
1

Taler:
Usable, privacy-preserving payments for the

Web
Jeffrey Burdges

Florian Dold
Christian Grothoff
Marcello Stanisci

Abstract—Taler is a new electronic online payment
system which provides anonymity for customers and, due to
this design choice, also offers significantly better usability.
This paper describes the interaction processes of online
payment systems, and analytically compares their usability
for both customers and merchants. We then focus on the
resulting assurances that Taler provides, as—particularly
for payment systems—usability and security are inter-
twined. Web payment systems must also face the reality
of constraints imposed by modern Web browser security
architecture, so the analysis includes considerations of how
Web payment systems exploit the security infrastructure
provided by the modern Web.

I. INTRODUCTION

The future Internet needs a secure, usable and privacy-
preserving micropayment system that is not backed by
a “crypto currency”. Payment systems involving state-
issued currencies have been used for centuries to facil-
itate transactions, and the involvement of the state has
been critical as state institutions can dampen fluctuations
in the value of the currency. [9] Controlling money
supply is critical to ensure stable prices that facilitate
trade [32] instead of speculation.[21]

As transactions on the Internet, such as sending an
e-mail or reading a Web site, tend to be of smaller
value than traditional transactions involving the exchange
of physical goods, we are faced with the challenge of
reducing the mental and technical overheads of existing
payment systems to handle micropayments. Addressing
this problem is urgent: ad-blocking technology is eroding
advertising as a substitute for micropayments [28], and
the Big Data business model where citizens pay with
their private information [11] in combination with the
deep state hastens our society’s regression towards post-
democracy [27].

The focus of this paper is on Taler, a new free software
payment system designed to meet certain key ethical
considerations. In Taler, the customer remains anony-
mous, while the merchant is taxable. Here, anonymous

simply means that the payment system does not require
any personal information from the customer, and that
different transactions by the same customer are unlink-
able. Naturally, the specifics of the transaction—such
as delivery of goods to a shipping address, or the use
of non-anonymous IP-based communication—may still
leak information about the customer’s identity. Taxable
means that the state can obtain the necessary information
about the contract to levy income, sales or value-added
taxes. Taler uses blind signatures [7] to create digital
coins, and a new “refresh” protocol to allow giving
change and refunds while maintaining unlinkability.

This paper will not consider the details of Taler’s
cryptographic protocols1, as for usability one needs to
completely hide the cryptography from the users. Thus,
this paper will focus on an analytical description of how
to achieve usable and secure electronic payments. Our
focus is to show that existing mental models users have
from existing widespread payment systems will apply
naturally. We leave a usability study with actual users
for future work, as we believe that the basic architecture
of such a system is sufficiently interesting by itself.

Key contributions of this paper are:

• A description of different payment systems using
common terminology, allowing us to analytically
compare these systems with respect to security and
usability.

• An introduction to the Taler payment system from
the perspective of users and merchants, with a focus
on how to achieve secure payments in a way that
is intuitive and has adequate fail-safes.

• Detailed considerations for how to adapt Taler to
Web payments and the intricacies of securing pay-
ments within the constraints of modern “secure”
browsers.

• A publicly available free software reference imple-
mentation of the proposed architecture.

1Details of the protocol are documented at https://api.taler.net/

2

II. EXISTING PAYMENT WORKFLOWS

Before we look at the payment workflow for Taler, we
will sketch the workflow of existing payment systems.
This will establish a common terminology, a baseline
for comparison and crucially also an indication as to
how we can relate Taler’s workflow to existing mental
models that users already have, thereby allowing us to
judge the mental adaptation costs required to transition
to transactions with Taler.

A. Cash

Cash has traditionally circulated by being passed
directly from buyers to sellers, with each seller then
becoming a buyer. Thus, cash is inherently a peer-to-
peer payment system, as participants all appear in the
both buyer and seller roles, merely at different times.
However, this view is both simplified and somewhat
dated.

In today’s practice, cash is frequently first withdrawn
from ATMs by customers, who then spend it with mer-
chants, who finally deposit the cash with their respective
bank. In this flow, security is achieved as the customer
authenticates to the ATM using credentials provided
by the customer’s bank, and the merchant specifies his
account details when depositing the cash. The customer
does not authenticate when spending the cash, but the
merchant validates the authenticity of the coins or bills.
Coins and bills are minted by state-licensed institutions,
such as the US Mint. These institutions also provide
detailed instructions for how to validate the authenticity
of the coins or bills [4], and are typically the final trusted
authority on the authenticity of coins and bills.

As customers need not authenticate, purchases remain
anonymous, modulo the limited tracking enabled by
serial numbers printed on bills. [19]

Spending cash does not provide any inherent proof of
purchase for the customer, instead the merchant may pro-
vide paper receipts which are generated independently
and do not receive the same anti-forgery protections that
are in place for cash.

Against most attacks customers and merchants limit
their risks to the amount of cash they carry or accept at
a given time [18]. Additionally, customers are advised
to choose the ATMs they use carefully, as malicious
ATMs may attempt to steal their customer’s credentials.
Authentication with an ATM can involve a special ATM
card, or more commonly the use of credit or debit cards.
In all these cases, these physical security tokens are
issued by the customer’s bank of the customer.

B. Credit and debit cards

Credit and debit card payments operate by the cus-
tomer providing their credentials to the merchant. Many

different authentication and authorization schemes are
in use in various combinations, including both secret
information, usually PINs, and physical security devices
like TANs [1] (cards with an EMV chip [2]), and the
customer’s mobile phone [10]. A typical modern Web
payment process involves (0) the merchant offering a
“secure” communication channel using TLS based on
the X.509 public key infrastructure,2 (1) selecting a
payment method, (2) entering the credit card details
like owner’s name, card number, expiration time, CVV
code, and billing address, (3) (optionally) authorizing the
transaction via mobile TAN, or by authenticating against
the customer’s bank, often on a Web site that is operated
by the payment processor and not the customer’s bank.
Figure 6 shows a typical card-based payment process on
the Web today using the UML style of the W3c payment
interest group [33]. Most of the details are not relevant to
this paper, but the figure nicely illustrates the complexity
of the common 3-D secure (3DS) process.

Given this process, there is an inherent risk of informa-
tion leakage of customers’ credentials. Fraud detection
systems attempt to detect misuse of leaked credentials,
and payment system providers handle disputes between
customers and merchants. As a result, Web payment
processes may finish with (4) the payment being rejected
for a variety of reasons, from false-positives in fraud
detection to the merchant not accepting the particular
card issuer.

