aboutsummaryrefslogtreecommitdiff
path: root/target/riscv/pmu.c
blob: db06b3882faa47f07e16c650a0f4b14aac4c473e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
 * RISC-V PMU file.
 *
 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "pmu.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/device_tree.h"

#define RISCV_TIMEBASE_FREQ 1000000000 /* 1Ghz */
#define MAKE_32BIT_MASK(shift, length) \
        (((uint32_t)(~0UL) >> (32 - (length))) << (shift))

/*
 * To keep it simple, any event can be mapped to any programmable counters in
 * QEMU. The generic cycle & instruction count events can also be monitored
 * using programmable counters. In that case, mcycle & minstret must continue
 * to provide the correct value as well. Heterogeneous PMU per hart is not
 * supported yet. Thus, number of counters are same across all harts.
 */
void riscv_pmu_generate_fdt_node(void *fdt, int num_ctrs, char *pmu_name)
{
    uint32_t fdt_event_ctr_map[15] = {};
    uint32_t cmask;

    /* All the programmable counters can map to any event */
    cmask = MAKE_32BIT_MASK(3, num_ctrs);

   /*
    * The event encoding is specified in the SBI specification
    * Event idx is a 20bits wide number encoded as follows:
    * event_idx[19:16] = type
    * event_idx[15:0] = code
    * The code field in cache events are encoded as follows:
    * event_idx.code[15:3] = cache_id
    * event_idx.code[2:1] = op_id
    * event_idx.code[0:0] = result_id
    */

   /* SBI_PMU_HW_CPU_CYCLES: 0x01 : type(0x00) */
   fdt_event_ctr_map[0] = cpu_to_be32(0x00000001);
   fdt_event_ctr_map[1] = cpu_to_be32(0x00000001);
   fdt_event_ctr_map[2] = cpu_to_be32(cmask | 1 << 0);

   /* SBI_PMU_HW_INSTRUCTIONS: 0x02 : type(0x00) */
   fdt_event_ctr_map[3] = cpu_to_be32(0x00000002);
   fdt_event_ctr_map[4] = cpu_to_be32(0x00000002);
   fdt_event_ctr_map[5] = cpu_to_be32(cmask | 1 << 2);

   /* SBI_PMU_HW_CACHE_DTLB : 0x03 READ : 0x00 MISS : 0x00 type(0x01) */
   fdt_event_ctr_map[6] = cpu_to_be32(0x00010019);
   fdt_event_ctr_map[7] = cpu_to_be32(0x00010019);
   fdt_event_ctr_map[8] = cpu_to_be32(cmask);

   /* SBI_PMU_HW_CACHE_DTLB : 0x03 WRITE : 0x01 MISS : 0x00 type(0x01) */
   fdt_event_ctr_map[9] = cpu_to_be32(0x0001001B);
   fdt_event_ctr_map[10] = cpu_to_be32(0x0001001B);
   fdt_event_ctr_map[11] = cpu_to_be32(cmask);

   /* SBI_PMU_HW_CACHE_ITLB : 0x04 READ : 0x00 MISS : 0x00 type(0x01) */
   fdt_event_ctr_map[12] = cpu_to_be32(0x00010021);
   fdt_event_ctr_map[13] = cpu_to_be32(0x00010021);
   fdt_event_ctr_map[14] = cpu_to_be32(cmask);

   /* This a OpenSBI specific DT property documented in OpenSBI docs */
   qemu_fdt_setprop(fdt, pmu_name, "riscv,event-to-mhpmcounters",
                    fdt_event_ctr_map, sizeof(fdt_event_ctr_map));
}

static bool riscv_pmu_counter_valid(RISCVCPU *cpu, uint32_t ctr_idx)
{
    if (ctr_idx < 3 || ctr_idx >= RV_MAX_MHPMCOUNTERS ||
        !(cpu->pmu_avail_ctrs & BIT(ctr_idx))) {
        return false;
    } else {
        return true;
    }
}

static bool riscv_pmu_counter_enabled(RISCVCPU *cpu, uint32_t ctr_idx)
{
    CPURISCVState *env = &cpu->env;

    if (riscv_pmu_counter_valid(cpu, ctr_idx) &&
        !get_field(env->mcountinhibit, BIT(ctr_idx))) {
        return true;
    } else {
        return false;
    }
}

static int riscv_pmu_incr_ctr_rv32(RISCVCPU *cpu, uint32_t ctr_idx)
{
    CPURISCVState *env = &cpu->env;
    target_ulong max_val = UINT32_MAX;
    PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
    bool virt_on = env->virt_enabled;

    /* Privilege mode filtering */
    if ((env->priv == PRV_M &&
        (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_MINH)) ||
        (env->priv == PRV_S && virt_on &&
        (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VSINH)) ||
        (env->priv == PRV_U && virt_on &&
        (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VUINH)) ||
        (env->priv == PRV_S && !virt_on &&
        (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_SINH)) ||
        (env->priv == PRV_U && !virt_on &&
        (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_UINH))) {
        return 0;
    }

