
Taler:
Usable, privacy-preserving payments for the Web

ABSTRACT
Taler is a new electronic online payment system which
provides anonymity for customers and, due to this de-
sign choice, also offers significantly better usability. This
paper describes the interaction processes of online pay-
ment systems, and analytically compares their usabil-
ity for both customers and merchants. We then focus
on the resulting assurances that Taler provides, as—
particularly for payment systems—usability and secu-
rity are entertwined. Web payment systems must also
face the reality of constraints imposed by modern Web
browser security architecture, so the analysis includes
considerations of how Web payment systems exploit the
security infrastructure provided by the modern Web.

1. INTRODUCTION
The future Internet needs a secure, usable and privacy-
preserving micropayment system that is not backed by
a “crypto currency”. Payment systems involving state-
issued currencies have been used for centuries to facili-
tate transactions, and the involvement of the state has
been critical as state institutions can dampen fluctua-
tions in the value of the currency. [?] Controlling money
supply is critical to ensure stable prices that facilitate
trade [?] instead of speculation.[?]

As transactions on the Internet, such as sending an e-
mail or reading a Web site, tend to be of smaller value
than traditional transactions involving the exchange of
physical goods, we are faced with the challenge of re-
ducing the mental and technical overheads of existing
payment systems to handle micropayments. Addressing
this problem is urgent: ad-blocking technology is erod-
ing advertising as a substitute for micropayments [?],
and the Big Data business model where citizens pay
with their private information [?] in combination with
the deep state hastens our society’s regression towards
post-democracy [?].

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

The focus of this paper is on Taler, a new free software
payment system designed to meet certain key ethical
considerations. In Taler, the customer remains anony-
mous, while the merchant is taxable. Here, anonymous
simply means that the payment system does not require
any personal information from the customer, and that
different transactions by the same customer are unlink-
able. Naturally, the specifics of the transaction—such
as delivery of goods to a shipping address, or the use
of non-anonymous IP-based communication—may still
leak information about the customer’s identity. Taxable
means that the state can obtain the necessary informa-
tion about the contract to levy income, sales or value-
added taxes. Taler uses blind signatures [?] to create
digital coins, and a new “refresh” protocol to allow giv-
ing change and refunds while maintaining unlinkability.

This paper will not consider the details of Taler’s cryp-
tographic protocols1, as for usability one needs to com-
pletely hide the cryptography from the users. Thus, this
paper will focus on an analytical description of how to
achieve usable and secure electronic payments. Our fo-
cus is to show that existing mental models users have
from existing widespread payment systems will apply
naturally. We leave a usability study with actual users
for future work, as we believe that the basic architecture
of such a system is sufficiently interesting by itself.

Key contributions of this paper are:

• A description of different payment systems using
common terminology, allowing us to analytically
compare these systems with respect to security
and usability.

• An introduction to the Taler payment system from
the perspective of users and merchants, with a fo-
cus on how to achieve secure payments in a way
that is intuitive and has adequate fail-safes.

• Detailed considerations for how to adapt Taler to
Web payments and the intricacies of securing pay-
ments within the constraints of modern “secure”
browsers.

• A publicly available free software reference imple-
mentation of the proposed architecture.

1No citation given due to anonymous submission.

1

2. EXISTING PAYMENT WORKFLOWS
Before we look at the payment workflow for Taler, we
will sketch the workflow of existing payment systems.
This will establish a common terminology, a baseline
for comparison and crucially also an indication as to
how we can relate Taler’s workflow to existing mental
models that users already have, thereby allowing us to
judge the mental adaptation costs required to transition
to transactions with Taler.

2.1 Cash
Cash has traditionally circulated by being passed di-
rectly from buyers to sellers, with each seller then be-
coming a buyer. Thus, cash is inherently a peer-to-peer
payment system, as participants all appear in the both
buyer and seller roles, merely at different times. How-
ever, this view is both simplified and somewhat dated.

In today’s practice, cash is frequently first withdrawn
from ATMs by customers, who then spend it with mer-
chants, who finally deposit the cash with their respective
bank. In this flow, security is achieved as the customer
authenticates to the ATM using credentials provided by
the customer’s bank, and the merchant specifies his ac-
count details when depositing the cash. The customer
does not authenticate when spending the cash, but the
merchant validates the authenticity of the coins or bills.
Coins and bills are minted by state-licensed institutions,
such as the US Mint. These institutions also provide de-
tailed instructions for how to validate the authenticity
of the coins or bills [?], and are typically the final trusted
authority on the authenticity of coins and bills.

As customers need not authenticate, purchases remain
anonymous, modulo the limited tracking enabled by se-
rial numbers printed on bills. [?]

Spending cash does not provide any inherent proof of
purchase for the customer, instead the merchant may
provide paper receipts which are generated independently
and do not receive the same anti-forgery protections
that are in place for cash.

Against most attacks customers and merchants limit
their risks to the amount of cash they carry or accept at
a given time [?]. Additionally, customers are advised to
choose the ATMs they use carefully, as malicious ATMs
may attempt to steal their customer’s credentials. Au-
thentication with an ATM can involve a special ATM
card, or more commonly the use of credit or debit cards.
In all these cases, these physical security tokens are is-
sued by the customer’s bank of the customer.

2.2 Credit and debit cards
Credit and debit card payments operate by the customer
providing their credentials to the merchant. Many dif-
ferent authentication and authorization schemes are in
use in various combinations, including both secret in-
formation, usually PINs, and physical security devices
like TANs [?] (cards with an EMV chip [?]), and the
customer’s mobile phone [?]. A typical modern Web
payment process involves (0) the merchant offering a
“secure” communication channel using TLS based on

the X.509 public key infrastructure,2 (1) selecting a
payment method, (2) entering the credit card details
like owner’s name, card number, expiration time, CVV
code, and billing address, (3) (optionally) authorizing
the transaction via mobile TAN, or by authenticating
against the customer’s bank, often on a Web site that
is operated by the payment processor and not the cus-
tomer’s bank. Figure 1 shows a typical card-based pay-
ment process on the Web today using the UML style of
the W3c payment interest group [?]. Most of the details
are not relevant to this paper, but the figure nicely illus-
trates the complexity of the common 3-D secure (3DS)
process.

