#pragma once /* * Copyright (C) 2005-2008 Team XBMC * http://www.xbmc.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with XBMC; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * http://www.gnu.org/copyleft/gpl.html * */ #include #include #include #include #ifdef __GNUC__ // under gcc, inline will only take place if optimizations are applied (-O). this will force inline even whith optimizations. #define XBMC_FORCE_INLINE __attribute__((always_inline)) #else #define XBMC_FORCE_INLINE #endif typedef uint32_t color_t; class TransformMatrix { public: TransformMatrix() { Reset(); }; void Reset() { m[0][0] = 1.0f; m[0][1] = m[0][2] = m[0][3] = 0.0f; m[1][0] = m[1][2] = m[1][3] = 0.0f; m[1][1] = 1.0f; m[2][0] = m[2][1] = m[2][3] = 0.0f; m[2][2] = 1.0f; alpha = 1.0f; }; static TransformMatrix CreateTranslation(float transX, float transY, float transZ = 0) { TransformMatrix translation; translation.m[0][3] = transX; translation.m[1][3] = transY; translation.m[2][3] = transZ; return translation; } void SetTranslation(float transX, float transY, float transZ) { m[0][1] = m[0][2] = 0.0f; m[0][0] = 1.0f; m[0][3] = transX; m[1][0] = m[1][2] = 0.0f; m[1][1] = 1.0f; m[1][3] = transY; m[2][0] = m[2][1] = 0.0f; m[2][2] = 1.0f; m[2][3] = transZ; alpha = 1.0f; } static TransformMatrix CreateScaler(float scaleX, float scaleY, float scaleZ = 1.0f) { TransformMatrix scaler; scaler.m[0][0] = scaleX; scaler.m[1][1] = scaleY; scaler.m[2][2] = scaleZ; return scaler; }; void SetScaler(float scaleX, float scaleY, float centerX, float centerY) { // Trans(centerX,centerY,centerZ)*Scale(scaleX,scaleY,scaleZ)*Trans(-centerX,-centerY,-centerZ) float centerZ = 0.0f, scaleZ = 1.0f; m[0][0] = scaleX; m[0][1] = 0.0f; m[0][2] = 0.0f; m[0][3] = centerX*(1-scaleX); m[1][0] = 0.0f; m[1][1] = scaleY; m[1][2] = 0.0f; m[1][3] = centerY*(1-scaleY); m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = scaleZ; m[2][3] = centerZ*(1-scaleZ); alpha = 1.0f; }; void SetXRotation(float angle, float y, float z, float ar = 1.0f) { // angle about the X axis, centered at y,z where our coordinate system has aspect ratio ar. // Trans(0,y,z)*Scale(1,1/ar,1)*RotateX(angle)*Scale(ar,1,1)*Trans(0,-y,-z); float c = cos(angle); float s = sin(angle); m[0][0] = ar; m[0][1] = 0.0f; m[0][2] = 0.0f; m[0][3] = 0.0f; m[1][0] = 0.0f; m[1][1] = c/ar; m[1][2] = -s/ar; m[1][3] = (-y*c+s*z)/ar + y; m[2][0] = 0.0f; m[2][1] = s; m[2][2] = c; m[2][3] = (-y*s-c*z) + z; angle = 1.0f; } void SetYRotation(float angle, float x, float z, float ar = 1.0f) { // angle about the Y axis, centered at x,z where our coordinate system has aspect ratio ar. // Trans(x,0,z)*Scale(1/ar,1,1)*RotateY(angle)*Scale(ar,1,1)*Trans(-x,0,-z); float c = cos(angle); float s = sin(angle); m[0][0] = c; m[0][1] = 0.0f; m[0][2] = -s/ar; m[0][3] = -x*c + s*z/ar + x; m[1][0] = 0.0f; m[1][1] = 1.0f; m[1][2] = 0.0f; m[1][3] = 0.0f; m[2][0] = ar*s; m[2][1] = 0.0f; m[2][2] = c; m[2][3] = -ar*x*s - c*z + z; angle = 