aboutsummaryrefslogtreecommitdiff
path: root/target-mips/op_helper.c
blob: 4391e551ba5d10622c5b933ea0f18d8eb5141ab1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
/*
 *  MIPS emulation helpers for qemu.
 *
 *  Copyright (c) 2004-2005 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <stdlib.h>
#include "exec.h"

#include "host-utils.h"

#ifdef __s390__
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
#else
# define GETPC() (__builtin_return_address(0))
#endif

/*****************************************************************************/
/* Exceptions processing helpers */

void do_raise_exception_err (uint32_t exception, int error_code)
{
#if 1
    if (logfile && exception < 0x100)
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
#endif
    env->exception_index = exception;
    env->error_code = error_code;
    T0 = 0;
    cpu_loop_exit();
}

void do_raise_exception (uint32_t exception)
{
    do_raise_exception_err(exception, 0);
}

void do_restore_state (void *pc_ptr)
{
  TranslationBlock *tb;
  unsigned long pc = (unsigned long) pc_ptr;

  tb = tb_find_pc (pc);
  cpu_restore_state (tb, env, pc, NULL);
}

void do_raise_exception_direct_err (uint32_t exception, int error_code)
{
    do_restore_state (GETPC ());
    do_raise_exception_err (exception, error_code);
}

void do_raise_exception_direct (uint32_t exception)
{
    do_raise_exception_direct_err (exception, 0);
}

#if defined(TARGET_MIPS64)
#if TARGET_LONG_BITS > HOST_LONG_BITS
/* Those might call libgcc functions.  */
void do_dsll (void)
{
    T0 = T0 << T1;
}

void do_dsll32 (void)
{
    T0 = T0 << (T1 + 32);
}

void do_dsra (void)
{
    T0 = (int64_t)T0 >> T1;
}

void do_dsra32 (void)
{
    T0 = (int64_t)T0 >> (T1 + 32);
}

void do_dsrl (void)
{
    T0 = T0 >> T1;
}

void do_dsrl32 (void)
{
    T0 = T0 >> (T1 + 32);
}

void do_drotr (void)
{
    target_ulong tmp;

    if (T1) {
        tmp = T0 << (0x40 - T1);
        T0 = (T0 >> T1) | tmp;
    }
}

void do_drotr32 (void)
{
    target_ulong tmp;

    tmp = T0 << (0x40 - (32 + T1));
    T0 = (T0 >> (32 + T1)) | tmp;
}

void do_dsllv (void)
{
    T0 = T1 << (T0 & 0x3F);
}

void do_dsrav (void)
{
    T0 = (int64_t)T1 >> (T0 & 0x3F);
}

void do_dsrlv (void)
{
    T0 = T1 >> (T0 & 0x3F);
}

void do_drotrv (void)
{
    target_ulong tmp;

    T0 &= 0x3F;
    if (T0) {
        tmp = T1 << (0x40 - T0);
        T0 = (T1 >> T0) | tmp;
    } else
        T0 = T1;
}

void do_dclo (void)
{
    T0 = clo64(T0);
}

void do_dclz (void)
{
    T0 = clz64(T0);
}

#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
#endif /* TARGET_MIPS64 */

/* 64 bits arithmetic for 32 bits hosts */
#if TARGET_LONG_BITS > HOST_LONG_BITS
static always_inline uint64_t get_HILO (void)
{
    return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
}

static always_inline void set_HILO (uint64_t HILO)
{
    env->LO[0][env->current_tc] = (int32_t)HILO;
    env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
}

void do_mult (void)
{
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
}

void do_multu (void)
{
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
}

void do_madd (void)
{
    int64_t tmp;

    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
    set_HILO((int64_t)get_HILO() + tmp);
}

void do_maddu (void)
{
    uint64_t tmp;

    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
    set_HILO(get_HILO() + tmp);
}

void do_msub (void)
{
    int64_t tmp;

    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
    set_HILO((int64_t)get_HILO() - tmp);
}

void do_msubu (void)
{
    uint64_t tmp;

    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
    set_HILO(get_HILO() - tmp);
}
#endif