Given this process, there is an inherent risk of informa-
tion leakage of customers’ credentials. Fraud detection
systems attempt to detect misuse of leaked credentials,
and payment system providers handle disputes between
customers and merchants. As a result, Web payment
processes may finish with (4) the payment being re-
jected for a variety of reasons, from false-positives in
fraud detection to the merchant not accepting the par-
ticular card issuer.

Traditionally, merchants bear most of the financial risk,
and a key “feature” of the 3DS process compared to
traditional card payments is hence to shift dispute li-
ability to the issuer of the card, who may then shift
it to the customer. Even in cases where the issuer or
the merchant remain legally first in line, there are still
risks customers incur from the card dispute procedures,
such as neither they not the payment processor notic-
ing fraudulent transactions, or them noticing fraudu-
lent transactions past the date at which their bank will
refund them. The customer also typically only has a
merchant-generated comment and the amount paid in
his credit card statement as a proof for the transaction.
Thus, the use of credit cards online does not generate
any verifiable electronic receipts for the customers, en-
abling malicious merchants to later change the terms
of the contract. Beyond these issues, customers face
secondary risks of identity theft from the personal de-
tails exposed by the authentication procedures. In this
case, even if the financial damages are ultimately cov-
ered by the bank, the customer always has to deal with
the hassle of notifying the bank in the first place. As
a result, customers must remain wary about their card
use, which limits their online shopping [?, p. 50].

2.3 Bitcoin
Bitcoin operates by recording all transactions in a pseu-
donymous public ledger. A Bitcoin account is identified
by its public key and the owner(s) must know the corre-
sponding private key, which in turn is used to authorize
the transfer of Bitcoins from the account to other ac-
counts. The information in the global public ledger al-
lows everybody to compute the balances in all accounts
and to see all transactions. Transactions are denom-

2Given numerous TLS protocol and implementation
flaws as well as X.509 key managment incidents in re-
cent years [?], the security provided by TLS is at best
questionable.

2

Bitcoin Payment Protocol (BIP70)

Invoice Database

Invoice Database

Payee Website

Payee Website

Bitcoin Network

Bitcoin Network

Payer Wallet

Payer Wallet

Payer (Browser)

Payer (Browser)

1 Request checkout with Bitcoin

2 Generate Bitcoin address

3 Store invoice details

4 Basket Page with bitcoin: pay link

5 Click bitcoin: link

6 Wallet handles bitcoin: URL and extracts invoice URL

7 Request invoice

8 Get invoice details

9 Create PaymentDetails (Amount, Memo, Ref#, Pay URL)

10 Create PaymentRequest (Signed PaymentDetails)

11 PaymentRequest containing PaymentDetails

12 Confirm payment details?

13 Accept payment

14 Generate and sign payment

15 Signed payment

16 Submit payment

17 Payment ACK

18 Confirm payment is complete

loop [until payment is confirmed]

19 Latest confirmed transactions

Figure 2: Bitcoin payment processing. (From: W3c
Web Payments IG.)

inated in a new currency labeled BTC, whose valua-
tion depends upon speculation. Adding transactions
to the global public ledger involves broadcasting the
transaction data, peers verifying and appending it to
the public ledger, and some peer in the network solving
a moderately hard computational proof-of-work puzzle;
the latter process is called mining. The mining pro-
cess is incentivised by transaction fees and mining re-
wards, the latter also providing the process of initial ac-
cumulation for BTC. [?] Conversion to and from BTC
from and to other currencies incurs substantial fees [?].
There is now an extreme diversity of Bitcoin-related
payment technologies, but usability improvements are
usually achieved by adding a “trusted” third party, and
there have been many incidents where such parties then
embezzled funds from their customers. The classical
Bitcoin payment workflow consisted of entering pay-
ment details into a peer-to-peer application. The user
would access his Bitcoin wallet and instruct it to trans-
fer a particular amount from one of his accounts to the
account of the merchant, possibly including additional
metadata to be associated with the transfer and embed-
ded into the global public ledger. The wallet application
would then transmit the request to the Bitcoin peer-to-
peer overlay network. The use of an external payment
application makes wallet-based payments significantly
less browser-friendly than ordinary card payments, as
illustrated in Figure 2.

Bitcoin payments are only confirmed when they appear
in the public ledger, which is updated at an average
frequency of once every 10 minutes. Even then, it is
possible that a fork in the so-called block chain may void
durability of the transaction [?]. As a result, customers
and merchants must either accommodate this delay, or
incur fraud risks during this indetermined period.

Bitcoin is considered to be secure against an adversary
who cannot control around a fifth of the Bitcoin miner’s
computational resources [?, ?, ?]. As a result, the net-
work must expend considerable computational resources
to keep this value high. In fact,“a single Bitcoin transac-
tion uses roughly enough electricity to power 1.57 Amer-
ican households for a day”. [?] At present, these costs
are largely hidden by speculation in BTC, but that spec-

ulation itself contributes to BTC being unstable. [?, ?,
?].

There are several examples of Bitcoin’s pseudononymity
being broken by investigators [?]. Mixnets afford pro-
tection against this, but they require numerous trans-
actions, exacerbating Bitcoin’s already high transaction
costs. Bitcoin’s pseudononymity applies equally to both
customers and merchants, making Bitcoin highly amen-
able to tax evasion, money laundering, and sales of con-
traband. As a result, anonymity tools like mixnets do
not enjoy particularly widespread support in the Bitcoin
community where many participants seek to make the
currency appear more legitimate.

