aboutsummaryrefslogtreecommitdiff
path: root/tests/tcg/multiarch/system/memory.c
blob: 214f7d4f54b7bf5d4ed2614bb9d88d03dee6b5ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 * Memory Test
 *
 * This is intended to test the softmmu code and ensure we properly
 * behave across normal and unaligned accesses across several pages.
 * We are not replicating memory tests for stuck bits and other
 * hardware level failures but looking for issues with different size
 * accesses when access is:
 *
 *   - unaligned at various sizes (if -DCHECK_UNALIGNED set)
 *   - spanning a (softmmu) page
 *   - sign extension when loading
 */

#include <stdint.h>
#include <stdbool.h>
#include <minilib.h>

#ifndef CHECK_UNALIGNED
# error "Target does not specify CHECK_UNALIGNED"
#endif

#define MEM_PAGE_SIZE 4096             /* nominal 4k "pages" */
#define TEST_SIZE (MEM_PAGE_SIZE * 4)  /* 4 pages */

#define ARRAY_SIZE(x) ((sizeof(x) / sizeof((x)[0])))

__attribute__((aligned(MEM_PAGE_SIZE)))
static uint8_t test_data[TEST_SIZE];

typedef void (*init_ufn) (int offset);
typedef bool (*read_ufn) (int offset);
typedef bool (*read_sfn) (int offset, bool nf);

static void pdot(int count)
{
    if (count % 128 == 0) {
        ml_printf(".");
    }
}

/*
 * Helper macros for shift/extract so we can keep our endian handling
 * in one place.
 */
#define BYTE_SHIFT(b, pos) ((uint64_t)b << (pos * 8))
#define BYTE_EXTRACT(b, pos) ((b >> (pos * 8)) & 0xff)

/*
 * Fill the data with ascending value bytes.
 *
 * Currently we only support Little Endian machines so write in
 * ascending address order. When we read higher address bytes should
 * either be zero or higher than the lower bytes.
 */

static void init_test_data_u8(int unused_offset)
{
    uint8_t count = 0, *ptr = &test_data[0];
    int i;
    (void)(unused_offset);

    ml_printf("Filling test area with u8:");
    for (i = 0; i < TEST_SIZE; i++) {
        *ptr++ = count++;
        pdot(i);
    }
    ml_printf("done\n");
}

/*
 * Full the data with alternating positive and negative bytes. This
 * should mean for reads larger than a byte all subsequent reads will
 * stay either negative or positive. We never write 0.
 */

static inline uint8_t get_byte(int index, bool neg)
{
    return neg ? (0xff << (index % 7)) : (0xff >> ((index % 6) + 1));
}

static void init_test_data_s8(bool neg_first)
{
    uint8_t top, bottom, *ptr = &test_data[0];
    int i;

    ml_printf("Filling test area with s8 pairs (%s):",
              neg_first ? "neg first" : "pos first");
    for (i = 0; i < TEST_SIZE / 2; i++) {
        *ptr++ = get_byte(i, neg_first);
        *ptr++ = get_byte(i, !neg_first);
        pdot(i);
    }
    ml_printf("done\n");
}

/*
 * Zero the first few bytes of the test data in preparation for
 * new offset values.
 */
static void reset_start_data(int offset)
{
    uint32_t *ptr = (uint32_t *) &test_data[0];
    int i;
    for (i = 0; i < offset; i++) {
        *ptr++ = 0;
    }
}

static void init_test_data_u16(int offset)
{
    uint8_t count = 0;
    uint16_t word, *ptr = (uint16_t *) &test_data[offset];
    const int max = (TEST_SIZE - offset) / sizeof(word);
    int i;

    ml_printf("Filling test area with u16 (offset %d, %p):", offset, ptr);

    reset_start_data(offset);

    for (i = 0; i < max; i++) {
        uint8_t low = count++, high = count++;
        word = BYTE_SHIFT(high, 1) | BYTE_SHIFT(low, 0);
        *ptr++ = word;
        pdot(i);
    }
    ml_printf("done @ %p\n", ptr);
}

static void init_test_data_u32(int offset)
{
    uint8_t count = 0;
    uint32_t word, *ptr = (uint32_t *) &test_data[offset];
    const int max = (TEST_SIZE - offset) / sizeof(word);
    int i;

    ml_printf("Filling test area with u32 (offset %d, %p):", offset, ptr);

    reset_start_data(offset);

    for (i = 0; i < max; i++) {
        uint8_t b4 = count++, b3 = count++;
        uint8_t b2 = count++, b1 = count++;
        word = BYTE_SHIFT(b1, 3) | BYTE_SHIFT(b2, 2) | BYTE_SHIFT(b3, 1) | b4;
        *ptr++ = word;
        pdot(i);
    }
    ml_printf("done @ %p\n", ptr);
}

static void init_test_data_u64(int offset)
{
    uint8_t count = 0;
    uint64_t word, *ptr = (uint64_t *) &test_data[offset];
    const int max = (TEST_SIZE - offset) / sizeof(word);
    int i;

