aboutsummaryrefslogtreecommitdiff
path: root/hw/net/mcf_fec.c
blob: 0091e4ecddc23b2db650e97f15e6acf907e66639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 * ColdFire Fast Ethernet Controller emulation.
 *
 * Copyright (c) 2007 CodeSourcery.
 *
 * This code is licensed under the GPL
 */
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "net/net.h"
#include "hw/m68k/mcf.h"
#include "hw/m68k/mcf_fec.h"
#include "hw/net/mii.h"
#include "hw/sysbus.h"
/* For crc32 */
#include <zlib.h>

//#define DEBUG_FEC 1

#ifdef DEBUG_FEC
#define DPRINTF(fmt, ...) \
do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#endif

#define FEC_MAX_DESC 1024
#define FEC_MAX_FRAME_SIZE 2032
#define FEC_MIB_SIZE 64

typedef struct {
    SysBusDevice parent_obj;

    MemoryRegion iomem;
    qemu_irq irq[FEC_NUM_IRQ];
    NICState *nic;
    NICConf conf;
    uint32_t irq_state;
    uint32_t eir;
    uint32_t eimr;
    int rx_enabled;
    uint32_t rx_descriptor;
    uint32_t tx_descriptor;
    uint32_t ecr;
    uint32_t mmfr;
    uint32_t mscr;
    uint32_t rcr;
    uint32_t tcr;
    uint32_t tfwr;
    uint32_t rfsr;
    uint32_t erdsr;
    uint32_t etdsr;
    uint32_t emrbr;
    uint32_t mib[FEC_MIB_SIZE];
} mcf_fec_state;

#define FEC_INT_HB   0x80000000
#define FEC_INT_BABR 0x40000000
#define FEC_INT_BABT 0x20000000
#define FEC_INT_GRA  0x10000000
#define FEC_INT_TXF  0x08000000
#define FEC_INT_TXB  0x04000000
#define FEC_INT_RXF  0x02000000
#define FEC_INT_RXB  0x01000000
#define FEC_INT_MII  0x00800000
#define FEC_INT_EB   0x00400000
#define FEC_INT_LC   0x00200000
#define FEC_INT_RL   0x00100000
#define FEC_INT_UN   0x00080000

#define FEC_EN      2
#define FEC_RESET   1

/* Map interrupt flags onto IRQ lines.  */
static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
    FEC_INT_TXF,
    FEC_INT_TXB,
    FEC_INT_UN,
    FEC_INT_RL,
    FEC_INT_RXF,
    FEC_INT_RXB,
    FEC_INT_MII,
    FEC_INT_LC,
    FEC_INT_HB,
    FEC_INT_GRA,
    FEC_INT_EB,
    FEC_INT_BABT,
    FEC_INT_BABR
};

/* Buffer Descriptor.  */
typedef struct {
    uint16_t flags;
    uint16_t length;
    uint32_t data;
} mcf_fec_bd;

#define FEC_BD_R    0x8000
#define FEC_BD_E    0x8000
#define FEC_BD_O1   0x4000
#define FEC_BD_W    0x2000
#define FEC_BD_O2   0x1000
#define FEC_BD_L    0x0800
#define FEC_BD_TC   0x0400
#define FEC_BD_ABC  0x0200
#define FEC_BD_M    0x0100
#define FEC_BD_BC   0x0080
#define FEC_BD_MC   0x0040
#define FEC_BD_LG   0x0020
#define FEC_BD_NO   0x0010
#define FEC_BD_CR   0x0004
#define FEC_BD_OV   0x0002
#define FEC_BD_TR   0x0001

#define MIB_RMON_T_DROP         0
#define MIB_RMON_T_PACKETS      1
#define MIB_RMON_T_BC_PKT       2
#define MIB_RMON_T_MC_PKT       3
#define MIB_RMON_T_CRC_ALIGN    4
#define MIB_RMON_T_UNDERSIZE    5
#define MIB_RMON_T_OVERSIZE     6
#define MIB_RMON_T_FRAG         7
#define MIB_RMON_T_JAB          8
#define MIB_RMON_T_COL          9
#define MIB_RMON_T_P64          10
#define MIB_RMON_T_P65TO127     11
#define MIB_RMON_T_P128TO255    12
#define MIB_RMON_T_P256TO511    13
#define MIB_RMON_T_P512TO1023   14
#define MIB_RMON_T_P1024TO2047  15
#define MIB_RMON_T_P_GTE2048    16
#define MIB_RMON_T_OCTETS       17
#define MIB_IEEE_T_DROP         18
#define MIB_IEEE_T_FRAME_OK     19
#define MIB_IEEE_T_1COL         20
#define MIB_IEEE_T_MCOL         21
#define MIB_IEEE_T_DEF          22
#define MIB_IEEE_T_LCOL         23
#define MIB_IEEE_T_EXCOL        24
#define MIB_IEEE_T_MACERR       25
#define MIB_IEEE_T_CSERR        26
#define MIB_IEEE_T_SQE          27
#define MIB_IEEE_T_FDXFC        28
#define MIB_IEEE_T_OCTETS_OK    29