2.4 Walled garden payment systems
Walled garden payment systems offer ease of use by
processing payments using a trusted payment service
provider. Here, the customer authenticates to the trusted
service and instructs the payment provider to execute a
transaction on his behalf (Figure 3). In these payment
systems, the provider basically acts like a bank with ac-
counts carrying balances for the various users. In con-
trast to traditional banking systems, both customer and
merchant are forced to have an account with the same
provider. Each user must take the effort to establish his
identity with a service provider to create an account.
Merchants and customers obtain the best interoperabil-
ity in return for their account creation efforts if they
start with the biggest providers. As a result, there are
a few dominating walled garden providers, with AliPay,
ApplePay, GooglePay, SamsungPay and PayPal being
the current oligopoly. In this paper, we will use PayPal
as a representative example for our discussion of these
payment systems.

As with card payments, these oligopolies are politically
dangerous [?] and the lack of competition can result
in excessive profit taking that may require political so-
lutions [?] to the resulting market failure. The use of

PayPal Payment (REST API) (Current)

Payee (Merchant) Site

Payee (Merchant) Site

Payer (Shopper) Browser

Payer (Shopper) Browser

Payer (Shopper) PSP (PayPal)

Payer (Shopper) PSP (PayPal)

MPSP

MPSP

HTTPS

1 Present Checkout Page with Pay Button

2 Select PayPal Payment Method

3 Payment Page Request

4 Create Payment

5 HTTP Redirect HTTP Direct now send the shopper to the PayPal site

6 Payment Initiation

7 Authentication Page

8 Authenticate Typically a username & password

9 Payment Page

opt

10 Instrument Choice Payer can change from default payment instrument

11 Approval

12 Payment Approval

13 Payment Response Redirect

14 Payment Response

15 Execute Payment

16 Result Page

asynchronous notification

17 Payment Notification (email)

opt

18 Payment Notification (email)

Figure 3: Payment processing with Paypal. (From:
W3c Web Payments IG.)

3

non-standard proprietary interfaces to the payment pro-
cessing service of these providers serves to reinforce the
customer lock-in.

3. TALER
Taler is a free software cryptographic payment system
with an open protocol specification that couples cash-
like anonymity for customers when they spend money
with low transaction costs, signed digital receipts, and
accurate income information to facilitate taxation and
anti-corruption efforts.

Taler achieves anonymity for buyers using blind signa-
tures [?]. Ever since their discovery thirty years ago,
cryptographers have viewed blind signatures as the op-
timal cryptographic primitive for consumer level trans-
action systems. Our goal is for Taler to become the
first transaction system based on blind signatures to
see widespread adoption. Hiding the cryptography from
users and integrating smoothly with the Web are central
components of our technical strategy to achieve this.

There are four components of the Taler system (Fig-
ure 4):

• Wallets are software packages that allow customers
to withdraw, hold, and spend coins. Wallets also
manage the customer’s reserve accounts, and keep
receipts in a transaction history. Wallets can be re-
alized as browser extensions, mobile Apps or even
in custom hardware.

• Exchanges enable customers to withdraw anony-
mous digital coins and merchants to deposit digi-
tal coins, in exchange for bank money. Exchanges
learn the amounts withdrawn by customers and
deposited by merchants, but they do not learn the
relationship between customers and merchants. Ex-
changes perform online detection of double spend-
ing, thus providing merchants instant feedback, —
including digital proofs—in case of misbehaving
customers.

• Merchants provide goods or services in exchange
for coins held by customers’ wallets. Merchants
deposit these coins at the exchange for their regu-
lar currency value. Merchants consist of a frontend
which interacts with the customer’s wallet, and a

Exchange

Customer Merchant

Auditor

w
it
hd

ra
w

co
in

s deposit
coins

spend coins

verify

Figure 4: Taler system overview.

backend that interacts with the exchange. Typi-
cal frontends include Web shops and point-of-sale
systems.

• Auditors verify that exchanges operate correctly to
limit the risk that customers and merchants incur
by using a particular exchange.

The specific protocol between wallet and merchant de-
pends on the setting. For a traditional store, an NFC
protocol might be used between a point-of-sale system
and a mobile application. In this paper, we focus on
Web payments for an online shop.

3.1 Web payment workflow
We explain how the actors in the Taler system interact
by documenting a typical payment.

Initially, the customer must once install the Taler wal-
let extension for his browser. Naturally, this step may
become superfluous if Taler is integrated tightly with
browsers in the future. Regardless, installing the ex-
tension involves one or two clicks to confirm the opera-
tion once the user was pointed to the correct Web site.
Restarting the browser is not required.

Withdrawing coins
As with cash, the customer must first withdraw digital
coins (Figure 5). For this, the customer must first visit
the online banking portal of his bank. Here, the bank
will typically require some form of authentication, the
specific method used depends on the bank (Figure 6a).

Taler (Withdraw coins)

Customer Browser

Customer Browser

Bank Site

Bank Site

Taler Exchange

Taler Exchange

HTTPS

HTTPS

SEPA

1 user authentication

2 send account portal

3 initiate withdrawal (specify amount and exchange)

4 request key material and wire transfer data

5 send key material and wire transfer data

6 execute withdrawal

opt

7 request transaction authorization

8 transaction authorization

9 withdrawal confirmation

10 execute wire transfer

Figure 5: Withdrawing coins with Taler.

4

(a) Bank login. (Simplified for demonstration.)

(b) Specify amount to withdraw. (Integrated bank support.)

(c) Select exchange provider. (Generated by wallet.)

(d) Confirm transaction with a PIN. (Generated by bank.)

Figure 6: Required steps in a Taler withdrawal process.

5

Legacy Merchant Hosted Card Payment with Acquirer Supported 3DS (Current)

3DS is used to add confidence that the payer is who they say they are and importantly in the event of a dispute liability shift to the Issuer.