1.0f; } static TransformMatrix CreateZRotation(float angle, float x, float y, float ar = 1.0f) { // angle about the Z axis, centered at x,y where our coordinate system has aspect ratio ar. // Trans(x,y,0)*Scale(1/ar,1,1)*RotateZ(angle)*Scale(ar,1,1)*Trans(-x,-y,0) float c = cos(angle); float s = sin(angle); TransformMatrix rot; rot.m[0][0] = c; rot.m[0][1] = -s/ar; rot.m[0][3] = -x*c + s*y/ar + x; rot.m[1][0] = s*ar; rot.m[1][1] = c; rot.m[1][3] = -ar*x*s - c*y + y; return rot; } void SetZRotation(float angle, float x, float y, float ar = 1.0f) { // angle about the Z axis, centered at x,y where our coordinate system has aspect ratio ar. // Trans(x,y,0)*Scale(1/ar,1,1)*RotateZ(angle)*Scale(ar,1,1)*Trans(-x,-y,0) float c = cos(angle); float s = sin(angle); m[0][0] = c; m[0][1] = -s/ar; m[0][2] = 0.0f; m[0][3] = -x*c + s*y/ar + x; m[1][0] = s*ar; m[1][1] = c; m[1][2] = 0.0f; m[1][3] = -ar*x*s - c*y + y; m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = 1.0f; m[2][3] = 0.0f; angle = 1.0f; } static TransformMatrix CreateFader(float a) { TransformMatrix fader; fader.alpha = a; return fader; } void SetFader(float a) { m[0][0] = 1.0f; m[0][1] = 0.0f; m[0][2] = 0.0f; m[0][3] = 0.0f; m[1][0] = 0.0f; m[1][1] = 1.0f; m[1][2] = 0.0f; m[1][3] = 0.0f; m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = 1.0f; m[2][3] = 0.0f; alpha = a; } // assignment operator const TransformMatrix &operator =(const TransformMatrix &right) { if (this != &right) { memcpy(m, right.m, 12*sizeof(float)); alpha = right.alpha; } return *this; } // multiplication operators const TransformMatrix &operator *=(const TransformMatrix &right) { float t00 = m[0][0] * right.m[0][0] + m[0][1] * right.m[1][0] + m[0][2] * right.m[2][0]; float t01 = m[0][0] * right.m[0][1] + m[0][1] * right.m[1][1] + m[0][2] * right.m[2][1]; float t02 = m[0][0] * right.m[0][2] + m[0][1] * right.m[1][2] + m[0][2] * right.m[2][2]; m[0][3] = m[0][0] * right.m[0][3] + m[0][1] * right.m[1][3] + m[0][2] * right.m[2][3] + m[0][3]; m[0][0] = t00; m[0][1] = t01; m[0][2] = t02; t00 = m[1][0] * right.m[0][0] + m[1][1] * right.m[1][0] + m[1][2] * right.m[2][0]; t01 = m[1][0] * right.m[0][1] + m[1][1] * right.m[1][1] + m[1][2] * right.m[2][1]; t02 = m[1][0] * right.m[0][2] + m[1][1] * right.m[1][2] + m[1][2] * right.m[2][2]; m[1][3] = m[1][0] * right.m[0][3] + m[1][1] * right.m[1][3] + m[1][2] * right.m[2][3] + m[1][3]; m[1][0] = t00; m[1][1] = t01; m[1][2] = t02; t00 = m[2][0] * right.m[0][0] + m[2][1] * right.m[1][0] + m[2][2] * right.m[2][0]; t01 = m[2][0] * right.m[0][1] + m[2][1] * right.m[1][1] + m[2][2] * right.m[2][1]; t02 = m[2][0] * right.m[0][2] + m[2][1] * right.m[1][2] + m[2][2] * right.m[2][2]; m[2][3] = m[2][0] * right.m[0][3] + m[2][1] * right.m[1][3] + m[2][2] * right.m[2][3] + m[2][3]; m[2][0] = t00; m[2][1] = t01; m[2][2] = t02; alpha *= right.alpha; return *this; } TransformMatrix operator *(const TransformMatrix &right) const { TransformMatrix