Traditionally, merchants bear most of the financial
risk, and a key “feature” of the 3DS process compared
to traditional card payments is hence to shift dispute
liability to the issuer of the card, who may then shift
it to the customer. Even in cases where the issuer or
the merchant remain legally first in line, there are still
risks customers incur from the card dispute procedures,
such as neither them nor the payment processor notic-
ing fraudulent transactions, or them noticing fraudulent
transactions past the date at which their bank will refund
them. The customer also typically only has a merchant-
generated comment and the amount paid in his credit
card statement as a proof for the transaction. Thus,
the use of credit cards online does not generate any
verifiable electronic receipts for the customers, enabling
malicious merchants to later change the terms of the
contract. Beyond these issues, customers face secondary
risks of identity theft from the personal details exposed
by the authentication procedures. In this case, even if the
financial damages are ultimately covered by the bank, the
customer always has to deal with the hassle of notifying
the bank in the first place. As a result, customers must

2Given numerous TLS protocol and implementation flaws as well
as X.509 key management incidents in recent years [14], the security
provided by TLS is at best questionable.

3

remain wary about their card use, which limits their
online shopping [15, p. 50].

C. Bitcoin
Bitcoin operates by recording all transactions in a

pseudonymous public ledger. A Bitcoin account is iden-
tified by its public key and the owner(s) must know
the corresponding private key, which in turn is used
to authorize the transfer of Bitcoins from the account
to other accounts. The information in the global public
ledger allows everybody to compute the balances in all
accounts and to see all transactions. Transactions are
denominated in a new currency labeled BTC, whose
valuation depends upon speculation. Adding transactions
to the global public ledger involves broadcasting the
transaction data, peers verifying and appending it to the
public ledger, and some peer in the network solving
a moderately hard computational proof-of-work puzzle;
the latter process is called mining. The mining process is
incentivised by transaction fees and mining rewards, the
latter also providing the process of initial accumulation
for BTC. [23] Conversion to and from BTC from and
to other currencies incurs substantial fees [6]. There is
now an extreme diversity of Bitcoin-related payment
technologies, but usability improvements are usually
achieved by adding a “trusted” third party, and there have
been many incidents where such parties then embezzled
funds from their customers [30]. The classical Bitcoin
payment workflow consisted of entering payment details
into a peer-to-peer application. The user would access
his Bitcoin wallet and instruct it to transfer a particular
amount from one of his accounts to the account of
the merchant, possibly including additional metadata to
be associated with the transfer and embedded into the
global public ledger. The wallet application would then
transmit the request to the Bitcoin peer-to-peer overlay
network. The use of an external payment application
makes wallet-based payments significantly less browser-
friendly than ordinary card payments, as illustrated in
Figure 7.

Bitcoin payments are only confirmed when they ap-
pear in the public ledger, which is updated at an average
frequency of once every 10 minutes. Even then, it is
possible that a fork in the so-called block chain may void
durability of the transaction [23]. As a result, customers
and merchants must either accommodate this delay, or
incur fraud risks during this indeterminate period.

Bitcoin is considered to be secure against an adversary
who cannot control around a fifth of the Bitcoin miner’s
computational resources [3], [12], [13]. As a result,
the network must expend considerable computational
resources to keep this value high. In fact, “a single
Bitcoin transaction uses roughly enough electricity to
power 1.57 American households for a day”. [22] These

costs are largely hidden by speculation in BTC, but
that speculation itself contributes to BTC being unsta-
ble. [20], [16], [21].

There are several examples of Bitcoin’s
pseudononymity being broken by investigators [24].
Mixnets afford protection against this, but they require
numerous transactions, exacerbating Bitcoin’s already
high transaction costs. Bitcoin’s pseudononymity
applies equally to both customers and merchants,
making Bitcoin highly amenable to tax evasion, money
laundering, and sales of contraband. As a result,
anonymity tools like mixnets do not enjoy particularly
widespread support in the Bitcoin community where
many participants seek to make the currency appear
more legitimate.

D. Walled garden payment systems

Walled garden payment systems offer ease of use by
processing payments using a trusted payment service
provider. Here, the customer authenticates to the trusted
service and instructs the payment provider to execute a
transaction on his behalf (Figure 10). In these payment
systems, the provider basically acts like a bank with
accounts carrying balances for the various users. In
contrast to traditional banking systems, both customer
and merchant are forced to have an account with the
same provider. Each user must take the effort to establish
his identity with a service provider to create an account.
Merchants and customers obtain the best interoperability
in return for their account creation efforts if they start
with the biggest providers. As a result, there are a
few dominating walled garden providers, with AliPay,
ApplePay, GooglePay, SamsungPay and PayPal being
the current oligopoly. In this paper, we will use PayPal
as a representative example for our discussion of these
payment systems.

As with card payments, these oligopolies are polit-
ically dangerous [26] and the lack of competition can
result in excessive profit taking that may require political
solutions [17] to the resulting market failure. The use
of non-standard proprietary interfaces to the payment
processing service of these providers serves to reinforce
the customer lock-in.

III. TALER

Taler is a free software cryptographic payment system
with an open protocol specification that couples cash-
like anonymity for customers when they spend money
with low transaction costs, signed digital receipts, and
accurate income information to facilitate taxation and
anti-corruption efforts.

Taler achieves anonymity for buyers using blind sig-
natures [7]. Ever since their discovery thirty years

4

ago, cryptographers have viewed blind signatures as
the optimal cryptographic primitive for consumer level
transaction systems. Our goal is for Taler to become
the first transaction system based on blind signatures to
see widespread adoption. Hiding the cryptography from
users and integrating smoothly with the Web are central
components of our technical strategy to achieve this.

There are four components of the Taler system (Fig-
ure 1):

• Wallets are software packages that allow customers
to withdraw, hold, and spend coins. Wallets also
manage the customer’s accounts at the exchange,
and keep receipts in a transaction history. Wallets
can be realized as browser extensions, mobile Apps
or even in custom hardware.

• Exchanges enable customers to withdraw anony-
mous digital coins and merchants to deposit digital
coins, in exchange for bank money. Exchanges learn
the amounts withdrawn by customers and deposited
by merchants, but they do not learn the relation-
ship between customers and merchants. Exchanges
perform online detection of double spending, thus
providing merchants instant feedback, —including
digital proofs—in case of misbehaving customers.

• Merchants provide goods or services in exchange
for coins held by customers’ wallets. Merchants
deposit these coins at the exchange for their regular
currency value. Merchants consist of a frontend
which interacts with the customer’s wallet, and a
backend that interacts with the exchange. Typical
frontends include Web shops and point-of-sale sys-
tems.