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) [Acceptor] Site

Payee (Merchant) [Acceptor] Site

Payer (Shopper) [Cardholder] Browser

Payer (Shopper) [Cardholder] Browser

Browser Form Filler

Browser Form Filler

Card Scheme Directory

Card Scheme Directory

Issuing Bank [Issuer] Website

Issuing Bank [Issuer] Website

Issuing Bank [Issuer]

Issuing Bank [Issuer]

HTTPS

Establish Payment Obligation

1 Present Check-out page with Pay Button

2 Select Card Payment Method

alt

3 Form Fill fields are PAN & Expiry Date with optional CVV, & Address, Also Card Valid Date and Issue Number are required for some Schemes

4 User Fills Form

Card Payment Initiation

5 Payment Initiation Custom code on merchant webpage can encrypt payload to reduce PCI burden from SAQ D to SAQ A-EP

opt

6 Store Card
Merchant can store card details apart from CVV (even if encrypted) for future use (a.k.a. Card on File)

7 Authorise

3DS part of flow

At this point, the Merchant or Merchant's PSP can decide if it wishes to invoke 3DS. This might be based on transaction value (i.e. low value -> low risk) or other factors, e.g. if the Shopper is a repeat purchaser.

8 BIN to URL lookup (VAReq message)

9 Lookup URL from BIN

10 “PING” verify URL validity

11 “PING” response

12 URL

13 3DS redirect (PAReq message)

14 3DS redirect (PAReq message)

15 3DS invoke

16 3DS challenge

17 3DS response (PARes message)

18 3DS response (PARes message)

19 3DS response (PARes message)

20 3DS response (PARes message)

21 Verification of PARes signature

End of 3DS

22 Authorisation Request

23 Authorisation Response

24 Authorisation Response

Notification

25 Result Page

Request for Settlement process (could be immediate, batch (e.g. daily) or after some days)

alt

26 Capture Later Capture may be called, for example after good shipped or tickets pickedup

27 Auto Capture in batch processing at end-of-day

28 Capture

Fulfilment

29 Provide products or services

Figure 1: Card payment processing with 3DS. (From: W3c Web Payments IG.)

6

The next step depends on the Taler support offered by
the bank:

• If the bank does not properly integrate with Taler,
the customer needs use the menu of the wallet to
create a reserve. The wallet will ask which amount
in which currency (i.e. EUR or USD) the cus-
tomer wants to withdraw and allow the customer
to select an exchange. Given this information, the
wallet will instruct the customer to transfer the
respective amount to the account of the exchange.
The customer will have to enter a 54-character re-
serve key which includes 256 bits of entropy and
an 8-bit checksum into the transfer subject. Nat-
urally, this is exactly the kind of interaction we
would like to avoid for usability.

• Hence, if the bank properly integrates with Taler,
the customer has a form in the online banking por-
tal where he can specify an amount to withdraw
(Figure 6b). The bank then triggers an interac-
tion with the wallet to allow the customer to select
an exchange (Figure 6c). Afterwards, the wallet
instructs the bank about the details of the wire
transfer. The bank asks the customer to autho-
rize the transfer, and finally confirms to the wallet
that the transfer has been successfully initiated.

In either case, the wallet can then withdraw the coins
from the exchange, and does so in the background with-
out further interaction with the customer.

In principle, the exchange can be directly operated by
the bank, in which case the step where the customer
selects an exchange may be skipped by default. How-
ever, we generally assume that the exchange is a sepa-
rate entity, as this yields the largest anonymity set for
customers and may help create a competitive market.

Spending coins
At a later point in time, the customer can spend his
coins by visiting a merchant that accepts digital coins
in the respective currrency issued by the respective ex-
change (Figure 7). Merchants are generally configured
to either accept a specific exchange, or to accept all
the exchanges audited by a particular auditor. Mer-
chants can also set a ceiling for the maximum amount of
transaction fees they are willing to cover. Usually these
details should not matter for the customer, as we ex-
pect most merchants to allow most accredited exchange
providers, and for exchanges to operate with transac-
tion fees acceptable to most merchants. If transaction
fees are higher than what is covered by the merchant,
the customer may choose to cover them.

As with traditional Web transactions, the customer first
selects which items he wishes to buy. This can involve
building a traditional shopping cart, or simply click-
ing on a particular link for the respective article (Fig-
ure 8a). As with card payments, the Web shop may
then allow the customer to select a payment method,
including Taler. However, Taler also allows the Web

shop to detect the presence of a Taler wallet (Figure 9),
so that this step may be skipped (as it is in Figure 8).
If Taler was detected or selected, the Web shop sends a
digitally signed contract proposal to the wallet extension
(Figure 10). The wallet then presents the contract to
the user. The format of the contract is in an extensible
JSON-based format defined by Taler and not HTML,
as the rendering of the contract is done by the wallet
to ensure correct visual representation. In the case that
transaction fees need to be covered by the customer,
these are shown together with the rest of the proposed
contract.

If the customer approves the contract by clicking the
“Confirm Payment” button (Figure 8b), his wallet signs
the contract with enough coins to cover the contract’s
cost, stores all of the information in its local database,
and redirects the browser to a fulfillment URL provided
by the merchant (Figure 8c). The wallet cannot directly
send the payment to the merchant, as the page showing
the contract is provided as a background page controlled
by the Web Extension3 and thus submitting coins from
the background would not use the HTTP-context (such
as cookies) that the Web shop’s page requires for session
management.

Instead, the server-side of the fulfillment page usually
first detects that the contract has not yet been paid by
checking the merchant’s local database and the HTTP
session state. (A) If the state indicates that this cus-
tomer did not yet pay, the merchant generates a page
that shows the customer an indication that the payment
is being processed, and tries to interact with the wallet,
requesting payment. If the wallet is not detected after
a few milliseconds, the page transitions to the card pay-
ment process. If the wallet is present, the page requests

3https://developer.chrome.com/extensions

Taler (Payment)

Payer (Shopper) Browser

Payer (Shopper) Browser

Payee (Merchant) Site

Payee (Merchant) Site

Taler Exchange

Taler Exchange

Tor/HTTPS

HTTP/HTTPS

Establish Payment Obligation

opt

1 Select Taler payment method (skippable with auto-detection)

2 Choose goods

3 Send signed digital contract proposal

Execute Payment

opt

4 Affirm contract

5 Send payment

6 Forward payment

7 Confirm payment

Fulfilment

8 Confirm payment

opt

9 Request fulfillment (if Web article)

10 Provide media product

Figure 7: Payment processing with Taler.

