param dstColorSpace: destination colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ * \param srcColorSpace: source colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ * \return true if everything is ok */ bool CxImage::ConvertColorSpace(const long dstColorSpace, const long srcColorSpace) { if (!pDib) return false; if (dstColorSpace == srcColorSpace) return true; long w = GetWidth(); long h = GetHeight(); for (long y=0;yIsValid() || !pContrastMask->IsGrayScale() || pContrastMask->GetWidth() != GetWidth() || pContrastMask->GetHeight() != GetHeight()){ strcpy(info.szLastError,"OptimalThreshold invalid ContrastMask"); return -1; } } long xmin,xmax,ymin,ymax; if (pBox){ xmin = max(pBox->left,0); xmax = min(pBox->right,head.biWidth); ymin = max(pBox->bottom,0); ymax = min(pBox->top,head.biHeight); } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } if (xmin>=xmax || ymin>=ymax) return -1; double p[256]; memset(p, 0, 256*sizeof(double)); //build histogram for (long y = ymin; yGetBits(y) + xmin; for (long x = xmin; x0 && p[gray_max]==0) gray_max--; if (gray_min > gray_max) return -1; if (gray_min == gray_max){ if (gray_min == 0) return 0; else return gray_max-1; } //compute total moments 0th,1st,2nd order int i,k; double w_tot = 0; double m_tot = 0; double q_tot = 0; for (i = gray_min; i <= gray_max; i++){ w_tot += p[i]; m_tot += i*p[i]; q_tot += i*i*p[i]; } double L, L1max, L2max, L3max, L4max; //objective functions int th1,th2,th3,th4; //optimal thresholds L1max = L2max = L3max = L4max = 0; th1 = th2 = th3 = th4 = -1; double w1, w2, m1, m2, q1, q2, s1, s2; w1 = m1 = q1 = 0; for (i = gray_min; i < gray_max; i++){ w1 += p[i]; w2 = w_tot - w1; m1 += i*p[i]; m2 = m_tot - m1; q1 += i*i*p[i]; q2 = q_tot - q1; s1 = q1/w1-m1*m1/w1/w1; //s1 = q1/w1-pow(m1/w1,2); s2 = q2/w2-m2*m2/w2/w2; //s2 = q2/w2-pow(m2/w2,2); //Otsu L = -(s1*w1 + s2*w2); //implemented as definition //L = w1 * w2 * (m2/w2 - m1/w1)*(m2/w2 - m1/w1); //implementation that doesn't need s1 & s2 if (L1max < L || th1<0){ L1max = L; th1 = i; } //Kittler and Illingworth if (s1>0 && s2>0){ L = w1*log(w1/sqrt(s1))+w2*log(w2/sqrt(s2)); //L = w1*log(w1*w1/s1)+w2*log(w2*w2/s2); if (L2max < L || th2<0){ L2max = L; th2 = i; } } //max entropy L = 0; for (k=gray_min;k<=i;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w1)/w1; for (;k<=gray_max;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w2)/w2; if (L3max < L || th3<0){ L3max = L; th3 = i; } //potential difference (based on Electrostatic Binarization method by J. Acharya & G. Sreechakra) // L=-fabs(vdiff/vsum); è molto selettivo, sembra che L=-fabs(vdiff) o L=-(vsum) // abbiano lo stesso valore di soglia... il che semplificherebbe molto la routine double vdiff = 0; for (k=gray_min;k<=i;k++) vdiff += p[k]*(i-k)*(i-k); double vsum = vdiff; for (;k<=gray_max;k++){ double dv = p[k]*(k-i)*(k-i); vdiff -= dv; vsum += dv; } if (vsum>0) L = -fabs(vdiff/vsum); else L = 0; if (L4max < L || th4<0){ L4max = L; th4 = i; } } int threshold; switch (method){ case 1: //Otsu threshold = th1; break; case 2: //Kittler and Illingworth threshold = th2; break; case 3: //max entropy threshold = th3; break; case 4: //potential difference threshold = th4; break; default: //auto { int nt = 0; threshold = 0; if (th1>=0) { threshold += th1; nt++;} if (th2>=0) { threshold += th2; nt++;} if (th3>=0) { threshold += th3; nt++;} if (th4>=0) { threshold += th4; nt++;} if (nt) threshold /= nt; else threshold = (gray_min+gray_max)/2; /*better(?) but really expensive alternative: n = 0:255; pth1 = c1(th1)/sqrt(2*pi*s1(th1))*exp(-((n - m1(th1)).^2)/2/s1(th1)) + c2(th1)/sqrt(2*pi*s2(th1))*exp(-((n - m2(th1)).