#define MIB_RMON_R_DROP         32
#define MIB_RMON_R_PACKETS      33
#define MIB_RMON_R_BC_PKT       34
#define MIB_RMON_R_MC_PKT       35
#define MIB_RMON_R_CRC_ALIGN    36
#define MIB_RMON_R_UNDERSIZE    37
#define MIB_RMON_R_OVERSIZE     38
#define MIB_RMON_R_FRAG         39
#define MIB_RMON_R_JAB          40
#define MIB_RMON_R_RESVD_0      41
#define MIB_RMON_R_P64          42
#define MIB_RMON_R_P65TO127     43
#define MIB_RMON_R_P128TO255    44
#define MIB_RMON_R_P256TO511    45
#define MIB_RMON_R_P512TO1023   46
#define MIB_RMON_R_P1024TO2047  47
#define MIB_RMON_R_P_GTE2048    48
#define MIB_RMON_R_OCTETS       49
#define MIB_IEEE_R_DROP         50
#define MIB_IEEE_R_FRAME_OK     51
#define MIB_IEEE_R_CRC          52
#define MIB_IEEE_R_ALIGN        53
#define MIB_IEEE_R_MACERR       54
#define MIB_IEEE_R_FDXFC        55
#define MIB_IEEE_R_OCTETS_OK    56

static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
{
    cpu_physical_memory_read(addr, bd, sizeof(*bd));
    be16_to_cpus(&bd->flags);
    be16_to_cpus(&bd->length);
    be32_to_cpus(&bd->data);
}

static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
{
    mcf_fec_bd tmp;
    tmp.flags = cpu_to_be16(bd->flags);
    tmp.length = cpu_to_be16(bd->length);
    tmp.data = cpu_to_be32(bd->data);
    cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
}

static void mcf_fec_update(mcf_fec_state *s)
{
    uint32_t active;
    uint32_t changed;
    uint32_t mask;
    int i;

    active = s->eir & s->eimr;
    changed = active ^s->irq_state;
    for (i = 0; i < FEC_NUM_IRQ; i++) {
        mask = mcf_fec_irq_map[i];
        if (changed & mask) {
            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
            qemu_set_irq(s->irq[i], (active & mask) != 0);
        }
    }
    s->irq_state = active;
}

static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
{
    s->mib[MIB_RMON_T_PACKETS]++;
    s->mib[MIB_RMON_T_OCTETS] += size;
    if (size < 64) {
        s->mib[MIB_RMON_T_FRAG]++;
    } else if (size == 64) {
        s->mib[MIB_RMON_T_P64]++;
    } else if (size < 128) {
        s->mib[MIB_RMON_T_P65TO127]++;
    } else if (size < 256) {
        s->mib[MIB_RMON_T_P128TO255]++;
    } else if (size < 512) {
        s->mib[MIB_RMON_T_P256TO511]++;
    } else if (size < 1024) {
        s->mib[MIB_RMON_T_P512TO1023]++;
    } else if (size < 2048) {
        s->mib[MIB_RMON_T_P1024TO2047]++;
    } else {
        s->mib[MIB_RMON_T_P_GTE2048]++;
    }
    s->mib[MIB_IEEE_T_FRAME_OK]++;
    s->mib[MIB_IEEE_T_OCTETS_OK] += size;
}

static void mcf_fec_do_tx(mcf_fec_state *s)
{
    uint32_t addr;
    mcf_fec_bd bd;
    int frame_size;
    int len, descnt = 0;
    uint8_t frame[FEC_MAX_FRAME_SIZE];
    uint8_t *ptr;

    DPRINTF("do_tx\n");
    ptr = frame;
    frame_size = 0;
    addr = s->tx_descriptor;
    while (descnt++ < FEC_MAX_DESC) {
        mcf_fec_read_bd(&bd, addr);
        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
                addr, bd.flags, bd.length, bd.data);
        if ((bd.flags & FEC_BD_R) == 0) {
            /* Run out of descriptors to transmit.  */
            break;
        }
        len = bd.length;
        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
            len = FEC_MAX_FRAME_SIZE - frame_size;
            s->eir |= FEC_INT_BABT;
        }
        cpu_physical_memory_read(bd.data, ptr, len);
        ptr += len;
        frame_size += len;
        if (bd.flags & FEC_BD_L) {
            /* Last buffer in frame.  */
            DPRINTF("Sending packet\n");
            qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
            mcf_fec_tx_stats(s, frame_size);
            ptr = frame;
            frame_size = 0;
            s->eir |= FEC_INT_TXF;
        }
        s->eir |= FEC_INT_TXB;
        bd.flags &= ~FEC_BD_R;
        /* Write back the modified descriptor.  */
        mcf_fec_write_bd(&bd, addr);
        /* Advance to the next descriptor.  */
        if ((bd.flags & FEC_BD_W) != 0) {
            addr = s->etdsr;
        } else {
            addr += 8;
        }
    }
    s->tx_descriptor = addr;
}