7

(a) Select article. (Generated by Web shop.)

(b) Confirm payment. (Generated by Taler wallet.)

(c) Receive article. (Generated by Web shop.)

Figure 8: Required steps in a Taler checkout process.

payment from the wallet. The wallet then determines
that the customer already confirmed the payment and
immediately transfers the coins to the JavaScript logic
of the fulfillment page. The fulfillment page then trans-
fers the coins to the merchant, usually using an asyn-
chronous HTTP POST request. The request is con-
trolled by the merchant’s JavaScript and not by the wal-
let. This ensures that the merchant is in full control of
the communication between the merchant’s server and
the client-side scripts interacting with the merchant’s
server. The interactions with the wallet are thus purely
local interactions within the browser. Upon receipt of
the payment information, the merchant confirms the
payment with the exchange, marks the payment as re-
ceived, and notifies the JavaScript on the server side of
the result.

• If the payment fails on the network, the request is
typically retried. How often the client retries au-
tomatically before informing the user of the net-
work issue is up to the merchant. If the network
failure persists and is between customer and mer-
chant, the wallet will try to recover control over
the coins at the exchange by effectively spending
the coins first using Taler’s special “refresh” pro-
tocol. In this case, later deposits by the merchant
will simply fail. If the merchant already succeeded
with the payment before the network failure, the
customer can either retry the operation later via
the transaction history, or demand a refund (see
below). Handling these errors does not require the
customer to give up his privacy.

• If the payment fails due to the exchange claim-
ing that the request was invalid, the diagnostics
created by the exchange are passed to the wallet
for inspection. The wallet then decides whether
the exchange was correct, and can then inform
the user about a fraudulent or buggy exchange.
At this time, it allows the user to export the rel-
evant cryptographic data to be used in court. If
the exchange’s proofs were correct and coins were
double-spent, the wallet informs the user that its
database must have been out-of-date, updates the
database and allows the user to retry the transac-
tion.

• If the payment succeeded, the JavaScript on the
client side triggers effectively a “reload” of the ful-
fillment page, triggering case (B) detailed below.

(B) Upon subsequent visits, the server detects that
the payment has already been processed and directly
generates a fulfillment page either confirming the pay-
ment, or—in the case of payments for a digital article—
transmits the digital artifact to the client.

Bookmarks and deep links
This particular architecture also enables smooth use of
the payment URIs on the contemporary Web. In par-
ticular, we need to consider the possibility that a user

8

may bookmark the fulfillment page, or forward a link to
the fulfillment page to another user.

The given design supports bookmarking. If the mer-
chant’s session management is still tracking the user
when he returns via the bookmark, the page genera-
tion detects that the user has already paid and serves
the final fulfillment page. If the session has been lost,
the merchant will generate a fulfillment page asking for
payment. In this case, the wallet will detect that it has
already paid this contract via a unique identifier in the
contract, and will automatically re-play the payment.
The merchant confirms that this customer already paid,
and generates the final fullfilment page that the user has
previously payed for (and seen). All this still appears as
instantaneous to the user as it merely adds a few extra
network round trips.

In contrast, if the customer sends a link to the fulfill-
ment page to another user, thereby possibly sharing a
deep link into the merchant’s shop, the other customer’s
wallet will fail to find an existing payment. In this case,
the fulfillment page will thus not immediately receive
the payment details and instead provide the user with
the proposed contract which contains a description of
the item(s) previoulsy bought by the other user. Then
the recipient of the link can decide to purchase the same
item(s).

The design, in particular POSTing the coins asynchro-
nously from JavaScript, also ensures that the user can
freely navigate with the back and forward buttons. As
all requests from all HTTP(S) URIs ever seen by the
user in the browser are fetched via HTTP GET, they
can be bookmarked, shared and safely reloaded. For
caching, the merchant needs to ensure that the fulfill-
ment page generated in case (A) is not cached by the
browser, and in case (B) is not cached in the network.

As an aside, there are actually several distinct roles com-
prising the merchant: shopping pages end their role by
proposing a contract, while a fulfillment page begins its
life processing a contract. It is thus possible for these
components being managed by seperate parties. The
control of the fulfillment page over the transmission of
the payment information minimizes the need for excep-
tions to handle cross-origin resource sharing. [?, ?]

Giving change and refunds
An important technical difference between Taler and
previous transaction systems based on blind signing is
that Taler is able to provide unlinkable change and re-
funds. From the user’s point of view, obtaining change is
automatic and handled by the wallet, i.e. if the user has
a single coin worth e 5 and wants to spend e 2, the wal-
let may request three e 1 coins in change — critically,
this is completely hidden from the user. In fact, the
graphical user interface does not offer a way to inspect
the denominations of the various coins in the wallet, it
only shows the total amount availabe in each denomina-
tion. Expanding the views to show details may show the
exchange providers and fee structure, but not the cryp-

tographic coins. Consequently, the major cryptographic
advances of Taler are invisible to the user.

Taler’s technology also allows merchants to give refunds
to customers. For this, the merchant merely has to
send a signed message to the exchange confirming the
refund, and notify the customer’s wallet that the re-
spective transaction was refunded. This can even be
done with anonymous customers, as refunds are given
as additional change to the owner of the coins that were
originally spent to pay for the refunded transaction.

Taler’s protocol ensures unlinkability for both changes
and refunds, thus assuring that the user has key con-
veniences of other payment systems, while maintaining
the security standard of an anonymous payment system.

3.2 NFC payments
We have so far focused on how Taler would be used
for Web payments; however, Taler can also be naturally
used over other protocols, such as near field communica-
tion (NFC). Here, the user would hold his NFC-enabled
device running a wallet application near an NFC termi-
nal to obtain the contract, confirm the payment on his
device, which would then transfer the coins and obtain
a receipt. Given that an NFC application would be less
restricted in its interaction with the point-of-sale sys-
tem compared to the complex security model of modern
browsers, running Taler over NFC is largely a simplfi-
cation.

