1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
/* External helpers */
void glue(do_lsw, MEMSUFFIX) (int dst);
void glue(do_stsw, MEMSUFFIX) (int src);
/* Internal helpers for sign extension and byte-reverse */
static inline uint32_t glue(_ld16x, MEMSUFFIX) (void *EA, int type)
{
return s_ext16(glue(_lduw, MEMSUFFIX)(EA, type));
}
static inline uint16_t glue(_ld16r, MEMSUFFIX) (void *EA, int type)
{
uint16_t tmp = glue(_lduw, MEMSUFFIX)(EA, type);
return ((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8);
}
static inline uint32_t glue(_ld32r, MEMSUFFIX) (void *EA, int type)
{
uint32_t tmp = glue(_ldl, MEMSUFFIX)(EA, type);
return ((tmp & 0xFF000000) >> 24) | ((tmp & 0x00FF0000) >> 8) |
((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24);
}
static inline void glue(_st16r, MEMSUFFIX) (void *EA, uint16_t data, int type)
{
uint16_t tmp = ((data & 0xFF00) >> 8) | ((data & 0x00FF) << 8);
glue(_stw, MEMSUFFIX)(EA, tmp, type);
}
static inline void glue(_st32r, MEMSUFFIX) (void *EA, uint32_t data, int type)
{
uint32_t tmp = ((data & 0xFF000000) >> 24) | ((data & 0x00FF0000) >> 8) |
((data & 0x0000FF00) << 8) | ((data & 0x000000FF) << 24);
glue(_stl, MEMSUFFIX)(EA, tmp, type);
}
/*** Integer load ***/
#define PPC_LD_OP(name, op) \
PPC_OP(glue(glue(l, name), MEMSUFFIX)) \
{ \
T1 = glue(op, MEMSUFFIX)((void *)T0, ACCESS_INT); \
RETURN(); \
}
#define PPC_ST_OP(name, op) \
PPC_OP(glue(glue(st, name), MEMSUFFIX)) \
{ \
glue(op, MEMSUFFIX)((void *)T0, T1, ACCESS_INT); \
RETURN(); \
}
PPC_LD_OP(bz, _ldub);
PPC_LD_OP(ha, _ld16x);
PPC_LD_OP(hz, _lduw);
PPC_LD_OP(wz, _ldl);
/*** Integer store ***/
PPC_ST_OP(b, _stb);
PPC_ST_OP(h, _stw);
PPC_ST_OP(w, _stl);
/*** Integer load and store with byte reverse ***/
PPC_LD_OP(hbr, _ld16r);
PPC_LD_OP(wbr, _ld32r);
PPC_ST_OP(hbr, _st16r);
PPC_ST_OP(wbr, _st32r);
/*** Integer load and store multiple ***/
PPC_OP(glue(lmw, MEMSUFFIX))
{
int dst = PARAM(1);
for (; dst < 32; dst++, T0 += 4) {
ugpr(dst) = glue(_ldl, MEMSUFFIX)((void *)T0, ACCESS_INT);
}
RETURN();
}
PPC_OP(glue(stmw, MEMSUFFIX))
{
int src = PARAM(1);
for (; src < 32; src++, T0 += 4) {
glue(_stl, MEMSUFFIX)((void *)T0, ugpr(src), ACCESS_INT);
}
RETURN();
}
/*** Integer load and store strings ***/
PPC_OP(glue(lswi, MEMSUFFIX))
{
glue(do_lsw, MEMSUFFIX)(PARAM(1));
RETURN();
}
/* PPC32 specification says we must generate an exception if
* rA is in the range of registers to be loaded.
* In an other hand, IBM says this is valid, but rA won't be loaded.
* For now, I'll follow the spec...
*/
PPC_OP(glue(lswx, MEMSUFFIX))
{
if (T1 > 0) {
if ((PARAM(1) < PARAM(2) && (PARAM(1) + T1) > PARAM(2)) ||
(PARAM(1) < PARAM(3) && (PARAM(1) + T1) > PARAM(3))) {
do_queue_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX);
do_process_exceptions();
} else {
glue(do_lsw, MEMSUFFIX)(PARAM(1));
}
}
RETURN();
}
PPC_OP(glue(stsw, MEMSUFFIX))
{
glue(do_stsw, MEMSUFFIX)(PARAM(1));
RETURN();
}
/*** Floating-point store ***/
#define PPC_STF_OP(name, op) \
PPC_OP(glue(glue(st, name), MEMSUFFIX)) \
{ \
glue(op, MEMSUFFIX)((void *)T0, FT1); \
RETURN(); \
}
PPC_STF_OP(fd, stfq);
PPC_STF_OP(fs, stfl);
/*** Floating-point load ***/
#define PPC_LDF_OP(name, op) \
PPC_OP(glue(glue(l, name), MEMSUFFIX)) \
{ \
FT1 = glue(op, MEMSUFFIX)((void *)T0); \
RETURN(); \
}
PPC_LDF_OP(fd, ldfq);
PPC_LDF_OP(fs, ldfl);
/* Store with reservation */
PPC_OP(glue(stwcx, MEMSUFFIX))
{
if (T0 & 0x03) {
do_queue_exception(EXCP_ALIGN);
do_process_exceptions();
} else {
if (regs->reserve != T0) {
env->crf[0] = xer_ov;
} else {
glue(_stl, MEMSUFFIX)((void *)T0, T1, ACCESS_RES);
env->crf[0] = xer_ov | 0x02;
}
}
regs->reserve = 0;
RETURN();
}
PPC_OP(glue(dcbz, MEMSUFFIX))
{
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x00), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x04), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x08), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x0C), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x10), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x14), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x18), 0, ACCESS_INT);
glue(_stl, MEMSUFFIX)((void *)(T0 + 0x1C), 0, ACCESS_INT);
RETURN();
}
/* External access */
PPC_OP(glue(eciwx, MEMSUFFIX))
{
T1 = glue(_ldl, MEMSUFFIX)((void *)T0, ACCESS_EXT);
RETURN();
}
PPC_OP(glue(ecowx, MEMSUFFIX))
{
glue(_stl, MEMSUFFIX)((void *)T0, T1, ACCESS_EXT);
RETURN();
}
#undef MEMSUFFIX
|