    /* Handle the overflow scenario */
    if (counter->mhpmcounter_val == max_val) {
        if (counter->mhpmcounterh_val == max_val) {
            counter->mhpmcounter_val = 0;
            counter->mhpmcounterh_val = 0;
            /* Generate interrupt only if OF bit is clear */
            if (!(env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_OF)) {
                env->mhpmeventh_val[ctr_idx] |= MHPMEVENTH_BIT_OF;
                riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1));
            }
        } else {
            counter->mhpmcounterh_val++;
        }
    } else {
        counter->mhpmcounter_val++;
    }

    return 0;
}

static int riscv_pmu_incr_ctr_rv64(RISCVCPU *cpu, uint32_t ctr_idx)
{
    CPURISCVState *env = &cpu->env;
    PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
    uint64_t max_val = UINT64_MAX;
    bool virt_on = env->virt_enabled;

    /* Privilege mode filtering */
    if ((env->priv == PRV_M &&
        (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_MINH)) ||
        (env->priv == PRV_S && virt_on &&
        (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VSINH)) ||
        (env->priv == PRV_U && virt_on &&
        (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VUINH)) ||
        (env->priv == PRV_S && !virt_on &&
        (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_SINH)) ||
        (env->priv == PRV_U && !virt_on &&
        (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_UINH))) {
        return 0;
    }

    /* Handle the overflow scenario */
    if (counter->mhpmcounter_val == max_val) {
        counter->mhpmcounter_val = 0;
        /* Generate interrupt only if OF bit is clear */
        if (!(env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_OF)) {
            env->mhpmevent_val[ctr_idx] |= MHPMEVENT_BIT_OF;
            riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1));
        }
    } else {
        counter->mhpmcounter_val++;
    }
    return 0;
}

int riscv_pmu_incr_ctr(RISCVCPU *cpu, enum riscv_pmu_event_idx event_idx)
{
    uint32_t ctr_idx;
    int ret;
    CPURISCVState *env = &cpu->env;
    gpointer value;

    if (!cpu->cfg.pmu_num) {
        return 0;
    }
    value = g_hash_table_lookup(cpu->pmu_event_ctr_map,
                                GUINT_TO_POINTER(event_idx));
    if (!value) {
        return -1;
    }

    ctr_idx = GPOINTER_TO_UINT(value);
    if (!riscv_pmu_counter_enabled(cpu, ctr_idx) ||
        get_field(env->mcountinhibit, BIT(ctr_idx))) {
        return -1;
    }

    if (riscv_cpu_mxl(env) == MXL_RV32) {
        ret = riscv_pmu_incr_ctr_rv32(cpu, ctr_idx);
    } else {
        ret = riscv_pmu_incr_ctr_rv64(cpu, ctr_idx);
    }

    return ret;
}

bool riscv_pmu_ctr_monitor_instructions(CPURISCVState *env,
                                        uint32_t target_ctr)
{
    RISCVCPU *cpu;
    uint32_t event_idx;
    uint32_t ctr_idx;

    /* Fixed instret counter */
    if (target_ctr == 2) {
        return true;
    }

    cpu = env_archcpu(env);
    if (!cpu->pmu_event_ctr_map) {
        return false;
    }

    event_idx = RISCV_PMU_EVENT_HW_INSTRUCTIONS;
    ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map,
                               GUINT_TO_POINTER(event_idx)));
    if (!ctr_idx) {
        return false;
    }

    return target_ctr == ctr_idx ? true : false;
}

bool riscv_pmu_ctr_monitor_cycles(CPURISCVState *env, uint32_t target_ctr)
{
    RISCVCPU *cpu;
    uint32_t event_idx;
    uint32_t ctr_idx;

    /* Fixed mcycle counter */
    if (target_ctr == 0) {
        return true;
    }

    cpu = env_archcpu(env);
    if (!cpu->pmu_event_ctr_map) {
        return false;
    }

    event_idx = RISCV_PMU_EVENT_HW_CPU_CYCLES;
    ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map,
                               GUINT_TO_POINTER(event_idx)));

    /* Counter zero is not used for event_ctr_map */
    if (!ctr_idx) {
        return false;
    }

    return (target_ctr == ctr_idx) ? true : false;
}

static gboolean pmu_remove_event_map(gpointer key, gpointer value,
                                     gpointer udata)
{
    return (GPOINTER_TO_UINT(value) == GPOINTER_TO_UINT(udata)) ? true : false;
}

static int64_t pmu_icount_ticks_to_ns(int64_t value)
{
    int64_t ret = 0;

    if (icount_enabled()) {
        ret = icount_to_ns(value);
    } else {
        ret = (NANOSECONDS_PER_SECOND / RISCV_TIMEBASE_FREQ) * value;
    }

    return ret;
}

int riscv_pmu_update_event_map(CPURISCVState *env, uint64_t value,
                               uint32_t ctr_idx)
{
    uint32_t event_idx;
    RISCVCPU *cpu = env_archcpu(env);

    if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->pmu_event_ctr_map) {
        return -1;
    }