There are no significant new concerns arising from an
NFC device possibly losing contact with a point-of-sale
system. Already for Web payments, Taler employs only
idempotent operations to ensure coins are never lost and
that transactions adequately persist even in the case
of network or endpoint failures. As a result, the NFC
system can simply use the same transaction models to
replay transmissions once contact with the point-of-sale
system is reestablished.

3.3 Peer-to-peer payments
Peer-to-peer payments are possible with Taler as well;
however, we need to distinguish two types of peer-to-
peer payments.

First, there is the sharing of coins among entities that
mutually trust each other, for example within a family.
Here, all the users have to do is to export and import
electronic coins over a secure channel, such as encrypted
e-mail or via NFC. For NFC, the situation is pretty
trivial, while secure communication over the Internet is
likely to remain a significant usability challenge. We
note that sharing coins by copying the respective pri-
vate keys across devices is not taxable: the exchange
is not involved, no contracts are signed, and no records
for taxation are created. However, the involved enti-
ties must trust each other, as after copying a private
key both parties could spend the coins. Given this cru-
cial limitation inherent in sharing keys, we consider it
ethically acceptable that sharing is not taxable.

Second, there is the transactional mutually exclusive
transfer of ownership. This requires the receiving party

9

to have a reserve with an exchange, and the exchanges
would have to support wire transfers among them. If
taxability is desired, the reserve would still need to be
tied to a particular citizen’s identity for tax purposes,
and thus require similar identification protocols as com-
monly used for establishing a bank account. Thus, in
terms of institutions, one would expect this setup to
be offered most easily by traditional banks. In terms of
usability, transactional transfers are just as easy as shar-
ing when performed over NFC, but more user friendly
when performed over the Internet as they do not require
a secure communication channel: the Taler protocol is
by design still safe to use even if the communication is
made over an unencrypted channel. Only the authen-
ticity of the proposed contract needs to be assured.

3.4 Usability for merchants
Payment system security and usability is not primar-
ily a concern for customers, but also for merchants.
For consumers, existing schemes may be inconvenient
and not provide privacy, but remembering to protect
a physical token (i.e. the card) and to guard a se-
cret (i.e. the PIN) is relatively straightforward. In
contrast, merchants are expected to “securely” handle
sensitive customer payment data on networked comput-
ing devices. However, securing computer systems—and
especially payment systems that represent substantial
value—is a hard challenge, as evidenced by large-scale
break-ins with millions of consumer card records being
illicitly copied. [?]

Thus, we cannot ignore the usability at the merchant
site when trying to understand the usability of a pay-
ment system, especially as for deployment we will have
to convince millions of merchants that the Taler system
is advantageous. The high-level cryptographic design al-
ready provides the first major advantage, as merchants
do never receive sensitive payment-related customer in-
formation. Thus, they do not have to be subjected to
costly audits or certified hardware, as is commonly the
case for processing card payments. [?] In fact, the ex-
change does not need to have a formal business relation-
ship with the shop at all. According to our design, the
exchange’s contract with the state regulator or auditor
and the customers ought to state that it must honor all
(legal and valid) deposits it receives. Hence, a merchant
supplying a valid deposit request should be able to en-
force this in court without a prior business agreement
with the exchange. This dramatically simplifies setting
up a shop, to the point that the respective software only
needs to be provided with the merchant’s wire transfer
routing information to become operational.

Figure 9 shows how easy it is for a Web shop to de-
tect the presence of a Taler wallet. This leaves a few
cryptographic operations, such as signing a contract and
verifying the customer’s and the exchange’s signatures,
storing transaction data as well as matching sales with
incoming wire transfers from the exchange. Taler sim-
plifies this for merchants by providing a generic payment
processing backend for the Web shops.

Figure 11 shows how the secure payment components

interact with the existing Web shop logic. First, the
Web shop frontend is responsible for constructing the
shopping cart. For this, the shop frontend generates the
usual Web pages which are shown to the user’s browser
client frontend. Once the order has been constructed,
the shop frontend gives a proposed contract in JSON
format to the payment backend, which signs it and re-
turns it to the frontend. The frontend then transfers the
signed contract over the network, and passes it to the
wallet (sample code for this is in Figure 10). Here, the
wallet operates from a secure background on the client
side, which allows the user to securely accept the pay-
ment, and to perform the cryptographic operations in a
context that is protected from the Web shop. In par-
ticular, it is secure against a merchant that generates a
page that looks like the payment page from the wallet
(Figure 8b), as such a page would still not have access
to the private keys of the coins that are in the wallet.
If the user accepts, the resulting signed coins are trans-
ferred from the client to the server, again by a protocol
that the merchant can customize to fit the existing in-
frastructure.

Instead of adding any cryptographic logic to the mer-
chant frontend, the generic Taler merchant backend al-
lows the implementor to delegate handling of the coins
to the payment backend, which validates the coins, de-
posits them at the exchange, and finally validates and
persists the receipt from the exchange. The merchant
backend then communicates the result of the transaction
to the frontend, which is then responsible for executing
the business logic to fulfill the order. As a result of this
setup, the cryptographic details of the Taler protocol
do not have to be re-implemented by each merchant.
Instead, existing Web shops implemented in a multi-
tude of programming languages can rather trivially add
support for Taler by (0) detecting in the browser that
Taler is available, (1) upon request, generating a con-
tract in JSON based on the shopping cart, (2) allowing
the backend to sign the contract before sending it to
the client, (7) passing coins received in payment for a
contract to the backend and (8) executing fulfillment
business logic if the backend confirms the validity of the
payment.

To setup a Taler backend, the merchant only needs to
let it know his wire transfer routing details, such as an
IBAN number. Ideally, the merchant might also want
to obtain a certificate for the public key generated by
the backend for improved authentication. Otherwise,
the customer’s authentication of the Web shop simply
continues to rely upon HTTPS/X.509.

