1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
/*
* Coroutine tests
*
* Copyright IBM, Corp. 2011
*
* Authors:
* Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/coroutine_int.h"
/*
* Check that qemu_in_coroutine() works
*/
static void coroutine_fn verify_in_coroutine(void *opaque)
{
g_assert(qemu_in_coroutine());
}
static void test_in_coroutine(void)
{
Coroutine *coroutine;
g_assert(!qemu_in_coroutine());
coroutine = qemu_coroutine_create(verify_in_coroutine, NULL);
qemu_coroutine_enter(coroutine);
}
/*
* Check that qemu_coroutine_self() works
*/
static void coroutine_fn verify_self(void *opaque)
{
Coroutine **p_co = opaque;
g_assert(qemu_coroutine_self() == *p_co);
}
static void test_self(void)
{
Coroutine *coroutine;
coroutine = qemu_coroutine_create(verify_self, &coroutine);
qemu_coroutine_enter(coroutine);
}
/*
* Check that qemu_coroutine_entered() works
*/
static void coroutine_fn verify_entered_step_2(void *opaque)
{
Coroutine *caller = (Coroutine *)opaque;
g_assert(qemu_coroutine_entered(caller));
g_assert(qemu_coroutine_entered(qemu_coroutine_self()));
qemu_coroutine_yield();
/* Once more to check it still works after yielding */
g_assert(qemu_coroutine_entered(caller));
g_assert(qemu_coroutine_entered(qemu_coroutine_self()));
}
static void coroutine_fn verify_entered_step_1(void *opaque)
{
Coroutine *self = qemu_coroutine_self();
Coroutine *coroutine;
g_assert(qemu_coroutine_entered(self));
coroutine = qemu_coroutine_create(verify_entered_step_2, self);
g_assert(!qemu_coroutine_entered(coroutine));
qemu_coroutine_enter(coroutine);
g_assert(!qemu_coroutine_entered(coroutine));
qemu_coroutine_enter(coroutine);
}
static void test_entered(void)
{
Coroutine *coroutine;
coroutine = qemu_coroutine_create(verify_entered_step_1, NULL);
g_assert(!qemu_coroutine_entered(coroutine));
qemu_coroutine_enter(coroutine);
}
/*
* Check that coroutines may nest multiple levels
*/
typedef struct {
unsigned int n_enter; /* num coroutines entered */
unsigned int n_return; /* num coroutines returned */
unsigned int max; /* maximum level of nesting */
} NestData;
static void coroutine_fn nest(void *opaque)
{
NestData *nd = opaque;
nd->n_enter++;
if (nd->n_enter < nd->max) {
Coroutine *child;
child = qemu_coroutine_create(nest, nd);
qemu_coroutine_enter(child);
}
nd->n_return++;
}
static void test_nesting(void)
{
Coroutine *root;
NestData nd = {
.n_enter = 0,
.n_return = 0,
.max = 128,
};
root = qemu_coroutine_create(nest, &nd);
qemu_coroutine_enter(root);
/* Must enter and return from max nesting level */
g_assert_cmpint(nd.n_enter, ==, nd.max);
g_assert_cmpint(nd.n_return, ==, nd.max);
}
/*
* Check that yield/enter transfer control correctly
*/
static void coroutine_fn yield_5_times(void *opaque)
{
bool *done = opaque;
int i;
for (i = 0; i < 5; i++) {
qemu_coroutine_yield();
}
*done = true;
}
static void test_yield(void)
{
Coroutine *coroutine;
bool done = false;
int i = -1; /* one extra time to return from coroutine */
coroutine = qemu_coroutine_create(yield_5_times, &done);
while (!done) {
qemu_coroutine_enter(coroutine);
i++;
}
g_assert_cmpint(i, ==, 5); /* coroutine must yield 5 times */
}
static void coroutine_fn c2_fn(void *opaque)
{
qemu_coroutine_yield();
}
static void coroutine_fn c1_fn(void *opaque)
{
Coroutine *c2 = opaque;
qemu_coroutine_enter(c2);
}
static void test_no_dangling_access(void)
{
Coroutine *c1;
Coroutine *c2;