    ml_printf("Filling test area with u64 (offset %d, %p):", offset, ptr);

    reset_start_data(offset);

    for (i = 0; i < max; i++) {
        uint8_t b8 = count++, b7 = count++;
        uint8_t b6 = count++, b5 = count++;
        uint8_t b4 = count++, b3 = count++;
        uint8_t b2 = count++, b1 = count++;
        word = BYTE_SHIFT(b1, 7) | BYTE_SHIFT(b2, 6) | BYTE_SHIFT(b3, 5) |
               BYTE_SHIFT(b4, 4) | BYTE_SHIFT(b5, 3) | BYTE_SHIFT(b6, 2) |
               BYTE_SHIFT(b7, 1) | b8;
        *ptr++ = word;
        pdot(i);
    }
    ml_printf("done @ %p\n", ptr);
}

static bool read_test_data_u16(int offset)
{
    uint16_t word, *ptr = (uint16_t *)&test_data[offset];
    int i;
    const int max = (TEST_SIZE - offset) / sizeof(word);

    ml_printf("Reading u16 from %#lx (offset %d):", ptr, offset);

    for (i = 0; i < max; i++) {
        uint8_t high, low;
        word = *ptr++;
        high = (word >> 8) & 0xff;
        low = word & 0xff;
        if (high < low && high != 0) {
            ml_printf("Error %d < %d\n", high, low);
            return false;
        } else {
            pdot(i);
        }

    }
    ml_printf("done @ %p\n", ptr);
    return true;
}

static bool read_test_data_u32(int offset)
{
    uint32_t word, *ptr = (uint32_t *)&test_data[offset];
    int i;
    const int max = (TEST_SIZE - offset) / sizeof(word);

    ml_printf("Reading u32 from %#lx (offset %d):", ptr, offset);

    for (i = 0; i < max; i++) {
        uint8_t b1, b2, b3, b4;
        int zeros = 0;
        word = *ptr++;

        b1 = word >> 24 & 0xff;
        b2 = word >> 16 & 0xff;
        b3 = word >> 8 & 0xff;
        b4 = word & 0xff;

        zeros += (b1 == 0 ? 1 : 0);
        zeros += (b2 == 0 ? 1 : 0);
        zeros += (b3 == 0 ? 1 : 0);
        zeros += (b4 == 0 ? 1 : 0);
        if (zeros > 1) {
            ml_printf("Error @ %p, more zeros than expected: %d, %d, %d, %d",
                      ptr - 1, b1, b2, b3, b4);
            return false;
        }

        if ((b1 < b2 && b1 != 0) ||
            (b2 < b3 && b2 != 0) ||
            (b3 < b4 && b3 != 0)) {
            ml_printf("Error %d, %d, %d, %d", b1, b2, b3, b4);
            return false;
        } else {
            pdot(i);
        }
    }
    ml_printf("done @ %p\n", ptr);
    return true;
}

static bool read_test_data_u64(int offset)
{
    uint64_t word, *ptr = (uint64_t *)&test_data[offset];
    int i;
    const int max = (TEST_SIZE - offset) / sizeof(word);

    ml_printf("Reading u64 from %#lx (offset %d):", ptr, offset);

    for (i = 0; i < max; i++) {
        uint8_t b1, b2, b3, b4, b5, b6, b7, b8;
        int zeros = 0;
        word = *ptr++;

        b1 = ((uint64_t) (word >> 56)) & 0xff;
        b2 = ((uint64_t) (word >> 48)) & 0xff;
        b3 = ((uint64_t) (word >> 40)) & 0xff;
        b4 = (word >> 32) & 0xff;
        b5 = (word >> 24) & 0xff;
        b6 = (word >> 16) & 0xff;
        b7 = (word >> 8)  & 0xff;
        b8 = (word >> 0)  & 0xff;

        zeros += (b1 == 0 ? 1 : 0);
        zeros += (b2 == 0 ? 1 : 0);
        zeros += (b3 == 0 ? 1 : 0);
        zeros += (b4 == 0 ? 1 : 0);
        zeros += (b5 == 0 ? 1 : 0);
        zeros += (b6 == 0 ? 1 : 0);
        zeros += (b7 == 0 ? 1 : 0);
        zeros += (b8 == 0 ? 1 : 0);
        if (zeros > 1) {
            ml_printf("Error @ %p, more zeros than expected: %d, %d, %d, %d, %d, %d, %d, %d",
                      ptr - 1, b1, b2, b3, b4, b5, b6, b7, b8);
            return false;
        }

        if ((b1 < b2 && b1 != 0) ||
            (b2 < b3 && b2 != 0) ||
            (b3 < b4 && b3 != 0) ||
            (b4 < b5 && b4 != 0) ||
            (b5 < b6 && b5 != 0) ||
            (b6 < b7 && b6 != 0) ||
            (b7 < b8 && b7 != 0)) {
            ml_printf("Error %d, %d, %d, %d, %d, %d, %d, %d",
                      b1, b2, b3, b4, b5, b6, b7, b8);
            return false;
        } else {
            pdot(i);
        }
    }
    ml_printf("done @ %p\n", ptr);
    return true;
}