#if HOST_LONG_BITS < 64
void do_div (void)
{
    /* 64bit datatypes because we may see overflow/underflow. */
    if (T1 != 0) {
        env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
        env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
    }
}
#endif

#if defined(TARGET_MIPS64)
void do_ddiv (void)
{
    if (T1 != 0) {
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
        env->LO[0][env->current_tc] = res.quot;
        env->HI[0][env->current_tc] = res.rem;
    }
}

#if TARGET_LONG_BITS > HOST_LONG_BITS
void do_ddivu (void)
{
    if (T1 != 0) {
        env->LO[0][env->current_tc] = T0 / T1;
        env->HI[0][env->current_tc] = T0 % T1;
    }
}
#endif
#endif /* TARGET_MIPS64 */

#if defined(CONFIG_USER_ONLY)
void do_mfc0_random (void)
{
    cpu_abort(env, "mfc0 random\n");
}

void do_mfc0_count (void)
{
    cpu_abort(env, "mfc0 count\n");
}

void cpu_mips_store_count(CPUState *env, uint32_t value)
{
    cpu_abort(env, "mtc0 count\n");
}

void cpu_mips_store_compare(CPUState *env, uint32_t value)
{
    cpu_abort(env, "mtc0 compare\n");
}

void cpu_mips_start_count(CPUState *env)
{
    cpu_abort(env, "start count\n");
}

void cpu_mips_stop_count(CPUState *env)
{
    cpu_abort(env, "stop count\n");
}

void cpu_mips_update_irq(CPUState *env)
{
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
}

void do_mtc0_status_debug(uint32_t old, uint32_t val)
{
    cpu_abort(env, "mtc0 status debug\n");
}

void do_mtc0_status_irqraise_debug (void)
{
    cpu_abort(env, "mtc0 status irqraise debug\n");
}

void cpu_mips_tlb_flush (CPUState *env, int flush_global)
{
    cpu_abort(env, "mips_tlb_flush\n");
}

#else

/* CP0 helpers */
void do_mfc0_random (void)
{
    T0 = (int32_t)cpu_mips_get_random(env);
}

void do_mfc0_count (void)
{
    T0 = (int32_t)cpu_mips_get_count(env);
}

void do_mtc0_status_debug(uint32_t old, uint32_t val)
{
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
            env->CP0_Cause);
    switch (env->hflags & MIPS_HFLAG_KSU) {
    case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
    case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
    case MIPS_HFLAG_KM: fputs("\n", logfile); break;
    default: cpu_abort(env, "Invalid MMU mode!\n"); break;
    }
}

void do_mtc0_status_irqraise_debug(void)
{
    fprintf(logfile, "Raise pending IRQs\n");
}

void fpu_handle_exception(void)
{
#ifdef CONFIG_SOFTFLOAT
    int flags = get_float_exception_flags(&env->fpu->fp_status);
    unsigned int cpuflags = 0, enable, cause = 0;

    enable = GET_FP_ENABLE(env->fpu->fcr31);

    /* determine current flags */
    if (flags & float_flag_invalid) {
        cpuflags |= FP_INVALID;
        cause |= FP_INVALID & enable;
    }
    if (flags & float_flag_divbyzero) {
        cpuflags |= FP_DIV0;
        cause |= FP_DIV0 & enable;
    }
    if (flags & float_flag_overflow) {
        cpuflags |= FP_OVERFLOW;
        cause |= FP_OVERFLOW & enable;
    }
    if (flags & float_flag_underflow) {
        cpuflags |= FP_UNDERFLOW;
        cause |= FP_UNDERFLOW & enable;
    }
    if (flags & float_flag_inexact) {
        cpuflags |= FP_INEXACT;
        cause |= FP_INEXACT & enable;
    }
    SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
    SET_FP_CAUSE(env->fpu->fcr31, cause);
#else
    SET_FP_FLAGS(env->fpu->fcr31, 0);
    SET_FP_CAUSE(env->fpu->fcr31, 0);
#endif
}

/* TLB management */
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
{
    /* Flush qemu's TLB and discard all shadowed entries.  */
    tlb_flush (env, flush_global);
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
}

static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
{
    /* Discard entries from env->tlb[first] onwards.  */
    while (env->tlb->tlb_in_use > first) {
        r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
    }
}

static void r4k_fill_tlb (int idx)
{
    r4k_tlb_t *tlb;