Coroutine tmp;
c2 = qemu_coroutine_create(c2_fn, NULL);
c1 = qemu_coroutine_create(c1_fn, c2);
qemu_coroutine_enter(c1);
/* c1 shouldn't be used any more now; make sure we segfault if it is */
tmp = *c1;
memset(c1, 0xff, sizeof(Coroutine));
qemu_coroutine_enter(c2);
/* Must restore the coroutine now to avoid corrupted pool */
*c1 = tmp;
}
static bool locked;
static int done;
static void coroutine_fn mutex_fn(void *opaque)
{
CoMutex *m = opaque;
qemu_co_mutex_lock(m);
assert(!locked);
locked = true;
qemu_coroutine_yield();
locked = false;
qemu_co_mutex_unlock(m);
done++;
}
static void coroutine_fn lockable_fn(void *opaque)
{
QemuLockable *x = opaque;
qemu_lockable_lock(x);
assert(!locked);
locked = true;
qemu_coroutine_yield();
locked = false;
qemu_lockable_unlock(x);
done++;
}
static void do_test_co_mutex(CoroutineEntry *entry, void *opaque)
{
Coroutine *c1 = qemu_coroutine_create(entry, opaque);
Coroutine *c2 = qemu_coroutine_create(entry, opaque);
done = 0;
qemu_coroutine_enter(c1);
g_assert(locked);
qemu_coroutine_enter(c2);
/* Unlock queues c2. It is then started automatically when c1 yields or
* terminates.
*/
qemu_coroutine_enter(c1);
g_assert_cmpint(done, ==, 1);
g_assert(locked);
qemu_coroutine_enter(c2);
g_assert_cmpint(done, ==, 2);
g_assert(!locked);
}
static void test_co_mutex(void)
{
CoMutex m;
qemu_co_mutex_init(&m);
do_test_co_mutex(mutex_fn, &m);
}
static void test_co_mutex_lockable(void)
{
CoMutex m;
CoMutex *null_pointer = NULL;
qemu_co_mutex_init(&m);
do_test_co_mutex(lockable_fn, QEMU_MAKE_LOCKABLE(&m));
g_assert(QEMU_MAKE_LOCKABLE(null_pointer) == NULL);
}
static CoRwlock rwlock;
/* Test that readers are properly sent back to the queue when upgrading,
* even if they are the sole readers. The test scenario is as follows:
*
*
* | c1 | c2 |
* |--------------+------------+
* | rdlock | |
* | yield | |
* | | wrlock |
* | | <queued> |
* | upgrade | |
* | <queued> | <dequeued> |
* | | unlock |
* | <dequeued> | |
* | unlock | |
*/
static void coroutine_fn rwlock_yield_upgrade(void *opaque)
{
qemu_co_rwlock_rdlock(&rwlock);
qemu_coroutine_yield();
qemu_co_rwlock_upgrade(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_wrlock_yield(void *opaque)
{
qemu_co_rwlock_wrlock(&rwlock);
qemu_coroutine_yield();
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void test_co_rwlock_upgrade(void)
{
bool c1_done = false;
bool c2_done = false;
Coroutine *c1, *c2;
qemu_co_rwlock_init(&rwlock);
c1 = qemu_coroutine_create(rwlock_yield_upgrade, &c1_done);
c2 = qemu_coroutine_create(rwlock_wrlock_yield, &c2_done);
qemu_coroutine_enter(c1);
qemu_coroutine_enter(c2);
/* c1 now should go to sleep. */
qemu_coroutine_enter(c1);
g_assert(!c1_done);
qemu_coroutine_enter(c2);
g_assert(c1_done);
g_assert(c2_done);
}
static void coroutine_fn rwlock_rdlock_yield(void *opaque)
{
qemu_co_rwlock_rdlock(&rwlock);
qemu_coroutine_yield();
qemu_co_rwlock_unlock(&rwlock);
qemu_coroutine_yield();
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_wrlock_downgrade(void *opaque)
{
qemu_co_rwlock_wrlock(&rwlock);
qemu_co_rwlock_downgrade(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_rdlock(void *opaque)
{
qemu_co_rwlock_rdlock(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_wrlock(void *opaque)
{
qemu_co_rwlock_wrlock(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
/*
* Check that downgrading a reader-writer lock does not cause a hang.
