aboutsummaryrefslogtreecommitdiff
path: root/include/fpu/softfloat.h
blob: 4b4df885277e81cfca2d616aa70675d535de676b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/*
 * QEMU float support
 *
 * Derived from SoftFloat.
 */

/*============================================================================

This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
Package, Release 2b.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.

=============================================================================*/

#ifndef SOFTFLOAT_H
#define SOFTFLOAT_H

#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
#include <sunmath.h>
#endif

#include <inttypes.h>
#include "config-host.h"
#include "qemu/osdep.h"

/*----------------------------------------------------------------------------
| Each of the following `typedef's defines the most convenient type that holds
| integers of at least as many bits as specified.  For example, `uint8' should
| be the most convenient type that can hold unsigned integers of as many as
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
| to the same as `int'.
*----------------------------------------------------------------------------*/
typedef uint8_t flag;
typedef uint8_t uint8;
typedef int8_t int8;
typedef unsigned int uint32;
typedef signed int int32;
typedef uint64_t uint64;
typedef int64_t int64;

#define LIT64( a ) a##LL
#define INLINE static inline

#define STATUS_PARAM , float_status *status
#define STATUS(field) status->field
#define STATUS_VAR , status

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point ordering relations
*----------------------------------------------------------------------------*/
enum {
    float_relation_less      = -1,
    float_relation_equal     =  0,
    float_relation_greater   =  1,
    float_relation_unordered =  2
};

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point types.
*----------------------------------------------------------------------------*/
/* Use structures for soft-float types.  This prevents accidentally mixing
   them with native int/float types.  A sufficiently clever compiler and
   sane ABI should be able to see though these structs.  However
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
//#define USE_SOFTFLOAT_STRUCT_TYPES
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
typedef struct {
    uint16_t v;
} float16;
#define float16_val(x) (((float16)(x)).v)
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
#define const_float16(x) { x }
typedef struct {
    uint32_t v;
} float32;
/* The cast ensures an error if the wrong type is passed.  */
#define float32_val(x) (((float32)(x)).v)
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
#define const_float32(x) { x }
typedef struct {
    uint64_t v;
} float64;
#define float64_val(x) (((float64)(x)).v)
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
#define const_float64(x) { x }
#else
typedef uint16_t float16;
typedef uint32_t float32;
typedef uint64_t float64;
#define float16_val(x) (x)
#define float32_val(x) (x)
#define float64_val(x) (x)
#define make_float16(x) (x)
#define make_float32(x) (x)
#define make_float64(x) (x)
#define const_float16(x) (x)
#define const_float32(x) (x)
#define const_float64(x) (x)
#endif
typedef struct {
    uint64_t low;
    uint16_t high;
} floatx80;
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
typedef struct {
#ifdef HOST_WORDS_BIGENDIAN
    uint64_t high, low;
#else
    uint64_t low, high;
#endif
} float128;
#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
#define make_float128_init(high_, low_) { .high = high_, .low = low_ }

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
enum {
    float_tininess_after_rounding  = 0,
    float_tininess_before_rounding = 1
};

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point rounding mode.
*----------------------------------------------------------------------------*/
enum {
    float_round_nearest_even = 0,
    float_round_down         = 1,
    float_round_up           = 2,
    float_round_to_zero      = 3,
    float_round_ties_away    = 4,
};

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point exception flags.
*----------------------------------------------------------------------------*/
enum {
    float_flag_invalid   =  1,
    float_flag_divbyzero =  4,
    float_flag_overflow  =  8,
    float_flag_underflow = 16,
    float_flag_inexact   = 32,
    float_flag_input_denormal = 64,
    float_flag_output_denormal = 128
};

typedef struct float_status {
    signed char float_detect_tininess;
    signed char float_rounding_mode;
    signed char float_exception_flags;
    signed char floatx80_rounding_precision;
    /* should denormalised results go to zero and set the inexact flag? */
    flag flush_to_zero;
    /* should denormalised inputs go to zero and set the input_denormal flag? */
    flag flush_inputs_to_zero;
    flag default_nan_mode;
} float_status;