result; result.m[0][0] = m[0][0] * right.m[0][0] + m[0][1] * right.m[1][0] + m[0][2] * right.m[2][0]; result.m[0][1] = m[0][0] * right.m[0][1] + m[0][1] * right.m[1][1] + m[0][2] * right.m[2][1]; result.m[0][2] = m[0][0] * right.m[0][2] + m[0][1] * right.m[1][2] + m[0][2] * right.m[2][2]; result.m[0][3] = m[0][0] * right.m[0][3] + m[0][1] * right.m[1][3] + m[0][2] * right.m[2][3] + m[0][3]; result.m[1][0] = m[1][0] * right.m[0][0] + m[1][1] * right.m[1][0] + m[1][2] * right.m[2][0]; result.m[1][1] = m[1][0] * right.m[0][1] + m[1][1] * right.m[1][1] + m[1][2] * right.m[2][1]; result.m[1][2] = m[1][0] * right.m[0][2] + m[1][1] * right.m[1][2] + m[1][2] * right.m[2][2]; result.m[1][3] = m[1][0] * right.m[0][3] + m[1][1] * right.m[1][3] + m[1][2] * right.m[2][3] + m[1][3]; result.m[2][0] = m[2][0] * right.m[0][0] + m[2][1] * right.m[1][0] + m[2][2] * right.m[2][0]; result.m[2][1] = m[2][0] * right.m[0][1] + m[2][1] * right.m[1][1] + m[2][2] * right.m[2][1]; result.m[2][2] = m[2][0] * right.m[0][2] + m[2][1] * right.m[1][2] + m[2][2] * right.m[2][2]; result.m[2][3] = m[2][0] * right.m[0][3] + m[2][1] * right.m[1][3] + m[2][2] * right.m[2][3] + m[2][3]; result.alpha = alpha * right.alpha; return result; } inline void TransformPosition(float &x, float &y, float &z) const XBMC_FORCE_INLINE { float newX = m[0][0] * x + m[0][1] * y + m[0][2] * z + m[0][3]; float newY = m[1][0] * x + m[1][1] * y + m[1][2] * z + m[1][3]; z = m[2][0] * x + m[2][1] * y + m[2][2] * z + m[2][3]; y = newY; x = newX; } inline void TransformPositionUnscaled(float &x, float &y, float &z) const XBMC_FORCE_INLINE { float n; // calculate the norm of the transformed (but not translated) vectors involved n = sqrt(m[0][0]*m[0][0] + m[0][1]*m[0][1] + m[0][2]*m[0][2]); float newX = (m[0][0] * x + m[0][1] * y + m[0][2] * z)/n + m[0][3]; n = sqrt(m[1][0]*m[1][0] + m[1][1]*m[1][1] + m[1][2]*m[1][2]); float newY = (m[1][0] * x + m[1][1] * y + m[1][2] * z)/n + m[1][3]; n = sqrt(m[2][0]*m[2][0] + m[2][1]*m[2][1] + m[2][2]*m[2][2]); float newZ = (m[2][0] * x + m[2][1] * y + m[2][2] * z)/n + m[2][3]; z = newZ; y = newY; x = newX; } inline void InverseTransformPosition(float &x, float &y) const XBMC_FORCE_INLINE { // used for mouse - no way to find z x -= m[0][3]; y -= m[1][3]; float detM = m[0][0]*m[1][1] - m[0][1]*m[1][0]; float newX = (m[1][1] * x - m[0][1] * y)/detM; y = (-m[1][0] * x + m[0][0] * y)/detM; x = newX; } inline float TransformXCoord(float x, float y, float z) const XBMC_FORCE_INLINE { return m[0][0] * x + m[0][1] * y + m[0][2] * z + m[0][3]; } inline float TransformYCoord(float x, float y, float z) const XBMC_FORCE_INLINE { return m[1][0] * x + m[1][1] * y + m[1][2] * z + m[1][3]; } inline float TransformZCoord(float x, float y, float z) const XBMC_FORCE_INLINE { return m[2][0] * x + m[2][1] * y + m[2][2] * z + m[2][3]; } inline color_t TransformAlpha(color_t colour) const XBMC_FORCE_INLINE { return (color_t)(colour * alpha); } float m[3][4]; float alpha; };