/* * List Abstract Data Type * Copyright (C) 1997 Kaz Kylheku * * Free Software License: * * All rights are reserved by the author, with the following exceptions: * Permission is granted to freely reproduce and distribute this software, * possibly in exchange for a fee, provided that this copyright notice appears * intact. Permission is also granted to adapt this software to produce * derivative works, as long as the modified versions carry this copyright * notice and additional notices stating that the work has been modified. * This source code may be translated into executable form and incorporated * into proprietary software; there is no requirement for such software to * contain a copyright notice related to this source. * * $Id: list.c,v 1.19.2.1 2000/04/17 01:07:21 kaz Exp $ * $Name: kazlib_1_20 $ */ /* * Modified by Johannes Lehtinen in 2006-2007. * Included the definition of CP_HIDDEN macro and used it in declarations and * definitions to hide Kazlib symbols when building a shared C-Pluff library. */ #include #include #include #define LIST_IMPLEMENTATION #include "list.h" #define next list_next #define prev list_prev #define data list_data #define pool list_pool #define fre list_free #define size list_size #define nilnode list_nilnode #define nodecount list_nodecount #define maxcount list_maxcount #define list_nil(L) (&(L)->nilnode) #define list_first_priv(L) ((L)->nilnode.next) #define list_last_priv(L) ((L)->nilnode.prev) #define lnode_next(N) ((N)->next) #define lnode_prev(N) ((N)->prev) #ifdef KAZLIB_RCSID static const char rcsid[] = "$Id: list.c,v 1.19.2.1 2000/04/17 01:07:21 kaz Exp $"; #endif /* * Initialize a list object supplied by the client such that it becomes a valid * empty list. If the list is to be ``unbounded'', the maxcount should be * specified as LISTCOUNT_T_MAX, or, alternately, as -1. The value zero * is not permitted. */ CP_HIDDEN list_t *list_init(list_t *list, listcount_t maxcount) { assert (maxcount != 0); list->nilnode.next = &list->nilnode; list->nilnode.prev = &list->nilnode; list->nodecount = 0; list->maxcount = maxcount; return list; } /* * Dynamically allocate a list object using malloc(), and initialize it so that * it is a valid empty list. If the list is to be ``unbounded'', the maxcount * should be specified as LISTCOUNT_T_MAX, or, alternately, as -1. */ CP_HIDDEN list_t *list_create(listcount_t maxcount) { list_t *new = malloc(sizeof *new); if (new) { assert (maxcount != 0); new->nilnode.next = &new->nilnode; new->nilnode.prev = &new->nilnode; new->nodecount = 0; new->maxcount = maxcount; } return new; } /* * Destroy a dynamically allocated list object. * The client must remove the nodes first. */ CP_HIDDEN void list_destroy(list_t *list) { assert (list_isempty(list)); free(list); } /* * Free all of the nodes of a list. The list must contain only * dynamically allocated nodes. After this call, the list * is empty. */ CP_HIDDEN void list_destroy_nodes(list_t *list) { lnode_t *lnode = list_first_priv(list), *nil = list_nil(list), *tmp; while (lnode != nil) { tmp = lnode->next; lnode->next = NULL; lnode->prev = NULL; lnode_destroy(lnode); lnode = tmp; } list_init(list, list->maxcount); } /* * Return all of the nodes of a list to a node pool. The nodes in * the list must all have come from the same pool. */ CP_HIDDEN void list_return_nodes(list_t *list, lnodepool_t *pool) { lnode_t *lnode = list_first_priv(list), *tmp, *nil = list_nil(list); while (lnode != nil) { tmp = lnode->next; lnode->next = NULL; lnode->prev = NULL; lnode_return(pool, lnode); lnode = tmp; } list_init(list, list->maxcount); } /* * Insert