aboutsummaryrefslogtreecommitdiff
path: root/hw/slavio_timer.c
blob: acf94f3d53ac97d2c8a06594d59776eece0b1a36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
 * QEMU Sparc SLAVIO timer controller emulation
 *
 * Copyright (c) 2003-2005 Fabrice Bellard
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"

//#define DEBUG_TIMER

#ifdef DEBUG_TIMER
#define DPRINTF(fmt, args...) \
do { printf("TIMER: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif

/*
 * Registers of hardware timer in sun4m.
 *
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
 * produced as NCR89C105. See
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
 * 
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
 * are zero. Bit 31 is 1 when count has been reached.
 *
 * Per-CPU timers interrupt local CPU, system timer uses normal
 * interrupt routing.
 *
 */

typedef struct SLAVIO_TIMERState {
    uint32_t limit, count, counthigh;
    int64_t count_load_time;
    int64_t expire_time;
    int64_t stop_time, tick_offset;
    QEMUTimer *irq_timer;
    int irq;
    int reached, stopped;
    int mode; // 0 = processor, 1 = user, 2 = system
    unsigned int cpu;
    void *intctl;
} SLAVIO_TIMERState;

#define TIMER_MAXADDR 0x1f
#define CNT_FREQ 2000000

// Update count, set irq, update expire_time
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
    int out;
    int64_t diff, ticks, count;
    uint32_t limit;

    // There are three clock tick units: CPU ticks, register units
    // (nanoseconds), and counter ticks (500 ns).
    if (s->mode == 1 && s->stopped)
	ticks = s->stop_time;
    else
	ticks = qemu_get_clock(vm_clock) - s->tick_offset;

    out = (ticks > s->expire_time);
    if (out)
	s->reached = 0x80000000;
    if (!s->limit)
	limit = 0x7fffffff;
    else
	limit = s->limit;

    // Convert register units to counter ticks
    limit = limit >> 9;

    // Convert cpu ticks to counter ticks
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);

    // Calculate what the counter should be, convert to register
    // units
    count = diff % limit;
    s->count = count << 9;
    s->counthigh = count >> 22;

    // Expire time: CPU ticks left to next interrupt
    // Convert remaining counter ticks to CPU ticks
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);

    DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);

    if (s->mode != 1)
	pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
}

// timer callback
static void slavio_timer_irq(void *opaque)
{
    SLAVIO_TIMERState *s = opaque;

    if (!s->irq_timer)
        return;
    slavio_timer_get_out(s);
    if (s->mode != 1)
	qemu_mod_timer(s->irq_timer, s->expire_time);
}

static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
    SLAVIO_TIMERState *s = opaque;
    uint32_t saddr;

    saddr = (addr & TIMER_MAXADDR) >> 2;
    switch (saddr) {
    case 0:
	// read limit (system counter mode) or read most signifying
	// part of counter (user mode)
	if (s->mode != 1) {
	    // clear irq
	    pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
	    s->reached = 0;
	    return s->limit;
	}
	else {
	    slavio_timer_get_out(s);
	    return s->counthigh & 0x7fffffff;
	}
    case 1:
	// read counter and reached bit (system mode) or read lsbits
	// of counter (user mode)
	slavio_timer_get_out(s);
	if (s->mode != 1)
	    return (s->count & 0x7fffffff) | s->reached;
	else
	    return s->count;
    case 3:
	// read start/stop status
	return s->stopped;
    case 4:
	// read user/system mode
	return s->mode & 1;
    default:
	return 0;
    }
}

static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    SLAVIO_TIMERState *s = opaque;
    uint32_t saddr;

    saddr = (addr & TIMER_MAXADDR) >> 2;
    switch (saddr) {
    case 0:
	// set limit, reset counter
	s->count_load_time = qemu_get_clock(vm_clock);
	// fall through
    case 2:
	// set limit without resetting counter
	if (!val)
	    s->limit = 0x7fffffff;
	else
	    s->limit = val & 0x7fffffff;
	slavio_timer_irq(s);
	break;
    case 3:
	// start/stop user counter
	if (s->mode == 1) {
	    if (val & 1) {
		s->stop_time = qemu_get_clock(vm_clock);
		s->stopped = 1;
	    }
	    else {
		if (s->stopped)
		    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
		s->stopped = 0;
	    }
	}
	break;
    case 4:
	// bit 0: user (1) or system (0) counter mode
	if (s->mode == 0 || s->mode == 1)
	    s->mode = val & 1;
	break;
    default:
	break;
    }
}

static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
    slavio_timer_mem_readl,
    slavio_timer_mem_readl,
    slavio_timer_mem_readl,
};

static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
    slavio_timer_mem_writel,
    slavio_timer_mem_writel,
    slavio_timer_mem_writel,
};

static void slavio_timer_save(QEMUFile *f, void *opaque)
{
    SLAVIO_TIMERState *s = opaque;

    qemu_put_be32s(f, &s->limit);
    qemu_put_be32s(f, &s->count);
    qemu_put_be32s(f, &s->counthigh);
    qemu_put_be64s(f, &s->count_load_time);
    qemu_put_be64s(f, &s->expire_time);
    qemu_put_be64s(f, &s->stop_time);
    qemu_put_be64s(f, &s->tick_offset);
    qemu_put_be32s(f, &s->irq);
    qemu_put_be32s(f, &s->reached);
    qemu_put_be32s(f, &s->stopped);
    qemu_put_be32s(f, &s->mode);
}

static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
    SLAVIO_TIMERState *s = opaque;
    
    if (version_id != 1)
        return -EINVAL;

    qemu_get_be32s(f, &s->limit);
    qemu_get_be32s(f, &s->count);
    qemu_get_be32s(f, &s->counthigh);
    qemu_get_be64s(f, &s->count_load_time);
    qemu_get_be64s(f, &s->expire_time);
    qemu_get_be64s(f, &s->stop_time);
    qemu_get_be64s(f, &s->tick_offset);
    qemu_get_be32s(f, &s->irq);
    qemu_get_be32s(f, &s->reached);
    qemu_get_be32s(f, &s->stopped);
    qemu_get_be32s(f, &s->mode);
    return 0;
}

static void slavio_timer_reset(void *opaque)
{
    SLAVIO_TIMERState *s = opaque;

    s->limit = 0;
    s->count = 0;
    s->count_load_time = qemu_get_clock(vm_clock);;
    s->stop_time = s->count_load_time;
    s->tick_offset = 0;
    s->reached = 0;
    s->mode &= 2;
    s->stopped = 1;
    slavio_timer_irq(s);
}

void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu,
                       void *intctl)
{
    int slavio_timer_io_memory;
    SLAVIO_TIMERState *s;

    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
    if (!s)
        return;
    s->irq = irq;
    s->mode = mode;
    s->cpu = cpu;
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
    s->intctl = intctl;

    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
						    slavio_timer_mem_write, s);
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
    qemu_register_reset(slavio_timer_reset, s);
    slavio_timer_reset(s);
}