INLINE void set_float_detect_tininess(int val STATUS_PARAM)
{
    STATUS(float_detect_tininess) = val;
}
INLINE void set_float_rounding_mode(int val STATUS_PARAM)
{
    STATUS(float_rounding_mode) = val;
}
INLINE void set_float_exception_flags(int val STATUS_PARAM)
{
    STATUS(float_exception_flags) = val;
}
INLINE void set_floatx80_rounding_precision(int val STATUS_PARAM)
{
    STATUS(floatx80_rounding_precision) = val;
}
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
{
    STATUS(flush_to_zero) = val;
}
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
{
    STATUS(flush_inputs_to_zero) = val;
}
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
{
    STATUS(default_nan_mode) = val;
}
INLINE int get_float_detect_tininess(float_status *status)
{
    return STATUS(float_detect_tininess);
}
INLINE int get_float_rounding_mode(float_status *status)
{
    return STATUS(float_rounding_mode);
}
INLINE int get_float_exception_flags(float_status *status)
{
    return STATUS(float_exception_flags);
}
INLINE int get_floatx80_rounding_precision(float_status *status)
{
    return STATUS(floatx80_rounding_precision);
}
INLINE flag get_flush_to_zero(float_status *status)
{
    return STATUS(flush_to_zero);
}
INLINE flag get_flush_inputs_to_zero(float_status *status)
{
    return STATUS(flush_inputs_to_zero);
}
INLINE flag get_default_nan_mode(float_status *status)
{
    return STATUS(default_nan_mode);
}

/*----------------------------------------------------------------------------
| Routine to raise any or all of the software IEC/IEEE floating-point
| exception flags.
*----------------------------------------------------------------------------*/
void float_raise( int8 flags STATUS_PARAM);

/*----------------------------------------------------------------------------
| Options to indicate which negations to perform in float*_muladd()
| Using these differs from negating an input or output before calling
| the muladd function in that this means that a NaN doesn't have its
| sign bit inverted before it is propagated.
| We also support halving the result before rounding, as a special
| case to support the ARM fused-sqrt-step instruction FRSQRTS.
*----------------------------------------------------------------------------*/
enum {
    float_muladd_negate_c = 1,
    float_muladd_negate_product = 2,
    float_muladd_negate_result = 4,
    float_muladd_halve_result = 8,
};

/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32(int32_t STATUS_PARAM);
float64 int32_to_float64(int32_t STATUS_PARAM);
float32 uint32_to_float32(uint32_t STATUS_PARAM);
float64 uint32_to_float64(uint32_t STATUS_PARAM);
floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
float128 int32_to_float128(int32_t STATUS_PARAM);
float32 int64_to_float32(int64_t STATUS_PARAM);
float32 uint64_to_float32(uint64_t STATUS_PARAM);
float64 int64_to_float64(int64_t STATUS_PARAM);
float64 uint64_to_float64(uint64_t STATUS_PARAM);
floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
float128 int64_to_float128(int64_t STATUS_PARAM);
float128 uint64_to_float128(uint64_t STATUS_PARAM);

/* We provide the int16 versions for symmetry of API with float-to-int */
INLINE float32 int16_to_float32(int16_t v STATUS_PARAM)
{
    return int32_to_float32(v STATUS_VAR);
}

INLINE float32 uint16_to_float32(uint16_t v STATUS_PARAM)
{
    return uint32_to_float32(v STATUS_VAR);
}

INLINE float64 int16_to_float64(int16_t v STATUS_PARAM)
{
    return int32_to_float64(v STATUS_VAR);
}

INLINE float64 uint16_to_float64(uint16_t v STATUS_PARAM)
{
    return uint32_to_float64(v STATUS_VAR);
}

/*----------------------------------------------------------------------------
| Software half-precision conversion routines.
*----------------------------------------------------------------------------*/
float16 float32_to_float16( float32, flag STATUS_PARAM );
float32 float16_to_float32( float16, flag STATUS_PARAM );
float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM);
float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM);

/*----------------------------------------------------------------------------
| Software half-precision operations.
*----------------------------------------------------------------------------*/
int float16_is_quiet_nan( float16 );
int float16_is_signaling_nan( float16 );
float16 float16_maybe_silence_nan( float16 );

INLINE int float16_is_any_nan(float16 a)
{
    return ((float16_val(a) & ~0x8000) > 0x7c00);
}

/*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/
extern const float16 float16_default_nan;

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int_fast16_t float32_to_int16(float32 STATUS_PARAM);
uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
int32 float32_to_int32( float32 STATUS_PARAM );
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
uint32 float32_to_uint32( float32 STATUS_PARAM );
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
int64 float32_to_int64( float32 STATUS_PARAM );
uint64 float32_to_uint64(float32 STATUS_PARAM);
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
float64 float32_to_float64( float32 STATUS_PARAM );
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
float128 float32_to_float128( float32 STATUS_PARAM );