^2)/2/s2(th1)); pth2 = c1(th2)/sqrt(2*pi*s1(th2))*exp(-((n - m1(th2)).^2)/2/s1(th2)) + c2(th2)/sqrt(2*pi*s2(th2))*exp(-((n - m2(th2)).^2)/2/s2(th2)); ... mse_th1 = sum((p-pth1).^2); mse_th2 = sum((p-pth2).^2); ... select th# that gives minimum mse_th# */ } } if (threshold <= gray_min || threshold >= gray_max) threshold = (gray_min+gray_max)/2; return threshold; } /////////////////////////////////////////////////////////////////////////////// /** * Converts the image to B&W, using an optimal threshold mask * \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference; * \param nBoxSize: the image is divided into "nBoxSize x nBoxSize" blocks, from where the threshold is computed; min = 8; default = 64. * \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0. * \param nBias: global offset added to the threshold mask; default = 0. * \param fGlobalLocalBalance: balance between local and global threshold. default = 0.5 * fGlobalLocalBalance can be from 0.0 (use only local threshold) to 1.0 (use only global threshold) * the pContrastMask image must be grayscale with same with and height of the current image, * \return true if everything is ok. * \sa OptimalThreshold */ bool CxImage::AdaptiveThreshold(long method, long nBoxSize, CxImage* pContrastMask, long nBias, float fGlobalLocalBalance) { if (!pDib) return false; if (pContrastMask){ if (!pContrastMask->IsValid() || !pContrastMask->IsGrayScale() || pContrastMask->GetWidth() != GetWidth() || pContrastMask->GetHeight() != GetHeight()){ strcpy(info.szLastError,"AdaptiveThreshold invalid ContrastMask"); return false; } } if (nBoxSize<8) nBoxSize = 8; if (fGlobalLocalBalance<0.0f) fGlobalLocalBalance = 0.0f; if (fGlobalLocalBalance>1.0f) fGlobalLocalBalance = 1.0f; long mw = (head.biWidth + nBoxSize - 1)/nBoxSize; long mh = (head.biHeight + nBoxSize - 1)/nBoxSize; CxImage mask(mw,mh,8); if(!mask.GrayScale()) return false; if(!GrayScale()) return false; int globalthreshold = OptimalThreshold(method, 0, pContrastMask); if (globalthreshold <0) return false; for (long y=0; y //////////////////////////////////////////////////////////////////////////////// /** * Flood Fill * \param xStart, yStart: starting point * \param cFillColor: filling color * \param nTolerance: deviation from the starting point color * \param nOpacity: can be from 0 (transparent) to 255 (opaque, default) * \param bSelectFilledArea: if true, the pixels in the region are also set in the selection layer; default = false * \param nSelectionLevel: if bSelectFilledArea is true, the selected pixels are set to nSelectionLevel; default = 255 * Note: nOpacity=0 && bSelectFilledArea=true act as a "magic wand" * \return true if everything is ok */ #if defined(XBMC) && !defined(_WIN32) int max(int a, int b) { return a > b ? a : b; } int min(int a, int b) { return a < b ? a : b; } #endif bool CxImage::FloodFill(const long xStart, const long yStart, const RGBQUAD cFillColor, const BYTE nTolerance, BYTE nOpacity, const bool bSelectFilledArea, const BYTE nSelectionLevel) { if (!pDib) return false; if (!IsInside(xStart,yStart)) return true; #if CXIMAGE_SUPPORT_SELECTION if (!SelectionIsInside(xStart,yStart)) return true; #endif //CXIMAGE_SUPPORT_SELECTION RGBQUAD* pPalette=NULL; WORD bpp = GetBpp(); //nTolerance or nOpacity implemented only for grayscale or 24bpp images if ((nTolerance || nOpacity != 255) && !