• Auditors verify that exchanges operate correctly to
limit the risk that customers and merchants incur
by using a particular exchange.

The specific protocol between wallet and merchant
depends on the setting. For a traditional store, a near field
communication (NFC) protocol might be used between
a point-of-sale system and a mobile application. In this

Exchange

Customer Merchant

Auditor

with
dr

aw
co

ins

deposit coins

spend coins

verify

Fig. 1: Taler system overview.

paper, we focus on Web payments for an online shop.

A. Web payment workflow

We explain how the actors in the Taler system interact
by documenting a typical payment.

Initially, the customer must once install the Taler
wallet extension for his browser. Naturally, this step
may become superfluous if Taler is integrated tightly
with browsers in the future. Regardless, installing the
extension involves one or two clicks to confirm the
operation once the user was pointed to the correct Web
site. Restarting the browser is not required.

a) Withdrawing coins: As with cash, the customer
must first withdraw digital coins (Figure ??). For this,
the customer must first visit the online banking portal
of his bank. Here, the bank will typically require some
form of authentication, the specific method used depends
on the bank (Figure 2a).

The next step depends on the Taler support offered by
the bank:

• If the bank does not properly integrate with Taler,
the customer needs use the menu of the wallet
to create a reserve. The wallet will ask which
amount in which currency (i.e. EUR or USD) the
customer wants to withdraw and allow the customer
to select an exchange. Given this information, the
wallet will instruct the customer to transfer the
respective amount to the account of the exchange.
The customer will have to enter a 54-character
reserve key which includes 256 bits of entropy
and an 8-bit checksum into the transfer subject.
Naturally, this is exactly the kind of interaction we
would like to avoid for usability.

• Hence, if the bank properly integrates with Taler,
the customer has a form in the online banking
portal where he can specify an amount to withdraw
(Figure 2b). The bank then triggers an interaction
with the wallet to allow the customer to select
an exchange (Figure 2c). Afterwards, the wallet
instructs the bank about the details of the wire
transfer. The bank asks the customer to authorize
the transfer, and finally confirms to the wallet that
the transfer has been successfully initiated.

In either case, the wallet can then withdraw the coins
from the exchange, and does so in the background
without further interaction with the customer.

In principle, the exchange can be directly operated
by the bank, in which case the step where the customer
selects an exchange may be skipped by default. However,
we generally assume that the exchange is a separate en-
tity, as this yields the largest anonymity set for customers
and may help create a competitive market.

5

(a) Bank login. (Simplified for demonstration.)

(b) Specify amount to withdraw. (Integrated bank support.)

(c) Select exchange provider. (Generated by wallet.)

(d) Confirm transaction with a PIN. (Generated by bank.)

Fig. 2: Required steps in a Taler withdrawal process.

b) Spending coins: At a later point in time, the
customer can spend his coins by visiting a merchant that
accepts digital coins in the respective currency issued
by the respective exchange (Figure 3). Merchants are
generally configured to either accept a specific exchange,
or to accept all the exchanges audited by a particular
auditor. Merchants can also set a ceiling for the max-
imum amount of transaction fees they are willing to
cover. Usually these details should not matter for the
customer, as we expect most merchants to allow most
accredited exchange providers, and for exchanges to op-
erate with transaction fees acceptable to most merchants.
If transaction fees are higher than what is covered by the
merchant, the customer may choose to cover them.

As with traditional Web transactions, the customer
first selects which items he wishes to buy. This can
involve building a traditional shopping cart, or simply
clicking on a particular link for the respective article
(Figure 4a). As with card payments, the Web shop may
then allow the customer to select a payment method,
including Taler. Taler also allows the Web shop to
detect the presence of a Taler wallet (Figure 8), so
that this step may be skipped (as it is in Figure 4). If
Taler was detected or selected, the Web shop sends a
digitally signed contract proposal to the wallet extension
(Figure 9). The wallet then presents the contract to the
user. The format of the contract is in an extensible JSON-
based format defined by Taler and not HTML, as the
rendering of the contract is done by the wallet to ensure
correct visual representation. In the case that transaction
fees need to be covered by the customer, these are shown

Taler (Payment)

Payer (Shopper) Browser

Payer (Shopper) Browser

Payee (Merchant) Site

Payee (Merchant) Site

Taler Exchange

Taler Exchange

Tor/HTTPS

HTTP/HTTPS

Establish Payment Obligation

opt

1 Select Taler payment method (skippable with auto-detection)

2 Choose goods

3 Send signed digital contract proposal

Execute Payment

opt

4 Affirm contract

5 Send payment

6 Forward payment

7 Confirm payment

Fulfilment

8 Confirm payment

opt

9 Request fulfillment (if Web article)

10 Provide media product

Fig. 3: Payment processing with Taler.

6

(a) Select article. (Generated by Web shop.)

(b) Confirm payment. (Generated by Taler wallet.)

(c) Receive article. (Generated by Web shop.)

Fig. 4: Required steps in a Taler checkout process.

together with the rest of the proposed contract.
If the customer approves the contract by clicking the

“Confirm Payment” button (Figure 4b), his wallet signs
the contract with enough coins to cover the contract’s
cost, stores all of the information in its local database,
and redirects the browser to a fulfillment URL provided
by the merchant (Figure 4c). The wallet cannot directly
send the payment to the merchant, as the page showing
the contract is provided as a background page controlled
by the Web Extension3 and thus submitting coins from
the background would not use the HTTP-context that the
Web shop’s page requires for session management.

Instead, the server-side of the fulfillment page usually
first detects that the contract has not yet been paid by
checking the merchant’s local database and the HTTP
session state. (A) If the state indicates that this customer
did not yet pay, the merchant generates a page that
shows the customer an indication that the payment is
being processed, and tries to interact with the wallet,
requesting payment. If the wallet is not detected after a
few milliseconds, the page transitions to the card pay-
ment process. If the wallet is present, the page requests
payment from the wallet. The wallet then determines
that the customer already confirmed the payment and
immediately transfers the coins to the JavaScript logic of
the fulfillment page. The fulfillment page then transfers
the coins to the merchant, usually using an asynchronous
HTTP POST request. The request is controlled by the
merchant’s JavaScript and not by the wallet. This ensures
that the merchant is in full control of the communi-
cation between the merchant’s server and the client-
side scripts interacting with the merchant’s server. The
interactions with the wallet are thus purely local inter-
actions within the browser. Upon receipt of the payment
information, the merchant confirms the payment with the
exchange, marks the payment as received, and notifies
the JavaScript on the client side of the result.