    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
    tlb = &env->tlb->mmu.r4k.tlb[idx];
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
    tlb->VPN &= env->SEGMask;
#endif
    tlb->ASID = env->CP0_EntryHi & 0xFF;
    tlb->PageMask = env->CP0_PageMask;
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
}

void r4k_do_tlbwi (void)
{
    /* Discard cached TLB entries.  We could avoid doing this if the
       tlbwi is just upgrading access permissions on the current entry;
       that might be a further win.  */
    r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);

    r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
    r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
}

void r4k_do_tlbwr (void)
{
    int r = cpu_mips_get_random(env);

    r4k_invalidate_tlb(env, r, 1);
    r4k_fill_tlb(r);
}

void r4k_do_tlbp (void)
{
    r4k_tlb_t *tlb;
    target_ulong mask;
    target_ulong tag;
    target_ulong VPN;
    uint8_t ASID;
    int i;

    ASID = env->CP0_EntryHi & 0xFF;
    for (i = 0; i < env->tlb->nb_tlb; i++) {
        tlb = &env->tlb->mmu.r4k.tlb[i];
        /* 1k pages are not supported. */
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
        tag = env->CP0_EntryHi & ~mask;
        VPN = tlb->VPN & ~mask;
        /* Check ASID, virtual page number & size */
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
            /* TLB match */
            env->CP0_Index = i;
            break;
        }
    }
    if (i == env->tlb->nb_tlb) {
        /* No match.  Discard any shadow entries, if any of them match.  */
        for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
	    tlb = &env->tlb->mmu.r4k.tlb[i];
	    /* 1k pages are not supported. */
	    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
	    tag = env->CP0_EntryHi & ~mask;
	    VPN = tlb->VPN & ~mask;
	    /* Check ASID, virtual page number & size */
	    if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
                r4k_mips_tlb_flush_extra (env, i);
	        break;
	    }
	}

        env->CP0_Index |= 0x80000000;
    }
}

void r4k_do_tlbr (void)
{
    r4k_tlb_t *tlb;
    uint8_t ASID;

    ASID = env->CP0_EntryHi & 0xFF;
    tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];

    /* If this will change the current ASID, flush qemu's TLB.  */
    if (ASID != tlb->ASID)
        cpu_mips_tlb_flush (env, 1);

    r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);

    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
    env->CP0_PageMask = tlb->PageMask;
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
}

#endif /* !CONFIG_USER_ONLY */

void dump_ldst (const unsigned char *func)
{
    if (loglevel)
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
}

void dump_sc (void)
{
    if (loglevel) {
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
                T1, T0, env->CP0_LLAddr);
    }
}

void debug_pre_eret (void)
{
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
            env->PC[env->current_tc], env->CP0_EPC);
    if (env->CP0_Status & (1 << CP0St_ERL))
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
    if (env->hflags & MIPS_HFLAG_DM)
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
    fputs("\n", logfile);
}

void debug_post_eret (void)
{
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
            env->PC[env->current_tc], env->CP0_EPC);
    if (env->CP0_Status & (1 << CP0St_ERL))
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
    if (env->hflags & MIPS_HFLAG_DM)
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
    switch (env->hflags & MIPS_HFLAG_KSU) {
    case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
    case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
    case MIPS_HFLAG_KM: fputs("\n", logfile); break;
    default: cpu_abort(env, "Invalid MMU mode!\n"); break;
    }
}

void do_pmon (int function)
{
    function /= 2;
    switch (function) {
    case 2: /* TODO: char inbyte(int waitflag); */
        if (env->gpr[4][env->current_tc] == 0)
            env->gpr[2][env->current_tc] = -1;
        /* Fall through */
    case 11: /* TODO: char inbyte (void); */
        env->gpr[2][env->current_tc] = -1;
        break;
    case 3:
    case 12:
        printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
        break;
    case 17:
        break;
    case 158:
        {
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
            printf("%s", fmt);
        }
        break;
    }
}

#if !defined(CONFIG_USER_ONLY)

static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);