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32 STATUS_PARAM );
float32 float32_add( float32, float32 STATUS_PARAM );
float32 float32_sub( float32, float32 STATUS_PARAM );
float32 float32_mul( float32, float32 STATUS_PARAM );
float32 float32_div( float32, float32 STATUS_PARAM );
float32 float32_rem( float32, float32 STATUS_PARAM );
float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
float32 float32_sqrt( float32 STATUS_PARAM );
float32 float32_exp2( float32 STATUS_PARAM );
float32 float32_log2( float32 STATUS_PARAM );
int float32_eq( float32, float32 STATUS_PARAM );
int float32_le( float32, float32 STATUS_PARAM );
int float32_lt( float32, float32 STATUS_PARAM );
int float32_unordered( float32, float32 STATUS_PARAM );
int float32_eq_quiet( float32, float32 STATUS_PARAM );
int float32_le_quiet( float32, float32 STATUS_PARAM );
int float32_lt_quiet( float32, float32 STATUS_PARAM );
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
float32 float32_min(float32, float32 STATUS_PARAM);
float32 float32_max(float32, float32 STATUS_PARAM);
float32 float32_minnum(float32, float32 STATUS_PARAM);
float32 float32_maxnum(float32, float32 STATUS_PARAM);
int float32_is_quiet_nan( float32 );
int float32_is_signaling_nan( float32 );
float32 float32_maybe_silence_nan( float32 );
float32 float32_scalbn( float32, int STATUS_PARAM );

INLINE float32 float32_abs(float32 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float32(float32_val(a) & 0x7fffffff);
}

INLINE float32 float32_chs(float32 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float32(float32_val(a) ^ 0x80000000);
}

INLINE int float32_is_infinity(float32 a)
{
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
}

INLINE int float32_is_neg(float32 a)
{
    return float32_val(a) >> 31;
}

INLINE int float32_is_zero(float32 a)
{
    return (float32_val(a) & 0x7fffffff) == 0;
}

INLINE int float32_is_any_nan(float32 a)
{
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
}

INLINE int float32_is_zero_or_denormal(float32 a)
{
    return (float32_val(a) & 0x7f800000) == 0;
}

INLINE float32 float32_set_sign(float32 a, int sign)
{
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
}

#define float32_zero make_float32(0)
#define float32_one make_float32(0x3f800000)
#define float32_ln2 make_float32(0x3f317218)
#define float32_pi make_float32(0x40490fdb)
#define float32_half make_float32(0x3f000000)
#define float32_infinity make_float32(0x7f800000)


/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
extern const float32 float32_default_nan;

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int_fast16_t float64_to_int16(float64 STATUS_PARAM);
uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
int32 float64_to_int32( float64 STATUS_PARAM );
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
uint32 float64_to_uint32( float64 STATUS_PARAM );
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
int64 float64_to_int64( float64 STATUS_PARAM );
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
float32 float64_to_float32( float64 STATUS_PARAM );
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
float128 float64_to_float128( float64 STATUS_PARAM );

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
float64 float64_round_to_int( float64 STATUS_PARAM );
float64 float64_trunc_to_int( float64 STATUS_PARAM );
float64 float64_add( float64, float64 STATUS_PARAM );
float64 float64_sub( float64, float64 STATUS_PARAM );
float64 float64_mul( float64, float64 STATUS_PARAM );
float64 float64_div( float64, float64 STATUS_PARAM );
float64 float64_rem( float64, float64 STATUS_PARAM );
float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
float64 float64_sqrt( float64 STATUS_PARAM );
float64 float64_log2( float64 STATUS_PARAM );
int float64_eq( float64, float64 STATUS_PARAM );
int float64_le( float64, float64 STATUS_PARAM );
int float64_lt( float64, float64 STATUS_PARAM );
int float64_unordered( float64, float64 STATUS_PARAM );
int float64_eq_quiet( float64, float64 STATUS_PARAM );
int float64_le_quiet( float64, float64 STATUS_PARAM );
int float64_lt_quiet( float64, float64 STATUS_PARAM );
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
float64 float64_min(float64, float64 STATUS_PARAM);
float64 float64_max(float64, float64 STATUS_PARAM);
float64 float64_minnum(float64, float64 STATUS_PARAM);
float64 float64_maxnum(float64, float64 STATUS_PARAM);
int float64_is_quiet_nan( float64 a );
int float64_is_signaling_nan( float64 );
float64 float64_maybe_silence_nan( float64 );
float64 float64_scalbn( float64, int STATUS_PARAM );

INLINE float64 float64_abs(float64 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
}