4. DISCUSSION
We will now discuss how customer’s may experience rel-
evant operational risks and failure modes of Taler, and
relate them to failure modes in existing systems.

4.1 Security risks
In Taler, customers incur the risk of wallet loss or theft.
We believe customers can manage this risk effectively
because they manage similar risks of losing cash in a
physical wallet. Unlike physical wallets, Taler’s wallet

10

could be backed up to secure against loss of a device.

Taler’s contracts do provide a degree of protection for
customers because they are signed by the merchant and
retained by the wallet: while they mirror the paper re-
ceipts that customers may receive in physical stores,
Taler’s cryptographically signed contracts ought to carry
more weight in courts than typical paper receipts.

Point-of-sale systems providing printed receipts have been
compromised in the past by merchants to embezzle sales
taxes. [?] With Taler, the merchant still generates a re-
ceipt for the customer; however, the record for the tax
authorities ultimately is anchored with the exchange’s
wire transfer to the merchant. Using the subject of the
wire transfer, the state can trace the payments and re-
quest the merchant to provide cryptographically match-
ing contracts. Thus, this type of tax fraud is no longer
possible, which is why we call Taler taxable. The mere
threat of the state sometimes tracing transactions and
contracts back to the merchant also makes Taler unsuit-
able for illegal activities.

The exchange operator is obviously crucial for risk man-
agement in Taler, as the exchange operator holds the
customer’s funds in a reserve in escrow until the re-
spective deposit request arrives4. To ensure that the
exchange operator does not embezzle these funds, Taler
expects exchange operators to be regularly audited by
an independent auditor5. The auditor can then verify
that the incoming and outgoing transactions and the
current balance of the exchange match the logs with
the cryptographically secured transaction records.

4.2 Failure modes
There are several failure modes the user of a Taler wallet
may encounter:

• As Taler supports multiple exchanges, there is a
chance that a merchant might not support any
exchange where the customer maintains a wallet
balance. We mitigate this problem by allowing
merchants to support all exchanges audited by a
particular auditor. We believe this a reasonable
approach, because auditors and merchants must
operate with a particular legal and financial frame-
work anyways. We note that a similar failure mode
exists with credit cards, where not all merchants
accept all issuers, especially internationally.

• Restoring the Taler wallet state from previous back-
ups, or copying the wallet state to a new machine,
may cause honest users to attempt to double spend
coins, as the wallet does not know when coins are
spent between backup and recovery. In this case,
the exchange provides cryptographic proof that
the coins were previously spent, so the wallet can

4As previoulsy said, this deposit request is aimed to
transalte coins into real money and it’s accomplished
by a merchant after successfully receiving coins by a
wallet. In other words, it is the way merchants get real
money on their bank accounts
5Auditors are typically run by states

verify that the exchange and merchant are behav-
ing honestly. However, this gives rise to another
subsequent failure mode, namely that ...

• There could be insufficient funds in the Taler wal-
let when making a payment. Usually the wallet
can trivially check this before beginning a trans-
action, but when double-spending is detected this
may also happen after the wallet already initi-
ated the payment. This would usually only hap-
pen if the wallet is unaware of a backup operation
voiding its internal invariants. If a payment fails
in-flight due to insufficient funds, the wallet can
use Taler’s refresh protocol to obtain a refund for
those coins that were not actually double-spent,
and then explain the user that the balance was in-
accurate due to inconsistencies from recovery, and
overall insufficient for payment. For the user, this
failure mode appears equivalent to an insufficient
balance or credit line when paying with cards.

4.3 Comparison
The different payment systems discussed make use of
different security technologies, which has an impact on
their usability and the assurances they can provide. Ex-
cept for Bitcoin, all payment systems described involve
an authentication step. With Taler, the authentication
itself is straightforward, as the customer is at the time
visiting the Web portal of the bank, and the authenti-
cation is with the bank (Figure 5). With PayPal, the
shop redirects the customer to the PayPal portal (step
5 in Figure 3) after the user selected PayPal as the pay-
ment method. The customer then provides the proof
of payment to the merchant. Again, this is reasonably
natural. The 3DS workflow (Figure 1) has to deal with a
multitude of banks and their different implementations,
and not just a single provider. Hence, the interactions
are more complicated as the merchant needs to addi-
tionally perform a lookup in the card scheme directory
and verify availability of the bank (steps 8 to 12).

The key difference between Taler and 3DS or PayPal is
that authentication is done ahead of time, not at the
time of purchase. After authenticating once to with-
draw digital coins, the customer can perform many mi-
cropayments without having to reauthenticate. While
this simplifies the process of the individual purchase, it
shifts the mental overhead to an earlier time, and thus
requires some planning, especially given that the digital
wallet is likely to only contain a small fraction of the
customer’s available funds. As a result, Taler improves
usability if the customer is able to withdraw funds once
to then facilitate many micropayments, while Taler is
likely less usable if for each transaction the customer
first visits the bank to withdraw funds. This is deliber-
ate, as Taler can only achieve reasonable privacy for cus-
tomers if they do keep a balance in their wallet, thereby
breaking the association between withdrawal and de-
posit.

Bitcoin’s payment process (Figure 2) resembles that of
Taler in one interesting point, namely that the wallet
is given details about the contract the user is to en-

11

ter (steps 7 to 11). However, in contrast to Taler, here
the Bitcoin wallet(s) are expected to fetch the “invoice”
from the merchant, while in Taler the browser provides
the Taler wallet with the proposed contract directly. In
PayPal and 3DS, the user is left without a cryptograph-
ically secured receipt.

Card-based payments (including 3DS) and PayPal also
extensively rely on TLS for security. The customer is
expected to verify that his connections to the various
Web sites are properly authenticated using X.509, and
to know that it is fine to providing his bank account cre-
dentials to the legitimate verifiedbyvisa.com.6 How-
ever, relying on users understanding their browser’s in-
dications of the security context is inherently problem-
atic. Taler addresses this challenge by ensuring that dig-
ital coins are only accessible from fully wallet-generated
pages, hence there is no risk of Web pages mimicking
the look of the respective page, as they would still not
obtain access to the digital coins.