*
* Four coroutines are used to produce a situation where there are
* both reader and writer hopefuls waiting to acquire an rwlock that
* is held by a reader.
*
* The correct sequence of operations we aim to provoke can be
* represented as:
*
* | c1 | c2 | c3 | c4 |
* |--------+------------+------------+------------|
* | rdlock | | | |
* | yield | | | |
* | | wrlock | | |
* | | <queued> | | |
* | | | rdlock | |
* | | | <queued> | |
* | | | | wrlock |
* | | | | <queued> |
* | unlock | | | |
* | yield | | | |
* | | <dequeued> | | |
* | | downgrade | | |
* | | | <dequeued> | |
* | | | unlock | |
* | | ... | | |
* | | unlock | | |
* | | | | <dequeued> |
* | | | | unlock |
*/
static void test_co_rwlock_downgrade(void)
{
bool c1_done = false;
bool c2_done = false;
bool c3_done = false;
bool c4_done = false;
Coroutine *c1, *c2, *c3, *c4;
qemu_co_rwlock_init(&rwlock);
c1 = qemu_coroutine_create(rwlock_rdlock_yield, &c1_done);
c2 = qemu_coroutine_create(rwlock_wrlock_downgrade, &c2_done);
c3 = qemu_coroutine_create(rwlock_rdlock, &c3_done);
c4 = qemu_coroutine_create(rwlock_wrlock, &c4_done);
qemu_coroutine_enter(c1);
qemu_coroutine_enter(c2);
qemu_coroutine_enter(c3);
qemu_coroutine_enter(c4);
qemu_coroutine_enter(c1);
g_assert(c2_done);
g_assert(c3_done);
g_assert(c4_done);
qemu_coroutine_enter(c1);
g_assert(c1_done);
}
/*
* Check that creation, enter, and return work
*/
static void coroutine_fn set_and_exit(void *opaque)
{
bool *done = opaque;
*done = true;
}
static void test_lifecycle(void)
{
Coroutine *coroutine;
bool done = false;
/* Create, enter, and return from coroutine */
coroutine = qemu_coroutine_create(set_and_exit, &done);
qemu_coroutine_enter(coroutine);
g_assert(done); /* expect done to be true (first time) */
/* Repeat to check that no state affects this test */
done = false;
coroutine = qemu_coroutine_create(set_and_exit, &done);
qemu_coroutine_enter(coroutine);
g_assert(done); /* expect done to be true (second time) */
}
#define RECORD_SIZE 10 /* Leave some room for expansion */
struct coroutine_position {
int func;
int state;
};
static struct coroutine_position records[RECORD_SIZE];
static unsigned record_pos;
static void record_push(int func, int state)
{
struct coroutine_position *cp = &records[record_pos++];
g_assert_cmpint(record_pos, <, RECORD_SIZE);
cp->func = func;
cp->state = state;
}
static void coroutine_fn co_order_test(void *opaque)
{
record_push(2, 1);
g_assert(qemu_in_coroutine());
qemu_coroutine_yield();
record_push(2, 2);
g_assert(qemu_in_coroutine());
}
static void do_order_test(void)
{
Coroutine *co;
co = qemu_coroutine_create(co_order_test, NULL);
record_push(1, 1);
qemu_coroutine_enter(co);
record_push(1, 2);
g_assert(!qemu_in_coroutine());
qemu_coroutine_enter(co);
record_push(1, 3);
g_assert(!qemu_in_coroutine());
}
static void test_order(void)
{
int i;
const struct coroutine_position expected_pos[] = {
{1, 1,}, {2, 1}, {1, 2}, {2, 2}, {1, 3}
};
do_order_test();
g_assert_cmpint(record_pos, ==, 5);
for (i = 0; i < record_pos; i++) {
g_assert_cmpint(records[i].func , ==, expected_pos[i].func );
g_assert_cmpint(records[i].state, ==, expected_pos[i].state);
}
}
/*
* Lifecycle benchmark
*/
static void coroutine_fn empty_coroutine(void *opaque)
{
/* Do nothing */
}
static void perf_lifecycle(void)
{
Coroutine *coroutine;
unsigned int i, max;
double duration;
max = 1000000;
g_test_timer_start();
for (i = 0; i < max; i++) {