• If the payment fails on the network, the request is
typically retried. How often the client retries auto-
matically before informing the user of the network
issue is up to the merchant. If the network failure
persists and is between customer and merchant, the
wallet will try to recover control over the coins at
the exchange by effectively spending the coins first
using Taler’s special “refresh” protocol. In this case,
later deposits by the merchant will simply fail. If
the merchant already succeeded with the payment
before the network failure, the customer can either
retry the operation later via the transaction history,
or demand a refund (see below). Handling these
errors does not require the customer to give up his
privacy.

3https://developer.chrome.com/extensions

7

• If the payment fails due to the exchange claiming
that the request was invalid, the diagnostics created
by the exchange are passed to the wallet for inspec-
tion. The wallet then decides whether the exchange
was correct, and can then inform the user about
a fraudulent or buggy exchange. At this time, it
allows the user to export the relevant cryptographic
data to be used in court. If the exchange’s proofs
were correct and coins were double-spent, the wal-
let informs the user that its database must have
been out-of-date, updates the database and allows
the user to retry the transaction.

• If the payment succeeded, the JavaScript on the
client side triggers effectively a “reload” of the
fulfillment page, triggering case (B) detailed below.

(B) Upon subsequent visits, the server detects that
the payment has already been processed and directly
generates a fulfillment page either confirming the pay-
ment, or—in the case of payments for a digital article—
transmits the digital artifact to the client.

c) Bookmarks and deep links: This particular archi-
tecture also enables smooth use of the payment URIs on
the contemporary Web. In particular, we need to consider
the possibility that a user may bookmark the fulfillment
page, or forward a link to the fulfillment page to another
user.

The given design supports bookmarking. If the mer-
chant’s session management is still tracking the user
when he returns via the bookmark, the page generation
detects that the user has already paid and serves the
final fulfillment page. If the session has been lost, the
merchant will generate a fulfillment page asking for
payment. In this case, the wallet will detect that it has
already paid this contract via a unique identifier in the
contract, and will automatically re-play the payment.
The merchant confirms that this customer already paid,
and generates the final fullfilment page that the user has
previously payed for (and seen). All this still appears as
instantaneous to the user as it merely adds a few extra
network round trips.

In contrast, if the customer sends a link to the ful-
fillment page to another user, thereby possibly sharing
a deep link into the merchant’s shop, the other cus-
tomer’s wallet will fail to find an existing payment.
Consequently, the fulfillment page will not receive the
payment details and instead provide the user with the
proposed contract which contains a description of the
item previously bought by the other user. The recipient
of the link can then decide to also purchase the item.

The design, in particular POSTing the coins asynchro-
nously from JavaScript, also ensures that the user can
freely navigate with the back and forward buttons. As all
requests from all HTTP(S) URIs ever seen by the user
in the browser are fetched via HTTP GET, they can be

bookmarked, shared and safely reloaded. For caching,
the merchant needs to ensure that the fulfillment page
generated in case (A) is not cached by the browser, and
in case (B) is not cached in the network.

As an aside, there are actually several distinct roles
comprising the merchant: shopping pages end their role
by proposing a contract, while a fulfillment page begins
its life processing a contract. It is thus possible for
these components being managed by separate parties.
The control of the fulfillment page over the transmission
of the payment information minimizes the need for
exceptions to handle cross-origin resource sharing. [5],
[31]

d) Giving change and refunds: An important tech-
nical difference between Taler and previous transaction
systems based on blind signing is that Taler is able to
provide unlinkable change and refunds. From the user’s
point of view, obtaining change is automatic and handled
by the wallet, i.e. if the user has a single coin worth
e 5 and wants to spend e 2, the wallet may request
three e 1 coins in change — critically, this is completely
hidden from the user. In fact, the graphical user interface
does not offer a way to inspect the denominations of the
various coins in the wallet, it only shows the total amount
available in each denomination. Expanding the views to
show details may show the exchange providers and fee
structure, but not the cryptographic coins. Consequently,
the major cryptographic advances of Taler are invisible
to the user.

Taler’s technology also allows merchants to give re-
funds to customers. For this, the merchant merely has
to send a signed message to the exchange confirming
the refund, and notify the customer’s wallet that the
respective transaction was refunded. This can even be
done with anonymous customers, as refunds are given
as additional change to the owner of the coins that were
originally spent to pay for the refunded transaction.

Taler’s protocol ensures unlinkability for both changes
and refunds, thus assuring that the user has key conve-
niences of other payment systems, while maintaining the
security standard of an anonymous payment system.

B. NFC payments

We have so far focused on how Taler would be
used for Web payments; however, Taler can also be
naturally used over other protocols, such as near field
communication (NFC). Here, the user would hold his
NFC-enabled device running a wallet application near
an NFC terminal to obtain the contract and confirm the
payment on his device, which would then transfer the
coins and obtain a receipt. An NFC application would
be less restricted in its interaction with the point-of-sale
system compared to a browser extension; thus, running
Taler over NFC is largely a simplification.

8

Specifically, there are no significant new concerns
arising from an NFC device possibly losing contact with
a point-of-sale system. Already for Web payments, Taler
employs only idempotent operations to ensure coins are
never lost and that transactions adequately persist even in
the case of network or endpoint failures. As a result, the
NFC system can simply use the same transaction models
to replay transmissions once contact with the point-of-
sale system is reestablished.

C. Peer-to-peer payments

Peer-to-peer payments are possible with Taler as well;
however, we need to distinguish two types of peer-to-
peer payments.

First, there is the sharing of coins among entities that
mutually trust each other, for example within a family.
Here, all the users have to do is to export and import
electronic coins over a secure channel, such as encrypted
e-mail or via NFC. For NFC, the situation is pretty
trivial, while secure communication over the Internet
is likely to remain a significant usability challenge. We
note that sharing coins by copying the respective private
keys across devices is not taxable: the exchange is not
involved, no contracts are signed, and no records for
taxation are created. However, the involved entities must
trust each other, as after copying a private key both par-
ties could spend the coins, but only the first transaction
will succeed. Given this crucial limitation inherent in
sharing keys, we consider it ethically acceptable that
sharing is not taxable.