#define MMUSUFFIX _mmu
#define ALIGNED_ONLY

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
{
    env->CP0_BadVAddr = addr;
    do_restore_state (retaddr);
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
}

void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    unsigned long pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (ret) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, NULL);
            }
        }
        do_raise_exception_err(env->exception_index, env->error_code);
    }
    env = saved_env;
}

void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int unused)
{
    if (is_exec)
        do_raise_exception(EXCP_IBE);
    else
        do_raise_exception(EXCP_DBE);
}
#endif

/* Complex FPU operations which may need stack space. */

#define FLOAT_ONE32 (0x3f8 << 20)
#define FLOAT_ONE64 (0x3ffULL << 52)
#define FLOAT_TWO32 (1 << 30)
#define FLOAT_TWO64 (1ULL << 62)
#define FLOAT_QNAN32 0x7fbfffff
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
#define FLOAT_SNAN32 0x7fffffff
#define FLOAT_SNAN64 0x7fffffffffffffffULL

/* convert MIPS rounding mode in FCR31 to IEEE library */
unsigned int ieee_rm[] = {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
};

#define RESTORE_ROUNDING_MODE \
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)

void do_cfc1 (int reg)
{
    switch (reg) {
    case 0:
        T0 = (int32_t)env->fpu->fcr0;
        break;
    case 25:
        T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
        break;
    case 26:
        T0 = env->fpu->fcr31 & 0x0003f07c;
        break;
    case 28:
        T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
        break;
    default:
        T0 = (int32_t)env->fpu->fcr31;
        break;
    }
}

void do_ctc1 (int reg)
{
    switch(reg) {
    case 25:
        if (T0 & 0xffffff00)
            return;
        env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
                     ((T0 & 0x1) << 23);
        break;
    case 26:
        if (T0 & 0x007c0000)
            return;
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
        break;
    case 28:
        if (T0 & 0x007c0000)
            return;
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
                     ((T0 & 0x4) << 22);
        break;
    case 31:
        if (T0 & 0x007c0000)
            return;
        env->fpu->fcr31 = T0;
        break;
    default:
        return;
    }
    /* set rounding mode */
    RESTORE_ROUNDING_MODE;
    set_float_exception_flags(0, &env->fpu->fp_status);
    if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
        do_raise_exception(EXCP_FPE);
}

static always_inline char ieee_ex_to_mips(char xcpt)
{
    return (xcpt & float_flag_inexact) >> 5 |
           (xcpt & float_flag_underflow) >> 3 |
           (xcpt & float_flag_overflow) >> 1 |
           (xcpt & float_flag_divbyzero) << 1 |
           (xcpt & float_flag_invalid) << 4;
}

static always_inline char mips_ex_to_ieee(char xcpt)
{
    return (xcpt & FP_INEXACT) << 5 |
           (xcpt & FP_UNDERFLOW) << 3 |
           (xcpt & FP_OVERFLOW) << 1 |
           (xcpt & FP_DIV0) >> 1 |
           (xcpt & FP_INVALID) >> 4;
}

static always_inline void update_fcr31(void)
{
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));

    SET_FP_CAUSE(env->fpu->fcr31, tmp);
    if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
        do_raise_exception(EXCP_FPE);
    else
        UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
}

#define FLOAT_OP(name, p) void do_float_##name##_##p(void)

FLOAT_OP(cvtd, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtd, w)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtd, l)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtl, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(cvtl, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}

FLOAT_OP(cvtps, pw)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
    FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtpw, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(cvts, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvts, w)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvts, l)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvts, pl)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = WT0;
    update_fcr31();
}
FLOAT_OP(cvts, pu)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = WTH0;
    update_fcr31();
}
FLOAT_OP(cvtw, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(cvtw, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(roundl, d)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(roundl, s)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(roundw, d)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(roundw, s)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(truncl, d)
{
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(truncl, s)
{
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(truncw, d)
{
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(truncw, s)
{
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(ceill, d)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(ceill, s)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(ceilw, d)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(ceilw, s)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(floorl, d)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(floorl, s)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(floorw, d)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(floorw, s)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