    /*
     * Expected mhpmevent value is zero for reset case. Remove the current
     * mapping.
     */
    if (!value) {
        g_hash_table_foreach_remove(cpu->pmu_event_ctr_map,
                                    pmu_remove_event_map,
                                    GUINT_TO_POINTER(ctr_idx));
        return 0;
    }

    event_idx = value & MHPMEVENT_IDX_MASK;
    if (g_hash_table_lookup(cpu->pmu_event_ctr_map,
                            GUINT_TO_POINTER(event_idx))) {
        return 0;
    }

    switch (event_idx) {
    case RISCV_PMU_EVENT_HW_CPU_CYCLES:
    case RISCV_PMU_EVENT_HW_INSTRUCTIONS:
    case RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS:
    case RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS:
    case RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS:
        break;
    default:
        /* We don't support any raw events right now */
        return -1;
    }
    g_hash_table_insert(cpu->pmu_event_ctr_map, GUINT_TO_POINTER(event_idx),
                        GUINT_TO_POINTER(ctr_idx));

    return 0;
}

static void pmu_timer_trigger_irq(RISCVCPU *cpu,
                                  enum riscv_pmu_event_idx evt_idx)
{
    uint32_t ctr_idx;
    CPURISCVState *env = &cpu->env;
    PMUCTRState *counter;
    target_ulong *mhpmevent_val;
    uint64_t of_bit_mask;
    int64_t irq_trigger_at;

    if (evt_idx != RISCV_PMU_EVENT_HW_CPU_CYCLES &&
        evt_idx != RISCV_PMU_EVENT_HW_INSTRUCTIONS) {
        return;
    }

    ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map,
                               GUINT_TO_POINTER(evt_idx)));
    if (!riscv_pmu_counter_enabled(cpu, ctr_idx)) {
        return;
    }

    if (riscv_cpu_mxl(env) == MXL_RV32) {
        mhpmevent_val = &env->mhpmeventh_val[ctr_idx];
        of_bit_mask = MHPMEVENTH_BIT_OF;
     } else {
        mhpmevent_val = &env->mhpmevent_val[ctr_idx];
        of_bit_mask = MHPMEVENT_BIT_OF;
    }

    counter = &env->pmu_ctrs[ctr_idx];
    if (counter->irq_overflow_left > 0) {
        irq_trigger_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                        counter->irq_overflow_left;
        timer_mod_anticipate_ns(cpu->pmu_timer, irq_trigger_at);
        counter->irq_overflow_left = 0;
        return;
    }

    if (cpu->pmu_avail_ctrs & BIT(ctr_idx)) {
        /* Generate interrupt only if OF bit is clear */
        if (!(*mhpmevent_val & of_bit_mask)) {
            *mhpmevent_val |= of_bit_mask;
            riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1));
        }
    }
}

/* Timer callback for instret and cycle counter overflow */
void riscv_pmu_timer_cb(void *priv)
{
    RISCVCPU *cpu = priv;

    /* Timer event was triggered only for these events */
    pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_CPU_CYCLES);
    pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_INSTRUCTIONS);
}

int riscv_pmu_setup_timer(CPURISCVState *env, uint64_t value, uint32_t ctr_idx)
{
    uint64_t overflow_delta, overflow_at;
    int64_t overflow_ns, overflow_left = 0;
    RISCVCPU *cpu = env_archcpu(env);
    PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];

    if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->cfg.ext_sscofpmf) {
        return -1;
    }

    if (value) {
        overflow_delta = UINT64_MAX - value + 1;
    } else {
        overflow_delta = UINT64_MAX;
    }

    /*
     * QEMU supports only int64_t timers while RISC-V counters are uint64_t.
     * Compute the leftover and save it so that it can be reprogrammed again
     * when timer expires.
     */
    if (overflow_delta > INT64_MAX) {
        overflow_left = overflow_delta - INT64_MAX;
    }

    if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
        riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
        overflow_ns = pmu_icount_ticks_to_ns((int64_t)overflow_delta);
        overflow_left = pmu_icount_ticks_to_ns(overflow_left) ;
    } else {
        return -1;
    }
    overflow_at = (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                  overflow_ns;

    if (overflow_at > INT64_MAX) {
        overflow_left += overflow_at - INT64_MAX;
        counter->irq_overflow_left = overflow_left;
        overflow_at = INT64_MAX;
    }
    timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);

    return 0;
}


int riscv_pmu_init(RISCVCPU *cpu, int num_counters)
{
    if (num_counters > (RV_MAX_MHPMCOUNTERS - 3)) {
        return -1;
    }

    cpu->pmu_event_ctr_map = g_hash_table_new(g_direct_hash, g_direct_equal);
    if (!cpu->pmu_event_ctr_map) {
        /* PMU support can not be enabled */
        qemu_log_mask(LOG_UNIMP, "PMU events can't be supported\n");
        cpu->cfg.pmu_num = 0;
        return -1;
    }

    /* Create a bitmask of available programmable counters */
    cpu->pmu_avail_ctrs = MAKE_32BIT_MASK(3, num_counters);

    return 0;
}