Second, there is the transactional mutually exclusive
transfer of ownership. This requires the receiving party
to have a reserve with an exchange, and the exchanges
would have to support wire transfers among them. If
taxability is desired, the reserve would still need to be
tied to a particular citizen’s identity for tax purposes, and
thus require similar identification protocols as commonly
used for establishing a bank account. Thus, in terms of
institutions, one would expect this setup to be offered
most easily by traditional banks. In terms of usability,
transactional transfers are just as easy as sharing when
performed over NFC, but more user friendly when
performed over the Internet as they do not require a
secure communication channel: the Taler protocol is by
design still safe to use even if the communication is made
over an unencrypted channel. Only the authenticity of the
proposed contract needs to be assured.

D. Usability for merchants

Payment system security and usability is not primar-
ily a concern for customers, but also for merchants.
For consumers, existing schemes may be inconvenient
and not provide privacy, but remembering to protect

a physical token (i.e. the card) and to guard a secret
(i.e. the PIN) is relatively straightforward. In contrast,
merchants are expected to “securely” handle sensitive
customer payment data on networked computing devices.
However, securing computer systems—and especially
payment systems that represent substantial value—is a
hard challenge, as evidenced by large-scale break-ins
with millions of consumer card records being illicitly
copied. [25]

Thus, we cannot ignore the usability at the merchant
site when trying to understand the usability of a payment
system, especially as for deployment we will have to
convince millions of merchants that the Taler system
is advantageous. The high-level cryptographic design
already provides the first major advantage, as merchants
do never receive sensitive payment-related customer
information. Thus, they do not have to be subjected
to costly audits or certified hardware, as is commonly
the case for processing card payments. [34] In fact,
the exchange does not need to have a formal business
relationship with the shop at all. According to our design,
the exchange’s contract with the state regulator or auditor
and the customers ought to state that it must honor all
(legal and valid) deposits it receives. Hence, a merchant
supplying a valid deposit request should be able to
enforce this in court without a prior business agreement
with the exchange. This dramatically simplifies setting
up a shop, to the point that the respective software only
needs to be provided with the merchant’s wire transfer
routing information to become operational.

Figure 8 shows how easy it is for a Web shop to
detect the presence of a Taler wallet. This leaves a few
cryptographic operations, such as signing a contract and
verifying the customer’s and the exchange’s signatures,
storing transaction data as well as matching sales with
incoming wire transfers from the exchange. Taler simpli-
fies this for merchants by providing a generic payment
processing backend for the Web shops.

Figure 5 shows how the secure payment components
interact with the existing Web shop logic. First, the
Web shop frontend is responsible for constructing the
shopping cart. For this, the shop frontend generates the
usual Web pages which are shown to the user’s browser
client frontend. Once the order has been constructed, the
shop frontend gives a proposed contract in JSON format
to the payment backend, which signs it and returns it
to the frontend. The frontend then transfers the signed
contract over the network, and passes it to the wallet
(sample code for this is in Figure 9). Here, the wallet
operates from a secure background on the client side,
which allows the user to securely accept the payment,
and to perform the cryptographic operations in a context
that is protected from the Web shop. In particular, it
is secure against a merchant that generates a page that

9

Wallet Browser Web shop Taler backend

(4) signed contract

(signal)

(signal)

(5) signed coins

(3,6) custom

(HTTP(S))

(HTTP(S))

(1) proposed contract / (7) signed coins

(2) signed contract / (8) confirmation

(HTTP(S))

Fig. 5: Both the customer’s client and the merchant’s server execute sensitive cryptographic operations in a secured
background/backend that is protected against direct access. Interactions with the Taler exchange from the wallet
background to withdraw coins and the Taler backend (Figure 1) to deposit coins are not shown. Existing system
security mechanisms are used to isolate the cryptographic components (boxes) from the complex rendering logic
(circles), hence the communication is restricted to JavaScript signals or HTTP(S) respectively.

looks like the payment page from the wallet (Figure 4b),
as such a page would still not have access to the private
keys of the coins that are in the wallet. If the user accepts,
the resulting signed coins are transferred from the client
to the server, again by a protocol that the merchant can
customize to fit the existing infrastructure.

Instead of adding any cryptographic logic to the
merchant frontend, the generic Taler merchant backend
allows the implementor to delegate handling of the coins
to the payment backend, which validates the coins,
deposits them at the exchange, and finally validates and
persists the receipt from the exchange. The merchant
backend then communicates the result of the transaction
to the frontend, which is then responsible for executing
the business logic to fulfill the order. As a result of this
setup, the cryptographic details of the Taler protocol
do not have to be re-implemented by each merchant.
Instead, existing Web shops implemented in a multi-
tude of programming languages can rather trivially add
support for Taler by (0) detecting in the browser that
Taler is available, (1) upon request, generating a contract
in JSON based on the shopping cart, (2) allowing the
backend to sign the contract before sending it to the
client, (7) passing coins received in payment for a
contract to the backend and (8) executing fulfillment
business logic if the backend confirms the validity of
the payment.

To setup a Taler backend, the merchant only needs
to let it know his wire transfer routing details, such
as an IBAN number. Ideally, the merchant might also
want to obtain a certificate for the public key generated
by the backend for improved authentication. Otherwise,
the customer’s authentication of the Web shop simply
continues to rely upon HTTPS/X.509.

IV. DISCUSSION

We will now discuss how customer’s may experience
relevant operational risks and failure modes of Taler, and
relate them to failure modes in existing systems.

A. Security risks

In Taler, customers incur the risk of wallet loss or
theft. We believe customers can manage this risk effec-
tively because they manage similar risks of losing cash in
a physical wallet. Unlike physical wallets, Taler’s wallet
could be backed up to secure against loss of a device.

Taler’s contracts do provide a degree of protection
for customers because they are signed by the merchant
and retained by the wallet: while they mirror the paper
receipts that customers may receive in physical stores,
Taler’s cryptographically signed contracts ought to carry
more weight in courts than typical paper receipts.

Point-of-sale systems providing printed receipts have
been compromised in the past by merchants to embezzle
sales taxes. [29] With Taler, the merchant still generates
a receipt for the customer; however, the record for the
tax authorities ultimately is anchored with the exchange’s
wire transfer to the merchant. Using the subject of the
wire transfer, the state can trace the payments and request
the merchant to provide cryptographically matching con-
tracts. Thus, this type of tax fraud is no longer possible,
which is why we call Taler taxable. The mere threat
of the state sometimes tracing transactions and contracts
back to the merchant also makes Taler unsuitable for
illegal activities.

The exchange operator is obviously crucial for risk
management in Taler, as the exchange operator holds
the customer’s funds in a reserve in escrow until the

10

respective deposit request arrives4. To ensure that the
exchange operator does not embezzle these funds, Taler
expects exchange operators to be regularly audited by
an independent auditor5. The auditor can then verify
that the incoming and outgoing transactions and the
current balance of the exchange match the logs with the
cryptographically secured transaction records.