(head.biBitCount == 24 || IsGrayScale())){ pPalette = new RGBQUAD[head.biClrUsed]; memcpy(pPalette, GetPalette(),GetPaletteSize()); if (!IncreaseBpp(24)) { delete [] pPalette; return false; } } BYTE* pFillMask = (BYTE*)calloc(head.biWidth * head.biHeight,1); if (!pFillMask) { delete [] pPalette; return false; } //------------------------------------- Begin of Flood Fill POINT offset[4] = {{-1,0},{0,-1},{1,0},{0,1}}; std::queue q; POINT point = {(int)xStart,(int)yStart}; q.push(point); if (IsIndexed()){ //--- Generic indexed image, no tolerance OR Grayscale image with tolerance BYTE idxRef = GetPixelIndex(xStart,yStart); BYTE idxFill = GetNearestIndex(cFillColor); BYTE idxMin = (BYTE)min(255, max(0,(int)(idxRef - nTolerance))); BYTE idxMax = (BYTE)min(255, max(0,(int)(idxRef + nTolerance))); while(!q.empty()) { point = q.front(); q.pop(); for (int z=0; z<4; z++){ int x = point.x + offset[z].x; int y = point.y + offset[z].y; if(IsInside(x,y)){ #if CXIMAGE_SUPPORT_SELECTION if (BlindSelectionIsInside(x,y)) #endif //CXIMAGE_SUPPORT_SELECTION { BYTE idx = BlindGetPixelIndex(x, y); BYTE* pFill = pFillMask + x + y * head.biWidth; if (*pFill==0 && idxMin <= idx && idx <= idxMax ) { if (nOpacity>0){ if (nOpacity == 255) BlindSetPixelIndex(x, y, idxFill); else BlindSetPixelIndex(x, y, (BYTE)((idxFill * nOpacity + idx * (255-nOpacity))>>8)); } POINT pt = {x,y}; q.push(pt); *pFill = 1; } } } } } } else { //--- RGB image RGBQUAD cRef = GetPixelColor(xStart,yStart); RGBQUAD cRefMin, cRefMax; cRefMin.rgbRed = (BYTE)min(255, max(0,(int)(cRef.rgbRed - nTolerance))); cRefMin.rgbGreen = (BYTE)min(255, max(0,(int)(cRef.rgbGreen - nTolerance))); cRefMin.rgbBlue = (BYTE)min(255, max(0,(int)(cRef.rgbBlue - nTolerance))); cRefMax.rgbRed = (BYTE)min(255, max(0,(int)(cRef.rgbRed + nTolerance))); cRefMax.rgbGreen = (BYTE)min(255, max(0,(int)(cRef.rgbGreen + nTolerance))); cRefMax.rgbBlue = (BYTE)min(255, max(0,(int)(cRef.rgbBlue + nTolerance))); while(!q.empty()) { point = q.front(); q.pop(); for (int z=0; z<4; z++){ int x = point.x + offset[z].x; int y = point.y + offset[z].y; if(IsInside(x,y)){ #if CXIMAGE_SUPPORT_SELECTION if (BlindSelectionIsInside(x,y)) #endif //CXIMAGE_SUPPORT_SELECTION { RGBQUAD cc = BlindGetPixelColor(x, y); BYTE* pFill = pFillMask + x + y * head.biWidth; if (*pFill==0 && cRefMin.rgbRed <= cc.rgbRed && cc.rgbRed <= cRefMax.rgbRed && cRefMin.rgbGreen <= cc.rgbGreen && cc.rgbGreen <= cRefMax.rgbGreen && cRefMin.rgbBlue <= cc.rgbBlue && cc.rgbBlue <= cRefMax.rgbBlue ) { if (nOpacity>0){ if (nOpacity == 255) BlindSetPixelColor(x, y, cFillColor); else { cc.rgbRed = (BYTE)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8); cc.rgbGreen = (BYTE)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8); cc.rgbBlue = (BYTE)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8); BlindSetPixelColor(x, y, cc); } } POINT pt = {x,y}; q.push(pt); *pFill = 1; } } } } } } if (pFillMask[xStart+yStart*head.biWidth] == 0 && nOpacity>0){ if (nOpacity == 255) BlindSetPixelColor(xStart, yStart, cFillColor); else { RGBQUAD cc = BlindGetPixelColor(xStart, yStart); cc.rgbRed = (BYTE)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8); cc.rgbGreen = (BYTE)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8); cc.rgbBlue = (BYTE)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8); BlindSetPixelColor(xStart, yStart, cc); } } pFillMask[xStart+yStart*head.biWidth] = 1; //------------------------------------- End of Flood Fill //if necessary, restore the original BPP and palette if (pPalette){ DecreaseBpp(bpp, false, pPalette); delete [] pPalette; } #if CXIMAGE_SUPPORT_SELECTION if (bSelectFilledArea){ if (!SelectionIsValid()){ if (!SelectionCreate()){ return false; } SelectionClear(); info.rSelectionBox.right = head.biWidth; info.rSelectionBox.top = head.biHeight; info.rSelectionBox.left = info.rSelectionBox.bottom = 0; } RECT r; SelectionGetBox(r); for (long y = r.bottom; y < r.top; y++){ BYTE* pFill = pFillMask + r.left + y * head.biWidth; for (long x = r.left; x