1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
#ifndef CPU_COMMON_H
#define CPU_COMMON_H 1
/* CPU interfaces that are target independent. */
#ifndef CONFIG_USER_ONLY
#include "exec/hwaddr.h"
#endif
#ifndef NEED_CPU_H
#include "exec/poison.h"
#endif
#include "qemu/bswap.h"
#include "qemu/queue.h"
/**
* CPUListState:
* @cpu_fprintf: Print function.
* @file: File to print to using @cpu_fprint.
*
* State commonly used for iterating over CPU models.
*/
typedef struct CPUListState {
fprintf_function cpu_fprintf;
FILE *file;
} CPUListState;
#if !defined(CONFIG_USER_ONLY)
enum device_endian {
DEVICE_NATIVE_ENDIAN,
DEVICE_BIG_ENDIAN,
DEVICE_LITTLE_ENDIAN,
};
/* address in the RAM (different from a physical address) */
#if defined(CONFIG_XEN_BACKEND)
typedef uint64_t ram_addr_t;
# define RAM_ADDR_MAX UINT64_MAX
# define RAM_ADDR_FMT "%" PRIx64
#else
typedef uintptr_t ram_addr_t;
# define RAM_ADDR_MAX UINTPTR_MAX
# define RAM_ADDR_FMT "%" PRIxPTR
#endif
/* memory API */
typedef void CPUWriteMemoryFunc(void *opaque, hwaddr addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, hwaddr addr);
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
/* This should not be used by devices. */
MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev);
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
int len, int is_write);
static inline void cpu_physical_memory_read(hwaddr addr,
void *buf, int len)
{
cpu_physical_memory_rw(addr, buf, len, 0);
}
static inline void cpu_physical_memory_write(hwaddr addr,
const void *buf, int len)
{
cpu_physical_memory_rw(addr, (void *)buf, len, 1);
}
void *cpu_physical_memory_map(hwaddr addr,
hwaddr *plen,
int is_write);
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
int is_write, hwaddr access_len);
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
bool cpu_physical_memory_is_io(hwaddr phys_addr);
/* Coalesced MMIO regions are areas where write operations can be reordered.
* This usually implies that write operations are side-effect free. This allows
* batching which can make a major impact on performance when using
* virtualization.
*/
void qemu_flush_coalesced_mmio_buffer(void);
uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
void stb_phys(hwaddr addr, uint32_t val);
void stw_le_phys(hwaddr addr, uint32_t val);
void stw_be_phys(hwaddr addr, uint32_t val);
void stl_le_phys(hwaddr addr, uint32_t val);
void stl_be_phys(hwaddr addr, uint32_t val);
void stq_le_phys(hwaddr addr, uint64_t val);
void stq_be_phys(hwaddr addr, uint64_t val);
#ifdef NEED_CPU_H
uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
void stl_phys_notdirty(hwaddr addr, uint32_t val);
void stw_phys(hwaddr addr, uint32_t val);
void stl_phys(hwaddr addr, uint32_t val);
void stq_phys(hwaddr addr, uint64_t val);
#endif
void cpu_physical_memory_write_rom(hwaddr addr,
const uint8_t *buf, int len);
void cpu_flush_icache_range(hwaddr start, int len);
extern struct MemoryRegion io_mem_rom;
extern struct MemoryRegion io_mem_notdirty;
typedef void (RAMBlockIterFunc)(void *host_addr,
ram_addr_t offset, ram_addr_t length, void *opaque);
void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
#endif
#endif /* !CPU_COMMON_H */
|