B. Failure modes

There are several failure modes the user of a Taler
wallet may encounter:

• As Taler supports multiple exchanges, there is a
chance that a merchant might not support any
exchange where the customer withdrew coins from.
We mitigate this problem by allowing merchants
to support all exchanges audited by a particular
auditor. We believe this a reasonable approach,
because auditors and merchants must operate with
a particular legal and financial framework anyways.
We note that a similar failure mode exists with
credit cards, where not all merchants accept all
issuers, especially internationally.

• Restoring the Taler wallet state from previous back-
ups, or copying the wallet state to a new machine,
may cause honest users to attempt to double spend
coins, as the wallet does not know when coins are
spent between backup and recovery. In this case,
the exchange provides cryptographic proof that the
coins were previously spent, so the wallet can
verify that the exchange and merchant are behaving
honestly.

• There could be insufficient funds in the Taler wallet
when making a payment. Usually the wallet can
trivially check this before beginning a transaction,
but when double-spending is detected this may
also happen after the wallet already initiated the
payment. This would usually only happen if the
wallet is unaware of a backup operation voiding its
internal invariants. If a payment fails in-flight due to
insufficient funds, the wallet can use Taler’s refresh
protocol to obtain a refund for those coins that were
not actually double-spent, and then explain the user
that the balance was inaccurate due to inconsis-
tencies from recovery, and overall insufficient for
payment. For the user, this failure mode appears
equivalent to an insufficient balance or credit line
when paying with cards.

4As previously said, this deposit request is aimed to translate coins
into real money and it’s accomplished by a merchant after successfully
receiving coins by a wallet. In other words, it is the way merchants
get real money on their bank accounts

5Auditors are typically run by states

C. Comparison
The different payment systems discussed make use

of different security technologies, which has an impact
on their usability and the assurances they can provide.
Except for Bitcoin, all payment systems described in-
volve an authentication step. With Taler, the authenti-
cation itself is straightforward, as the customer is at
the time visiting the Web portal of the bank, and the
authentication is with the bank (Figure ??). With PayPal,
the shop redirects the customer to the PayPal portal (step
5 in Figure 10) after the user selected PayPal as the
payment method. The customer then provides the proof
of payment to the merchant. Again, this is reasonably
natural. The 3DS workflow (Figure 6) has to deal with a
multitude of banks and their different implementations,
and not just a single provider. Hence, the interactions are
more complicated as the merchant needs to additionally
perform a lookup in the card scheme directory and verify
availability of the bank (steps 8 to 12).

The key difference between Taler and 3DS or PayPal
is that in Taler, authentication is done ahead of time.
After authenticating once to withdraw digital coins, the
customer can perform many micropayments without hav-
ing to re-authenticate. While this simplifies the process
of the individual purchase, it shifts the mental overhead
to an earlier time, and thus requires some planning, espe-
cially given that the digital wallet is likely to only contain
a small fraction of the customer’s available funds. As
a result, Taler improves usability if the customer is
able to withdraw funds once to then facilitate many
micropayments, while Taler is likely less usable if for
each transaction the customer first visits the bank to
withdraw funds. This is deliberate, as Taler can only
achieve reasonable privacy for customers if they do keep
a balance in their wallet, thereby breaking the association
between withdrawal and deposit.

Bitcoin’s payment process (Figure 7) resembles that of
Taler in one interesting point, namely that the wallet is
given details about the contract the user is to enter (steps
7 to 11). However, in contrast to Taler, here the Bitcoin
wallet(s) are expected to fetch the “invoice” from the
merchant, while in Taler the browser provides the Taler
wallet with the proposed contract directly. In PayPal and
3DS, the user is left without a cryptographically secured
receipt.

Card-based payments (including 3DS) and PayPal also
extensively rely on TLS for security. The customer is ex-
pected to verify that his connections to the various Web
sites are properly authenticated using X.509, and to know
that it is fine to providing his bank account credentials
to the legitimate verifiedbyvisa.com.6 However, relying

6The search query “verifiedbyvisa.com legit” is so common that,
when we entered “verifiedbyvisa” into a search engine, it was the
suggested auto-completion.

11

on users understanding their browser’s indications of
the security context is inherently problematic. Taler
addresses this challenge by ensuring that digital coins
are only accessible from fully wallet-generated pages,
hence there is no risk of Web pages mimicking the look
of the respective page, as they would still not obtain
access to the digital coins.

Once the payment process nears its completion, mer-
chants need to have some assurance that the contract is
now valid. In Taler, merchants obtain a non-repudiable
confirmation of the payment. With 3DS and PayPal, the
confirmation may be disputed later (i.e. in case of fraud),
or accounts may be frozen arbitrarily [8]. Payments in
cash require the merchant to assume the risk of receiving
counterfeit money. Furthermore, merchants have the cost
maintaining change and depositing the money earned.
With Bitcoin, there is no definitive time until a payment
can be said to be confirmed (step 19, Figure 7), leaving
merchants in a bit of a tricky situation.

V. CONCLUSION

Customers and merchants should be able to easily
adapt their existing mental models and technical infras-
tructure to Taler. In contrast, Bitcoin’s payment models
fail to match common expectations, be it in terms of
performance, durability, security, or privacy. Minimizing
the need to authenticate to pay fundamentally improves
usability.

We expect that electronic wallets that automatically
collect digitally signed receipts for transactions will
become commonplace. A key question for the future is
thus whether this data collection will be done on behalf
of the citizens and under their control, or on behalf of
the Reich of big data corporations.

We encourage readers to try our prototype for Taler
at https://demo.taler.net/, and to ponder why the billion
dollar e-commerce industry still relies mostly on TLS
for security, given that usability, security and privacy can
clearly all be improved simultaneously using a modern
payment protocol.

ACKNOWLEDGEMENTS

Removed for anonymous submission.

REFERENCES

[1] Chiptan/cardtan: What you see is what you sign. http://www.
kobil.com/solutions/identity-access-card-readers/chiptan/, 2016.

[2] Emvco. http://www.emvco.com/, 2016.
[3] L. Bahack. Theoretical bitcoin attacks with less than half of the

computational power (draft). IACR Cryptology ePrint Archive,
2013:868, 2013.

[4] E. C. Bank. Our money. http://www.new-euro-banknotes.eu/,
2016.