the node ``new'' into the list immediately after ``this'' node. */ CP_HIDDEN void list_ins_after(list_t *list, lnode_t *new, lnode_t *this) { lnode_t *that = this->next; assert (new != NULL); assert (!list_contains(list, new)); assert (!lnode_is_in_a_list(new)); assert (this == list_nil(list) || list_contains(list, this)); assert (list->nodecount + 1 > list->nodecount); new->prev = this; new->next = that; that->prev = new; this->next = new; list->nodecount++; assert (list->nodecount <= list->maxcount); } /* * Insert the node ``new'' into the list immediately before ``this'' node. */ CP_HIDDEN void list_ins_before(list_t *list, lnode_t *new, lnode_t *this) { lnode_t *that = this->prev; assert (new != NULL); assert (!list_contains(list, new)); assert (!lnode_is_in_a_list(new)); assert (this == list_nil(list) || list_contains(list, this)); assert (list->nodecount + 1 > list->nodecount); new->next = this; new->prev = that; that->next = new; this->prev = new; list->nodecount++; assert (list->nodecount <= list->maxcount); } /* * Delete the given node from the list. */ CP_HIDDEN lnode_t *list_delete(list_t *list, lnode_t *del) { lnode_t *next = del->next; lnode_t *prev = del->prev; assert (list_contains(list, del)); prev->next = next; next->prev = prev; list->nodecount--; del->next = del->prev = NULL; return del; } /* * For each node in the list, execute the given function. The list, * current node and the given context pointer are passed on each * call to the function. */ CP_HIDDEN void list_process(list_t *list, void *context, void (* function)(list_t *list, lnode_t *lnode, void *context)) { lnode_t *node = list_first_priv(list), *next, *nil = list_nil(list); while (node != nil) { /* check for callback function deleting */ /* the next node from under us */ assert (list_contains(list, node)); next = node->next; function(list, node, context); node = next; } } /* * Dynamically allocate a list node and assign it the given piece of data. */ CP_HIDDEN lnode_t *lnode_create(void *data) { lnode_t *new = malloc(sizeof *new); if (new) { new->data = data; new->next = NULL; new->prev = NULL; } return new; } /* * Initialize a user-supplied lnode. */ CP_HIDDEN lnode_t *lnode_init(lnode_t *lnode, void *data) { lnode->data = data; lnode->next = NULL; lnode->prev = NULL; return lnode; } /* * Destroy a dynamically allocated node. */ CP_HIDDEN void lnode_destroy(lnode_t *lnode) { assert (!lnode_is_in_a_list(lnode)); free(lnode); } /* * Initialize a node pool object to use a user-supplied set of nodes. * The ``nodes'' pointer refers to an array of lnode_t objects, containing * ``n'' elements. */ CP_HIDDEN lnodepool_t *lnode_pool_init(lnodepool_t *pool, lnode_t *nodes, listcount_t n) { listcount_t i; assert (n != 0); pool->pool = nodes; pool->fre = nodes; pool->size = n; for (i = 0; i < n - 1; i++) { nodes[i].next = nodes + i + 1; } nodes[i].next = NULL; nodes[i].prev = nodes; /* to make sure node is marked ``on list'' */ return pool; } /* * Create a dynamically allocated pool of n nodes. */ CP_HIDDEN lnodepool_t *lnode_pool_create(listcount_t n) { lnodepool_t *pool; lnode_t *nodes; assert (n != 0); pool = malloc(sizeof *pool); if (!pool) return NULL; nodes = malloc(n * sizeof *nodes); if (!nodes) { free(pool); return NULL; } lnode_pool_init(pool, nodes, n); return pool; } /* * Determine whether the given pool is from this pool. */ CP_HIDDEN int lnode_pool_isfrom(lnodepool_t *pool, lnode_t *node) { listcount_t i; /* this is carefully coded this way because ANSI C forbids pointers to different objects from being subtracted or compared other than for exact equality */ for (i = 0; i < pool->size; i++) { if (pool->pool + i == node) return 1; } return 0; } /* * Destroy a dynamically allocated pool of nodes. */ CP_HIDDEN void lnode_pool_destroy(lnodepool_t *p) { free(p->pool); free(p); } /* * Borrow a node from a node pool. Returns a null pointer if the pool * is exhausted. */ CP_HIDDEN lnode_t *lnode_borrow(lnodepool_t *pool, void *data) { lnode_t *new = pool->fre; if (new) { pool->fre = new->next; new->data = data; new->next = NULL; new->prev = NULL; } return new; } /* * Return a node to a node pool. A node must be returned to the pool * from which it came. */ CP_HIDDEN void lnode_return(lnodepool_t *pool, lnode_t *node) { assert (lnode_pool_isfrom(pool, node)); assert (!lnode_is_in_a_list(node)); node->next = pool->fre; node->prev = node; pool->fre = node; } /* * Determine whether the given list contains the given node. * According to this function, a list does not contain its nilnode. */ CP_HIDDEN int list_contains(list_t *list, lnode_t *node) { lnode_t *n, *nil = list_nil(list); for (n = list_first_priv(list); n != nil; n = lnode_next(n)) { if (node == n) return 1; } return 0; } /* * A more generalized variant of list_transfer. This one removes a * ``slice'' from the source list and appends it to the destination * list. */ CP_HIDDEN void list_extract(list_t *dest, list_t *source, lnode_t *first, lnode_t *last) { listcount_t moved = 1; assert (first == NULL || list_contains(source, first)); assert (last == NULL || list_contains(source, last)); if (first == NULL || last == NULL) return; /* adjust the destination list so that the slice is spliced out */ first->prev->next = last->next; last->next->prev = first->prev; /* graft the splice at the end of the dest list */ last->next = &dest->nilnode; first->prev = dest->nilnode.prev; dest->nilnode.prev->next = first; dest->nilnode.prev = last; while (first != last) { first = first->next; assert (first != list_nil(source)); /* oops, last before first! */ moved++; } /* assert no overflows */ assert (source->nodecount - moved <= source->nodecount); assert (dest->nodecount + moved >= dest->nodecount); /* assert no weirdness */ assert (moved <= source->nodecount); source->nodecount -= moved; dest->nodecount += moved; /* assert list sanity */ assert (list_verify(source)); assert (list_verify(dest)); } /* * Split off a trailing sequence of nodes from the source list and relocate * them to the tail of the destination list. The trailing sequence begins * with node ``first'' and terminates with the last node of the source * list. The nodes are added to the end of the new list in their original * order. */ CP_HIDDEN void list_transfer(list_t *dest, list_t *source, lnode_t *first) { listcount_t moved = 1; lnode_t *last; assert (first == NULL || list_contains(source, first)); if (first == NULL) return; last = source->nilnode.prev; source->nilnode.prev = first->prev; first->prev->next = &source->nilnode; last->next = &dest->nilnode; first->prev = dest->nilnode.prev; dest->nilnode.prev->next = first; dest->nilnode.prev = last; while (first != last) { first = first->next; moved++; } /* assert no overflows */ assert (source->nodecount - moved <= source->nodecount); assert (dest->nodecount + moved >= dest->nodecount); /* assert no weirdness */ assert (moved <= source->nodecount); source->nodecount -= moved; dest->nodecount += moved; /* assert list sanity */ assert (list_verify(source)); assert (list_verify(dest)); } CP_HIDDEN void list_merge(list_t *dest, list_t *sour, int compare (const void *, const void *)) { lnode_t *dn, *sn, *tn; lnode_t *d_nil = list_nil(dest), *s_nil = list_nil(sour); /* Nothing to do if source and destination list are the same. */ if (dest == sour) return; /* overflow check */ assert (list_count(sour) + list_count(dest) >= list_count(sour)); /* lists must be sorted */ assert (list_is_sorted(sour, compare)); assert (list_is_sorted(dest, compare)); dn = list_first_priv(dest); sn = list_first_priv(sour); while (dn != d_nil && sn != s_nil) { if (compare(lnode_get(dn), lnode_get(sn)) >= 0) { tn = lnode_next(sn); list_delete(sour, sn); list_ins_before(dest, sn, dn); sn = tn; } else { dn = lnode_next(dn); } } if (dn != d_nil) return; if (sn != s_nil) list_transfer(dest, sour, sn); } CP_HIDDEN void list_sort(list_t *list, int compare(const void *, const void *)) { list_t extra; listcount_t middle; lnode_t *node; if (list_count(list) > 1) { middle = list_count(list) / 2; node = list_first_priv(list); list_init(&extra, list_count(list) - middle); while (middle--) node = lnode_next(node); list_transfer(&extra, list, node); list_sort(list, compare); list_sort(&extra, compare); list_merge(list, &extra, compare); } assert (list_is_sorted(list, compare)); } CP_HIDDEN lnode_t *list_find(list_t *list, const void *key, int compare(const void *, const void *)) { lnode_t *node; for (node = list_first_priv(list); node != list_nil(list); node = node->next) { if (compare(lnode_get(node), key) == 0) return node; } return 0; } /* * Return 1 if the list is in sorted order, 0 otherwise */ CP_HIDDEN int list_is_sorted(list_t *list, int compare(const void *, const void *)) { lnode_t *node, *next, *nil; next = nil = list_nil(list); node = list_first_priv(list); if (node != nil) next = lnode_next(node); for (; next != nil; node = next, next = lnode_next(next)) { if (compare(lnode_get(node), lnode_get(next)) > 0) return 0; } return 1; } /* * Get rid of macro functions definitions so they don't interfere * with the actual definitions */ #undef list_isempty #undef list_isfull #undef lnode_pool_isempty #undef list_append #undef list_prepend #undef list_first #undef list_last #undef list_next #undef list_prev #undef list_count #undef list_del_first #undef list_del_last #undef lnode_put #undef lnode_get /* * Return 1 if the list is empty, 0 otherwise */ CP_HIDDEN int list_isempty(list_t *list) { return list->nodecount == 0; } /* * Return 1 if the list is full, 0 otherwise * Permitted only on bounded lists. */ CP_HIDDEN int list_isfull(list_t *list) { return list->nodecount == list->maxcount; } /* * Check if the node pool is empty. */ CP_HIDDEN int lnode_pool_isempty(lnodepool_t *pool) { return (pool->fre == NULL); } /* * Add the given node at the end of the list */ CP_HIDDEN void list_append(list_t *list, lnode_t *node) { list_ins_before(list, node, &list->nilnode); } /* * Add the given node at the beginning of the list. */ CP_HIDDEN void list_prepend(list_t *list, lnode_t *node) { list_ins_after(list, node, &list->nilnode); } /* * Retrieve the first node of the list */ CP_HIDDEN lnode_t *list_first(list_t *list) { if (list->nilnode.next == &list->nilnode) return NULL; return list->nilnode.next; } /* * Retrieve the last node of the list */ CP_HIDDEN lnode_t *list_last(list_t *list) { if (list->nilnode.prev == &list->nilnode) return NULL; return list->nilnode.prev; } /* * Retrieve the count of nodes in the list */ CP_HIDDEN listcount_t list_count(list_t *list) { return list->nodecount; } /* * Remove the first node from the list and return it. */ CP_HIDDEN lnode_t *list_del_first(list_t *list) { return list_delete(list, list->nilnode.next); } /* * Remove the last node from the list and return it. */ CP_HIDDEN lnode_t *list_del_last(list_t *list) { return list_delete(list, list->nilnode.prev); } /* * Associate a data item with the given node. */ CP_HIDDEN void lnode_put(lnode_t *lnode, void *data) { lnode->data = data; } /* * Retrieve the data item associated with the node. */ CP_HIDDEN void *lnode_get(lnode_t *lnode) { return lnode->data; } /* * Retrieve the node's successor. If there is no successor, * NULL is returned. */ CP_HIDDEN lnode_t *list_next(list_t *list, lnode_t *lnode) { assert (list_contains(list, lnode)); if (lnode->next == list_nil(list)) return NULL; return lnode->next; } /* * Retrieve the node's predecessor. See comment for lnode_next(). */ CP_HIDDEN lnode_t *list_prev(list_t *list, lnode_t *lnode) { assert (list_contains(list, lnode)); if (lnode->prev == list_nil(list)) return NULL; return lnode->prev; } /* * Return 1 if the lnode is in some list, otherwise return 0. */ CP_HIDDEN int lnode_is_in_a_list(lnode_t *lnode) { return (lnode->next != NULL || lnode->prev != NULL); } CP_HIDDEN int list_verify(list_t *list) { lnode_t *node = list_first_priv(list), *nil = list_nil(list); listcount_t count = list_count(list); if (node->prev != nil) return 0; if (count > list->maxcount) return 0; while (node != nil && count--) { if (node->next->prev != node) return 0; node = node->next; } if (count != 0 || node != nil) return 0; return 1; } #ifdef KAZLIB_TEST_MAIN #include #include #include #include typedef char input_t[256]; static int tokenize(char *string, ...) { char **tokptr; va_list arglist; int tokcount = 0; va_start(arglist, string); tokptr = va_arg(arglist, char **); while (tokptr) { while (*string && isspace((unsigned char) *string)) string++; if (!*string) break; *tokptr = string; while (*string && !isspace((unsigned char) *string)) string++; tokptr = va_arg(arglist, char **); tokcount++; if (!*string) break; *string++ = 0; } va_end(arglist); return tokcount; } static int comparef(const void *key1, const void *key2) { return strcmp(key1, key2); } static char *dupstring(char *str) { int sz = strlen(str) + 1; char *new = malloc(sz); if (new) memcpy(new, str, sz); return new; } int main(void) { input_t in; list_t *l = list_create(LISTCOUNT_T_MAX); lnode_t *ln; char *tok1, *val; int prompt = 0; char *help = "a append value to list\n" "d delete value from list\n" "l lookup value in list\n" "s sort list\n" "c show number of entries\n" "t dump whole list\n" "p turn prompt on\n" "q quit"; if (!l) puts("list_create failed"); for (;;) { if (prompt) putchar('>'); fflush(stdout); if (!fgets(in, sizeof(input_t), stdin)) break; switch(in[0]) { case '?': puts(help); break; case 'a': if (tokenize(in+1, &tok1, (char **) 0) != 1) { puts("what?"); break; } val = dupstring(tok1); ln = lnode_create(val); if (!val || !ln) { puts("allocation failure"); if (ln) lnode_destroy(ln); free(val); break; } list_append(l, ln); break; case 'd': if (tokenize(in+1, &tok1, (char **) 0) != 1) { puts("what?"); break; } ln = list_find(l, tok1, comparef); if (!ln) { puts("list_find failed"); break; } list_delete(l, ln); val = lnode_get(ln); lnode_destroy(ln); free(val); break; case 'l': if (tokenize(in+1, &tok1, (char **) 0) != 1) { puts("what?"); break; } ln = list_find(l, tok1, comparef); if (!ln) puts("list_find failed"); else puts("found"); break; case 's': list_sort(l, comparef); break; case 'c': printf("%lu\n", (unsigned long) list_count(l)); break; case 't': for (ln = list_first(l); ln != 0; ln = list_next(l, ln)) puts(lnode_get(ln)); break; case 'q': exit(0); break; case '\0': break; case 'p': prompt = 1; break; default: putchar('?'); putchar('\n'); break; } } return 0; } #endif /* defined TEST_MAIN */