Once the payment process nears its completion, mer-
chants need to have some assurance that the contract is
now valid. In Taler, merchants obtain a non-repudiable
confirmation of the payment. With 3DS and PayPal,
the confirmation may be disputed later (i.e. in case of
fraud), or accounts may be frozen arbitrarily [?]. Pay-
ments in cash require the merchant to assume the risk
of receiving counterfeit money. Furthermore, merchants
have the cost maintaining change and depositing the
money earned. With Bitcoin, there is no definitive time
until a payment can be said to be confirmed (step 19,
Figure 2), leaving merchants in a bit of a tricky situa-
tion.

5. CONCLUSION
Customers and merchants should be able to easily adapt
their existing mental models and technical infrastruc-
ture to Taler. In contrast, Bitcoin’s payment models fail
to match common expectations, be it in terms of perfor-
mance, durability, security, or privacy. Minimizing the
need to authenticate to pay fundamentally improves us-
ability.

We expect that electronic wallets that automatically col-
lect digitally signed receipts for transactions will become
commonplace. A key question for the future is thus
whether this data collection will be done on behalf of
the citizens and under their control, or on behalf of the
Reich of big data corporations.

We encourage readers to try our prototype for Taler
at https://demo.taler.net/, and to ponder why the
billion dollar e-commerce industry still relies mostly on
TLS for security, given that usability, security and pri-
vacy can clearly all be improved simultaneously using a
modern payment protocol.

Acknowledgements
Removed for anonymous submission.

6The search query “verifiedbyvisa.com legit” is so com-
mon that, when we entered“verifiedbyvisa” into a search
engine, it was the suggested autocompletion.

12

function h a n d l e I n s t a l l () {
var show = document . getElementsByClassName ("taler -installed -show") ;
var hide = document . getElementsByClassName ("taler -installed -hide") ;
for (var i = 0 ; i < show . l ength ; i++) {

show [i] . s t y l e . d i sp l ay = "" ;
}
for (var i = 0 ; i < hide . l ength ; i++) {

hide [i] . s t y l e . d i s p l ay = "none" ;
}

} ;

function hand l eUn in s ta l l () {
var show = document . getElementsByClassName ("taler -installed -show") ;
var hide = document . getElementsByClassName ("taler -installed -hide") ;
for (var i = 0 ; i < show . l ength ; i++) {

show [i] . s t y l e . d i sp l ay = "none" ;
}
for (var i = 0 ; i < hide . l ength ; i++) {

hide [i] . s t y l e . d i s p l ay = "" ;
}

} ;

function probeTaler () {
var eve = new Event ("taler -probe") ;
c on so l e . l og ("probing taler") ;
document . dispatchEvent (eve) ;

} ;

function i n i t T a l e r () {
hand l eUn in s ta l l () ; probeTaler () ;

} ;

document . addEventListener ("taler -wallet -present" , h a n d l e I n s t a l l , fa l se) ;
document . addEventListener ("taler -unload" , hand leUnins ta l l , fa l se) ;
document . addEventListener ("taler -load" , h a n d l e I n s t a l l , fa l se) ;
window . addEventListener ("load" , i n i t T a l e r , fa l se) ;

Figure 9: Sample code to detect the Taler wallet. Allowing the Web site to detect the presence of the wallet leaks
one bit of information about the user. The above logic also works if the wallet is installed while the page is open.

13

/* Trigger Taler contract generation on the server , and pass the

contract to the extension once we got it. */

function t a l e r p a y (form) {
var c o n t r a c t r e q u e s t = new XMLHttpRequest () ;

/* Note that the URL we give here is simply an example

and not dictated by the protocol: each web shop can

have its own way of generating and transmitting the

contract , there just must be a way to get the contract

and to pass it to the wallet when the user selects ’Pay ’. */

c o n t r a c t r e q u e s t . open ("GET" , "generate -taler -contract" , true) ;
c o n t r a c t r e q u e s t . onload = function (e) {

i f (c o n t r a c t r e q u e s t . readyState == 4) {
i f (c o n t r a c t r e q u e s t . s t a t u s == 200) {

/* Send contract to the extension. */

hand l e cont rac t (c o n t r a c t r e q u e s t . responseText) ;
} else {

/* There was an error obtaining the contract from the merchant ,

obviously this should not happen. To keep it simple , we just

alert the user to the error. */

a l e r t ("Failure to download contract " +
"(" + c o n t r a c t r e q u e s t . s t a t u s + "):\n" +
c o n t r a c t r e q u e s t . responseText) ;

}
}

} ;
c o n t r a c t r e q u e s t . oner ro r = function (e) {

/* There was an error obtaining the contract from the merchant ,

obviously this should not happen. To keep it simple , we just

alert the user to the error. */

a l e r t ("Failure requesting the contract:\n" +
c o n t r a c t r e q u e s t . s tatusText) ;

} ;
c o n t r a c t r e q u e s t . send () ;

}

Figure 10: Sample code to pass a contract to the Taler wallet. Here, the contract is fetched on-demand from the
server. The taler_pay() function needs to be invoked when the user triggers the checkout.

Wallet Browser Web shop Taler backend

(4) signed contract

(signal)

(signal)

(5) signed coins

(3,6) custom

(HTTP(S))

(HTTP(S))

(1) proposed contract / (7) signed coins

(2) signed contract / (8) confirmation

(HTTP(S))

Figure 11: Both the customer’s client and the merchant’s server execute sensitive cryptographic operations in a
secured background/backend that is protected against direct access. Interactions with the Taler exchange from the
wallet background to withdraw coins and the Taler backend (Figure 4) to deposit coins are not shown. Existing
system security mechanisms are used to isolate the cryptographic components (boxes) from the complex rendering
logic (circles), hence the communication is restricted to JavaScript signals or HTTP(S) respectively.

14