[5] A. Barth. The Web Origin Concept. RFC 6454 (Proposed
Standard), Dec. 2011.

[6] O. Beigel. What bitcoin exchanges won’t tell you about fees,
2015. [Online; Accessed: 2016-02-10].

[7] D. Chaum. Blind signatures for untraceable payments. In
Advances in cryptology, pages 199–203. Springer, 1983.

[8] J. Constine. After the regretsy and diaspora account freezes,
we’ve lost confidence in paypal. http://techcrunch.com/2011/12/
06/paypal-account-freeze/, Dec 2011.

[9] K. M. Dominguez. Does central bank intervention increase
the volatility of foreign exchange rates? Working Paper 4532,
National Bureau of Economic Research, November 1993.

[10] J. E. Dunn. Eurograbber sms trojan steals 36
million from online banks. http://www.techworld.com/
news/security/eurograbber-sms-trojan-steals-36-million\
-from-online-banks-3415014/, Dec 2012.

[11] B. Ehrenberg. How much is your personal data worth?
http://www.theguardian.com/news/datablog/2014/apr/22/
how-much-is-personal-data-worth, April 2014.

[12] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining
is vulnerable. CoRR, abs/1311.0243, 2013.

[13] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In Proceedings of the
24th USENIX Conference on Security Symposium, SEC’15, pages
129–144, Berkeley, CA, USA, 2015. USENIX Association.

[14] R. Holz. Empirical analysis of Public Key Infrastructures and
investigation of improvements. PhD thesis, TU Munich, 2014.

[15] ibi research. Digitalisierung der gesellschaft 2014 — aktuelle
einschätzungen und trends. http://www.ecommerce-leitfaden.de/
digitalisierung-der-gesellschaft-2014.html, 2014.

[16] A. Jeffries. Why don’t economists like bitcoin?, 2013. [Online;
Accessed: 2016-02-28].

[17] R. Jones. Cap on card fees could lead to lower prices
for consumers. http://www.theguardian.com/money/2015/jul/27/
cap-on-card-fees-retailers, July 2015.

[18] C. Kahn. May 2014 financial security index charts, 2014.
[Online; Accessed: 2016-02-10].

[19] D. Kügler. On the anonymity of banknotes. In Privacy Enhancing
Technologies, pages 108–120. Springer Verlag, 2004.

[20] C. Lehmann. Bitcoin: Digital fool’s gold?, 2015. [Online;
Accessed: 2016-02-28].

[21] N. Lewis. Bitcoin is a junk currency, but it lays the foundation
for better money, 2013. [Online; Accessed: 2016-02-28].

[22] C. Malmo. Bitcoin is unsustainable, 2015. [Online; Accessed:
2016-02-10].

[23] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

[24] F. Reid and M. Harrigan. An Analysis of Anonymity in the
Bitcoin System. In Y. Altshuler, Y. Elovici, A. B. Cremers,
N. Aharony, and A. Pentland, editors, Security and Privacy in
Social Networks, pages 197–223. Springer New York, 2013.

[25] M. Riley, B. Elgin, D. Lawrence, and C. Matlack. Missed
alarms and 40 million stolen credit card numbers: How tar-
get blew it. http://www.bloomberg.com/bw/articles/2014-03-13/
target-missed-alarms-in-epic-hack-of\-credit-card-data, March
2013.

[26] G. Rundle. The humble credit card is now
a political tool. http://www.crikey.com.au/2011/
10/25/rundle-humble-credit-card-now-a-political\
-tool-just-ask-wikileaks/, Oct 2011.

[27] R. Stallman. How much surveillance can democracy withstand?
WIRED, 2013.

[28] M. Sweney. City am becomes first uk newspaper to ban ad
blocker users. http://www.theguardian.com/media/2015/oct/20/
city-am-ban-ad-blocker-users, October 2015.

[29] T. Szent-Ivanyi. Wie firmen ihre kassen ma-
nipulieren. http://www.fr-online.de/wirtschaft/
steuerhinterziehung-wie-firmen-ihre-kassen\-manipulieren-,
1472780,31535960.html, August 2015.

[30] L. J. Trautman. Virtual currencies; bitcoin & what now after
liberty reserve, silk road, and mt. gox? Richmond Journal of
Law and Technology, 20(4), 2014.

12

[31] A. van Kersteren. Cross-origin resource sharing. http://www.w3.
org/TR/cors/, January 2014.

[32] O. Volckart. Early beginnings of the quantity theory of money
and their context in polish and prussian monetary policies, c.
1520-1550. The Economic History Review, 50(3):430–449, 1997.

[33] W3c. Web payments payment flows. https://github.com/w3c/
webpayments/tree/gh-pages/PaymentFlows, February 2016.

[34] S. Wright. PCI DSS A Practical Guide to Implementing and
Maintaining Compliance. It Governance Ltd, 3rd edition, 2011.

APPENDIX

13

Legacy Merchant Hosted Card Payment with Acquirer Supported 3DS (Current)

3DS is used to add confidence that the payer is who they say they are and importantly in the event of a dispute liability shift to the Issuer.

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) [Acceptor] Site

Payee (Merchant) [Acceptor] Site

Payer (Shopper) [Cardholder] Browser

Payer (Shopper) [Cardholder] Browser

Browser Form Filler

Browser Form Filler

Card Scheme Directory

Card Scheme Directory

Issuing Bank [Issuer] Website

Issuing Bank [Issuer] Website

Issuing Bank [Issuer]

Issuing Bank [Issuer]

HTTPS

Establish Payment Obligation

1 Present Check-out page with Pay Button

2 Select Card Payment Method

alt

3 Form Fill fields are PAN & Expiry Date with optional CVV, & Address, Also Card Valid Date and Issue Number are required for some Schemes

4 User Fills Form

Card Payment Initiation

5 Payment Initiation Custom code on merchant webpage can encrypt payload to reduce PCI burden from SAQ D to SAQ A-EP

opt

6 Store Card
Merchant can store card details apart from CVV (even if encrypted) for future use (a.k.a. Card on File)

7 Authorise

3DS part of flow

At this point, the Merchant or Merchant's PSP can decide if it wishes to invoke 3DS. This might be based on transaction value (i.e. low value -> low risk) or other factors, e.g. if the Shopper is a repeat purchaser.