INLINE float64 float64_chs(float64 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
}

INLINE int float64_is_infinity(float64 a)
{
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
}

INLINE int float64_is_neg(float64 a)
{
    return float64_val(a) >> 63;
}

INLINE int float64_is_zero(float64 a)
{
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
}

INLINE int float64_is_any_nan(float64 a)
{
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
}

INLINE int float64_is_zero_or_denormal(float64 a)
{
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
}

INLINE float64 float64_set_sign(float64 a, int sign)
{
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
                        | ((int64_t)sign << 63));
}

#define float64_zero make_float64(0)
#define float64_one make_float64(0x3ff0000000000000LL)
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
#define float64_pi make_float64(0x400921fb54442d18LL)
#define float64_half make_float64(0x3fe0000000000000LL)
#define float64_infinity make_float64(0x7ff0000000000000LL)

/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
extern const float64 float64_default_nan;

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
float128 floatx80_to_float128( floatx80 STATUS_PARAM );

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_is_quiet_nan( floatx80 );
int floatx80_is_signaling_nan( floatx80 );
floatx80 floatx80_maybe_silence_nan( floatx80 );
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );

INLINE floatx80 floatx80_abs(floatx80 a)
{
    a.high &= 0x7fff;
    return a;
}

INLINE floatx80 floatx80_chs(floatx80 a)
{
    a.high ^= 0x8000;
    return a;
}

INLINE int floatx80_is_infinity(floatx80 a)
{
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
}

INLINE int floatx80_is_neg(floatx80 a)
{
    return a.high >> 15;
}

INLINE int floatx80_is_zero(floatx80 a)
{
    return (a.high & 0x7fff) == 0 && a.low == 0;
}

INLINE int floatx80_is_zero_or_denormal(floatx80 a)
{
    return (a.high & 0x7fff) == 0;
}

INLINE int floatx80_is_any_nan(floatx80 a)
{
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
}

#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)

/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN.
*----------------------------------------------------------------------------*/
extern const floatx80 floatx80_default_nan;

/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
int32 float128_to_int32( float128 STATUS_PARAM );
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
int64 float128_to_int64( float128 STATUS_PARAM );
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
float32 float128_to_float32( float128 STATUS_PARAM );
float64 float128_to_float64( float128 STATUS_PARAM );
floatx80 float128_to_floatx80( float128 STATUS_PARAM );

/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision operations.
*----------------------------------------------------------------------------*/
float128 float128_round_to_int( float128 STATUS_PARAM );
float128 float128_add( float128, float128 STATUS_PARAM );
float128 float128_sub( float128, float128 STATUS_PARAM );
float128 float128_mul( float128, float128 STATUS_PARAM );
float128 float128_div( float128, float128 STATUS_PARAM );
float128 float128_rem( float128, float128 STATUS_PARAM );
float128 float128_sqrt( float128 STATUS_PARAM );
int float128_eq( float128, float128 STATUS_PARAM );
int float128_le( float128, float128 STATUS_PARAM );
int float128_lt( float128, float128 STATUS_PARAM );
int float128_unordered( float128, float128 STATUS_PARAM );
int float128_eq_quiet( float128, float128 STATUS_PARAM );
int float128_le_quiet( float128, float128 STATUS_PARAM );
int float128_lt_quiet( float128, float128 STATUS_PARAM );
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
int float128_compare( float128, float128 STATUS_PARAM );
int float128_compare_quiet( float128, float128 STATUS_PARAM );
int float128_is_quiet_nan( float128 );
int float128_is_signaling_nan( float128 );
float128 float128_maybe_silence_nan( float128 );
float128 float128_scalbn( float128, int STATUS_PARAM );

INLINE float128 float128_abs(float128 a)
{
    a.high &= 0x7fffffffffffffffLL;
    return a;
}

INLINE float128 float128_chs(float128 a)
{
    a.high ^= 0x8000000000000000LL;
    return a;
}

INLINE int float128_is_infinity(float128 a)
{
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
}

INLINE int float128_is_neg(float128 a)
{
    return a.high >> 63;
}

INLINE int float128_is_zero(float128 a)
{
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
}

INLINE int float128_is_zero_or_denormal(float128 a)
{
    return (a.high & 0x7fff000000000000LL) == 0;
}

INLINE int float128_is_any_nan(float128 a)
{
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
}

#define float128_zero make_float128(0, 0)

/*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN.
*----------------------------------------------------------------------------*/
extern const float128 float128_default_nan;

#endif /* !SOFTFLOAT_H */