/* Read the test data and verify at various offsets */
read_ufn read_ufns[] = { read_test_data_u16,
                         read_test_data_u32,
                         read_test_data_u64 };

bool do_unsigned_reads(int start_off)
{
    int i;
    bool ok = true;

    for (i = 0; i < ARRAY_SIZE(read_ufns) && ok; i++) {
#if CHECK_UNALIGNED
        int off;
        for (off = start_off; off < 8 && ok; off++) {
            ok = read_ufns[i](off);
        }
#else
        ok = read_ufns[i](start_off);
#endif
    }

    return ok;
}

static bool do_unsigned_test(init_ufn fn)
{
#if CHECK_UNALIGNED
    bool ok = true;
    int i;
    for (i = 0; i < 8 && ok; i++) {
        fn(i);
        ok = do_unsigned_reads(i);
    }
    return ok;
#else
    fn(0);
    return do_unsigned_reads(0);
#endif
}

/*
 * We need to ensure signed data is read into a larger data type to
 * ensure that sign extension is working properly.
 */

static bool read_test_data_s8(int offset, bool neg_first)
{
    int8_t *ptr = (int8_t *)&test_data[offset];
    int i;
    const int max = (TEST_SIZE - offset) / 2;

    ml_printf("Reading s8 pairs from %#lx (offset %d):", ptr, offset);

    for (i = 0; i < max; i++) {
        int16_t first, second;
        bool ok;
        first = *ptr++;
        second = *ptr++;

        if (neg_first && first < 0 && second > 0) {
            pdot(i);
        } else if (!neg_first && first > 0 && second < 0) {
            pdot(i);
        } else {
            ml_printf("Error %d %c %d\n", first, neg_first ? '<' : '>', second);
            return false;
        }
    }
    ml_printf("done @ %p\n", ptr);
    return true;
}

static bool read_test_data_s16(int offset, bool neg_first)
{
    int16_t *ptr = (int16_t *)&test_data[offset];
    int i;
    const int max = (TEST_SIZE - offset) / (sizeof(*ptr));

    ml_printf("Reading s16 from %#lx (offset %d, %s):", ptr,
              offset, neg_first ? "neg" : "pos");

    for (i = 0; i < max; i++) {
        int32_t data = *ptr++;

        if (neg_first && data < 0) {
            pdot(i);
        } else if (data > 0) {
            pdot(i);
        } else {
            ml_printf("Error %d %c 0\n", data, neg_first ? '<' : '>');
            return false;
        }
    }
    ml_printf("done @ %p\n", ptr);
    return true;
}

static bool read_test_data_s32(int offset, bool neg_first)
{
    int32_t *ptr = (int32_t *)&test_data[offset];
    int i;
    const int max = (TEST_SIZE - offset) / (sizeof(int32_t));

    ml_printf("Reading s32 from %#lx (offset %d, %s):",
              ptr, offset, neg_first ? "neg" : "pos");

    for (i = 0; i < max; i++) {
        int64_t data = *ptr++;

        if (neg_first && data < 0) {
            pdot(i);
        } else if (data > 0) {
            pdot(i);
        } else {
            ml_printf("Error %d %c 0\n", data, neg_first ? '<' : '>');
            return false;
        }
    }
    ml_printf("done @ %p\n", ptr);
    return true;
}

/*
 * Read the test data and verify at various offsets
 *
 * For everything except bytes all our reads should be either positive
 * or negative depending on what offset we are reading from. Currently
 * we only handle LE systems.
 */
read_sfn read_sfns[] = { read_test_data_s8,
                         read_test_data_s16,
                         read_test_data_s32 };

bool do_signed_reads(bool neg_first)
{
    int i;
    bool ok = true;

    for (i = 0; i < ARRAY_SIZE(read_sfns) && ok; i++) {
#if CHECK_UNALIGNED
        int off;
        for (off = 0; off < 8 && ok; off++) {
            bool nf = i == 0 ? neg_first ^ (off & 1) : !(neg_first ^ (off & 1));
            ok = read_sfns[i](off, nf);
        }
#else
        ok = read_sfns[i](0, i == 0 ? neg_first : !neg_first);
#endif
    }

    return ok;
}

init_ufn init_ufns[] = { init_test_data_u8,
                         init_test_data_u16,
                         init_test_data_u32,
                         init_test_data_u64 };

int main(void)
{
    int i;
    bool ok = true;

    /* Run through the unsigned tests first */
    for (i = 0; i < ARRAY_SIZE(init_ufns) && ok; i++) {
        ok = do_unsigned_test(init_ufns[i]);
    }

    if (ok) {
        init_test_data_s8(false);
        ok = do_signed_reads(false);
    }

    if (ok) {
        init_test_data_s8(true);
        ok = do_signed_reads(true);
    }

    ml_printf("Test complete: %s\n", ok ? "PASSED" : "FAILED");
    return ok ? 0 : -1;
}