/* MIPS specific unary operations */
FLOAT_OP(recip, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(recip, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(rsqrt, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(rsqrt, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(recip1, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(recip1, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(recip1, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(rsqrt1, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(rsqrt1, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(rsqrt1, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
    FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
    update_fcr31();
}

/* binary operations */
#define FLOAT_BINOP(name) \
FLOAT_OP(name, d)         \
{                         \
    set_float_exception_flags(0, &env->fpu->fp_status);            \
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status);    \
    update_fcr31();                                                \
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
        DT2 = FLOAT_QNAN64;                                        \
}                         \
FLOAT_OP(name, s)         \
{                         \
    set_float_exception_flags(0, &env->fpu->fp_status);            \
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
    update_fcr31();                                                \
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
        WT2 = FLOAT_QNAN32;                                        \
}                         \
FLOAT_OP(name, ps)        \
{                         \
    set_float_exception_flags(0, &env->fpu->fp_status);            \
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
    update_fcr31();       \
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) {              \
        WT2 = FLOAT_QNAN32;                                        \
        WTH2 = FLOAT_QNAN32;                                       \
    }                     \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP

/* MIPS specific binary operations */
FLOAT_OP(recip2, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
    FDT2 = float64_chs(float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status));
    update_fcr31();
}
FLOAT_OP(recip2, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
    update_fcr31();
}
FLOAT_OP(recip2, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
    FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
    FSTH2 = float32_chs(float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status));
    update_fcr31();
}

FLOAT_OP(rsqrt2, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
    FDT2 = float64_chs(float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status));
    update_fcr31();
}
FLOAT_OP(rsqrt2, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
    FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
    update_fcr31();
}
FLOAT_OP(rsqrt2, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
    FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
    FSTH2 = float32_chs(float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status));
    update_fcr31();
}

FLOAT_OP(addr, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
    FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(mulr, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
    FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
    update_fcr31();
}

/* compare operations */
#define FOP_COND_D(op, cond)                   \
void do_cmp_d_ ## op (long cc)                 \
{                                              \
    int c = cond;                              \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}                                              \
void do_cmpabs_d_ ## op (long cc)              \
{                                              \
    int c;                                     \
    FDT0 = float64_chs(FDT0);                  \
    FDT1 = float64_chs(FDT1);                  \
    c = cond;                                  \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}

int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
{
    if (float64_is_signaling_nan(a) ||
        float64_is_signaling_nan(b) ||
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
        float_raise(float_flag_invalid, status);
        return 1;
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
        return 1;
    } else {
        return 0;
    }
}

/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))

#define FOP_COND_S(op, cond)                   \
void do_cmp_s_ ## op (long cc)                 \
{                                              \
    int c = cond;                              \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}                                              \
void do_cmpabs_s_ ## op (long cc)              \
{                                              \
    int c;                                     \
    FST0 = float32_abs(FST0);                  \
    FST1 = float32_abs(FST1);                  \
    c = cond;                                  \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}

flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
{
    if (float32_is_signaling_nan(a) ||
        float32_is_signaling_nan(b) ||
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
        float_raise(float_flag_invalid, status);
        return 1;
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
        return 1;
    } else {
        return 0;
    }
}

/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))

#define FOP_COND_PS(op, condl, condh)          \
void do_cmp_ps_ ## op (long cc)                \
{                                              \
    int cl = condl;                            \
    int ch = condh;                            \
    update_fcr31();                            \
    if (cl)                                    \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
    if (ch)                                    \
        SET_FP_COND(cc + 1, env->fpu);         \
    else                                       \
        CLEAR_FP_COND(cc + 1, env->fpu);       \
}                                              \
void do_cmpabs_ps_ ## op (long cc)             \
{                                              \
    int cl, ch;                                \
    FST0 = float32_abs(FST0);                  \
    FSTH0 = float32_abs(FSTH0);                \
    FST1 = float32_abs(FST1);                  \
    FSTH1 = float32_abs(FSTH1);                \
    cl = condl;                                \
    ch = condh;                                \
    update_fcr31();                            \
    if (cl)                                    \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
    if (ch)                                    \
        SET_FP_COND(cc + 1, env->fpu);         \
    else                                       \
        CLEAR_FP_COND(cc + 1, env->fpu);       \
}

/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))