8 BIN to URL lookup (VAReq message)

9 Lookup URL from BIN

10 “PING” verify URL validity

11 “PING” response

12 URL

13 3DS redirect (PAReq message)

14 3DS redirect (PAReq message)

15 3DS invoke

16 3DS challenge

17 3DS response (PARes message)

18 3DS response (PARes message)

19 3DS response (PARes message)

20 3DS response (PARes message)

21 Verification of PARes signature

End of 3DS

22 Authorisation Request

23 Authorisation Response

24 Authorisation Response

Notification

25 Result Page

Request for Settlement process (could be immediate, batch (e.g. daily) or after some days)

alt

26 Capture Later Capture may be called, for example after good shipped or tickets pickedup

27 Auto Capture in batch processing at end-of-day

28 Capture

Fulfilment

29 Provide products or services

Fig. 6: Card payment processing with 3DS. (From: W3c Web Payments IG.)

Bitcoin Payment Protocol (BIP70)

Invoice Database

Invoice Database

Payee Website

Payee Website

Bitcoin Network

Bitcoin Network

Payer Wallet

Payer Wallet

Payer (Browser)

Payer (Browser)

1 Request checkout with Bitcoin

2 Generate Bitcoin address

3 Store invoice details

4 Basket Page with bitcoin: pay link

5 Click bitcoin: link

6 Wallet handles bitcoin: URL and extracts invoice URL

7 Request invoice

8 Get invoice details

9 Create PaymentDetails (Amount, Memo, Ref#, Pay URL)

10 Create PaymentRequest (Signed PaymentDetails)

11 PaymentRequest containing PaymentDetails

12 Confirm payment details?

13 Accept payment

14 Generate and sign payment

15 Signed payment

16 Submit payment

17 Payment ACK

18 Confirm payment is complete

loop [until payment is confirmed]

19 Latest confirmed transactions

Fig. 7: Bitcoin payment processing. (From: W3c Web
Payments IG.)

14

f u n c t i o n h a n d l e I n s t a l l () {
var show = document . ge tElementsByClassName ("taler-installed-show") ;
var h i d e = document . ge tElementsByClassName ("taler-installed-hide") ;
f o r (var i = 0 ; i < show . l e n g t h ; i ++) {

show [i] . s t y l e . d i s p l a y = "" ;
}
f o r (var i = 0 ; i < h i d e . l e n g t h ; i ++) {

h i d e [i] . s t y l e . d i s p l a y = "none" ;
}

} ;

f u n c t i o n h a n d l e U n i n s t a l l () {
var show = document . ge tElementsByClassName ("taler-installed-show") ;
var h i d e = document . ge tElementsByClassName ("taler-installed-hide") ;
f o r (var i = 0 ; i < show . l e n g t h ; i ++) {

show [i] . s t y l e . d i s p l a y = "none" ;
}
f o r (var i = 0 ; i < h i d e . l e n g t h ; i ++) {

h i d e [i] . s t y l e . d i s p l a y = "" ;
}

} ;

f u n c t i o n p r o b e T a l e r () {
var eve = new Event ("taler-probe") ;
document . d i s p a t c h E v e n t (eve) ;

} ;

f u n c t i o n i n i t T a l e r () {
h a n d l e U n i n s t a l l () ; p r o b e T a l e r () ;

} ;

document . a d d E v e n t L i s t e n e r ("taler-wallet-present" , h a n d l e I n s t a l l , f a l s e) ;
document . a d d E v e n t L i s t e n e r ("taler-unload" , h a n d l e U n i n s t a l l , f a l s e) ;
document . a d d E v e n t L i s t e n e r ("taler-load" , h a n d l e I n s t a l l , f a l s e) ;
window . a d d E v e n t L i s t e n e r ("load" , i n i t T a l e r , f a l s e) ;

Fig. 8: Sample code to detect the Taler wallet. Allowing the Web site to detect the presence of the wallet leaks one
bit of information about the user. The above logic also works if the wallet is installed while the page is open.

15

/* Trigger Taler contract generation on the server, and pass the
contract to the extension once we got it. */

f u n c t i o n t a l e r p a y (form) {
var c o n t r a c t r e q u e s t = new XMLHttpRequest () ;

/* Note that the URL we give here is simply an example
and not dictated by the protocol: each web shop can
have its own way of generating and transmitting the
contract, there just must be a way to get the contract
and to pass it to the wallet when the user selects ’Pay’. */

c o n t r a c t r e q u e s t . open ("GET" , "generate-taler-contract" , t rue) ;
c o n t r a c t r e q u e s t . o n lo ad = f u n c t i o n (e) {

i f (c o n t r a c t r e q u e s t . r e a d y S t a t e == 4) {
i f (c o n t r a c t r e q u e s t . s t a t u s == 200) {
/* Send contract to the extension. */
h a n d l e c o n t r a c t (c o n t r a c t r e q u e s t . r e s p o n s e T e x t) ;

} e l s e {
/* There was an error obtaining the contract from the merchant,

obviously this should not happen. To keep it simple, we just
alert the user to the error. */

a l e r t ("Failure to download contract " +
"(" + c o n t r a c t r e q u e s t . s t a t u s + "):\n" +
c o n t r a c t r e q u e s t . r e s p o n s e T e x t) ;

}
}

} ;
c o n t r a c t r e q u e s t . o n e r r o r = f u n c t i o n (e) {
/* There was an error obtaining the contract from the merchant,

obviously this should not happen. To keep it simple, we just
alert the user to the error. */

a l e r t ("Failure requesting the contract:\n" +
c o n t r a c t r e q u e s t . s t a t u s T e x t) ;

} ;
c o n t r a c t r e q u e s t . send () ;

}

Fig. 9: Sample code to pass a contract to the Taler wallet. Here, the contract is fetched on-demand from the server.
The taler_pay() function needs to be invoked when the user triggers the checkout.

16

PayPal Payment (REST API) (Current)

Payee (Merchant) Site

Payee (Merchant) Site

Payer (Shopper) Browser

Payer (Shopper) Browser

Payer (Shopper) PSP (PayPal)

Payer (Shopper) PSP (PayPal)

MPSP

MPSP

HTTPS

1 Present Checkout Page with Pay Button

2 Select PayPal Payment Method

3 Payment Page Request

4 Create Payment

5 HTTP Redirect HTTP Direct now send the shopper to the PayPal site

6 Payment Initiation

7 Authentication Page

8 Authenticate Typically a username & password

9 Payment Page

opt

10 Instrument Choice Payer can change from default payment instrument

11 Approval

12 Payment Approval

13 Payment Response Redirect

14 Payment Response

15 Execute Payment

16 Result Page

asynchronous notification

17 Payment Notification (email)

opt

18 Payment Notification (email)

Fig. 10: Payment processing with Paypal. (From: W3c
Web Payments IG.)