coroutine = qemu_coroutine_create(empty_coroutine, NULL);
qemu_coroutine_enter(coroutine);
}
duration = g_test_timer_elapsed();
g_test_message("Lifecycle %u iterations: %f s", max, duration);
}
static void perf_nesting(void)
{
unsigned int i, maxcycles, maxnesting;
double duration;
maxcycles = 10000;
maxnesting = 1000;
Coroutine *root;
g_test_timer_start();
for (i = 0; i < maxcycles; i++) {
NestData nd = {
.n_enter = 0,
.n_return = 0,
.max = maxnesting,
};
root = qemu_coroutine_create(nest, &nd);
qemu_coroutine_enter(root);
}
duration = g_test_timer_elapsed();
g_test_message("Nesting %u iterations of %u depth each: %f s",
maxcycles, maxnesting, duration);
}
/*
* Yield benchmark
*/
static void coroutine_fn yield_loop(void *opaque)
{
unsigned int *counter = opaque;
while ((*counter) > 0) {
(*counter)--;
qemu_coroutine_yield();
}
}
static void perf_yield(void)
{
unsigned int i, maxcycles;
double duration;
maxcycles = 100000000;
i = maxcycles;
Coroutine *coroutine = qemu_coroutine_create(yield_loop, &i);
g_test_timer_start();
while (i > 0) {
qemu_coroutine_enter(coroutine);
}
duration = g_test_timer_elapsed();
g_test_message("Yield %u iterations: %f s", maxcycles, duration);
}
static __attribute__((noinline)) void dummy(unsigned *i)
{
(*i)--;
}
static void perf_baseline(void)
{
unsigned int i, maxcycles;
double duration;
maxcycles = 100000000;
i = maxcycles;
g_test_timer_start();
while (i > 0) {
dummy(&i);
}
duration = g_test_timer_elapsed();
g_test_message("Function call %u iterations: %f s", maxcycles, duration);
}
static __attribute__((noinline)) void coroutine_fn perf_cost_func(void *opaque)
{
qemu_coroutine_yield();
}
static void perf_cost(void)
{
const unsigned long maxcycles = 40000000;
unsigned long i = 0;
double duration;
unsigned long ops;
Coroutine *co;
g_test_timer_start();
while (i++ < maxcycles) {
co = qemu_coroutine_create(perf_cost_func, &i);
qemu_coroutine_enter(co);
qemu_coroutine_enter(co);
}
duration = g_test_timer_elapsed();
ops = (long)(maxcycles / (duration * 1000));
g_test_message("Run operation %lu iterations %f s, %luK operations/s, "
"%luns per coroutine",
maxcycles,
duration, ops,
(unsigned long)(1000000000.0 * duration / maxcycles));
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
/* This test assumes there is a freelist and marks freed coroutine memory
* with a sentinel value. If there is no freelist this would legitimately
* crash, so skip it.
*/
if (CONFIG_COROUTINE_POOL) {
g_test_add_func("/basic/no-dangling-access", test_no_dangling_access);
}
g_test_add_func("/basic/lifecycle", test_lifecycle);
g_test_add_func("/basic/yield", test_yield);
g_test_add_func("/basic/nesting", test_nesting);
g_test_add_func("/basic/self", test_self);
g_test_add_func("/basic/entered", test_entered);
g_test_add_func("/basic/in_coroutine", test_in_coroutine);
g_test_add_func("/basic/order", test_order);
g_test_add_func("/locking/co-mutex", test_co_mutex);
g_test_add_func("/locking/co-mutex/lockable", test_co_mutex_lockable);
g_test_add_func("/locking/co-rwlock/upgrade", test_co_rwlock_upgrade);
g_test_add_func("/locking/co-rwlock/downgrade", test_co_rwlock_downgrade);
if (g_test_perf()) {
g_test_add_func("/perf/lifecycle", perf_lifecycle);
g_test_add_func("/perf/nesting", perf_nesting);
g_test_add_func("/perf/yield", perf_yield);
g_test_add_func("/perf/function-call", perf_baseline);
g_test_add_func("/perf/cost", perf_cost);
}
return g_test_run();
}
|