From 3b3af8a077f4ea67db47a516c9bae15564896f6b Mon Sep 17 00:00:00 2001 From: Christian Grothoff Date: Mon, 5 Oct 2015 00:35:02 +0200 Subject: avoid triplicating 'randomly computes' --- doc/paper/taler.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index babc895ea..913611e44 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -808,15 +808,15 @@ protocol, $\kappa \ge 3$ is a security parameter and $G$ is the generator of the elliptic curve. \begin{enumerate} - \item For each $i = 1,\ldots,\kappa$, the customer + \item For each $i = 1,\ldots,\kappa$, the customer randomly generates \begin{itemize} - \item randomly generates transfer key $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ where $T^{(i)}_p := t^{(i)}_s G$, - \item randomly generates coin key pair \\ $C^{(i)} := \left(c_s^{(i)}, C_p^{(i)}\right)$ where $C^{(i)}_p := c^{(i)}_s G$, - \item randomly generates blinding factors $b^{(i)}$, - \item computes $E^{(i)} := E_{K_i}\left(c_s^{(i)}, b^{(i)}\right)$ where $K_i := H(c'_s T_p^{(i)})$. (The encryption key $K_i$ is - computed by multiplying the private key $c'_s$ of the original coin with the point on the curve - that represents the public key $T^{(i)}_p$ of the transfer key $T^{(i)}$. This is basically DH between coin and transfer key.), + \item transfer key $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ where $T^{(i)}_p := t^{(i)}_s G$, + \item coin key pair \\ $C^{(i)} := \left(c_s^{(i)}, C_p^{(i)}\right)$ where $C^{(i)}_p := c^{(i)}_s G$, + \item blinding factors $b^{(i)}$. \end{itemize} + The customer then computes $E^{(i)} := E_{K_i}\left(c_s^{(i)}, b^{(i)}\right)$ where $K_i := H(c'_s T_p^{(i)})$. (The encryption key $K_i$ is + computed by multiplying the private key $c'_s$ of the original coin with the point on the curve + that represents the public key $T^{(i)}_p$ of the transfer key $T^{(i)}$. This is basically DH between coin and transfer key.), and commits $\langle C', \vec{T}, \vec{C}, \vec{b} \rangle$ to disk. \item The customer computes $B^{(i)} := B_{b^{(i)}}(C^{(i)}_p)$ for $i \in \{1,\ldots,\kappa\}$ and sends a commitment $S_{C'}(\vec{E}, \vec{B}, \vec{T_p}))$ to the mint. -- cgit v1.2.3