static void mcf_fec_enable_rx(mcf_fec_state *s)
{
    NetClientState *nc = qemu_get_queue(s->nic);
    mcf_fec_bd bd;

    mcf_fec_read_bd(&bd, s->rx_descriptor);
    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
    if (s->rx_enabled) {
        qemu_flush_queued_packets(nc);
    }
}

static void mcf_fec_reset(DeviceState *dev)
{
    mcf_fec_state *s = MCF_FEC_NET(dev);

    s->eir = 0;
    s->eimr = 0;
    s->rx_enabled = 0;
    s->ecr = 0;
    s->mscr = 0;
    s->rcr = 0x05ee0001;
    s->tcr = 0;
    s->tfwr = 0;
    s->rfsr = 0x500;
}

#define MMFR_WRITE_OP	(1 << 28)
#define MMFR_READ_OP	(2 << 28)
#define MMFR_PHYADDR(v)	(((v) >> 23) & 0x1f)
#define MMFR_REGNUM(v)	(((v) >> 18) & 0x1f)

static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
{
    uint64_t v;

    if (s->mmfr & MMFR_WRITE_OP)
        return s->mmfr;
    if (MMFR_PHYADDR(s->mmfr) != 1)
        return s->mmfr |= 0xffff;

    switch (MMFR_REGNUM(s->mmfr)) {
    case MII_BMCR:
        v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
        break;
    case MII_BMSR:
        v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
            MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
            MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
        break;
    case MII_PHYID1:
        v = DP83848_PHYID1;
        break;
    case MII_PHYID2:
        v = DP83848_PHYID2;
        break;
    case MII_ANAR:
        v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
            MII_ANAR_10 | MII_ANAR_CSMACD;
        break;
    case MII_ANLPAR:
        v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
            MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
        break;
    default:
        v = 0xffff;
        break;
    }
    s->mmfr = (s->mmfr & ~0xffff) | v;
    return s->mmfr;
}

static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
                             unsigned size)
{
    mcf_fec_state *s = (mcf_fec_state *)opaque;
    switch (addr & 0x3ff) {
    case 0x004: return s->eir;
    case 0x008: return s->eimr;
    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
    case 0x014: return 0; /* TDAR */
    case 0x024: return s->ecr;
    case 0x040: return mcf_fec_read_mdio(s);
    case 0x044: return s->mscr;
    case 0x064: return 0; /* MIBC */
    case 0x084: return s->rcr;
    case 0x0c4: return s->tcr;
    case 0x0e4: /* PALR */
        return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
              | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
        break;
    case 0x0e8: /* PAUR */
        return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
    case 0x0ec: return 0x10000; /* OPD */
    case 0x118: return 0;
    case 0x11c: return 0;
    case 0x120: return 0;
    case 0x124: return 0;
    case 0x144: return s->tfwr;
    case 0x14c: return 0x600;
    case 0x150: return s->rfsr;
    case 0x180: return s->erdsr;
    case 0x184: return s->etdsr;
    case 0x188: return s->emrbr;
    case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
    default:
        hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
        return 0;
    }
}

static void mcf_fec_write(void *opaque, hwaddr addr,
                          uint64_t value, unsigned size)
{
    mcf_fec_state *s = (mcf_fec_state *)opaque;
    switch (addr & 0x3ff) {
    case 0x004:
        s->eir &= ~value;
        break;
    case 0x008:
        s->eimr = value;
        break;
    case 0x010: /* RDAR */
        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
            DPRINTF("RX enable\n");
            mcf_fec_enable_rx(s);
        }
        break;
    case 0x014: /* TDAR */
        if (s->ecr & FEC_EN) {
            mcf_fec_do_tx(s);
        }
        break;
    case 0x024:
        s->ecr = value;
        if (value & FEC_RESET) {
            DPRINTF("Reset\n");
            mcf_fec_reset(opaque);
        }
        if ((s->ecr & FEC_EN) == 0) {
            s->rx_enabled = 0;
        }
        break;
    case 0x040:
        s->mmfr = value;
        s->eir |= FEC_INT_MII;
        break;
    case 0x044:
        s->mscr = value & 0xfe;
        break;
    case 0x064:
        /* TODO: Implement MIB.  */
        break;
    case 0x084:
        s->rcr = value & 0x07ff003f;
        /* TODO: Implement LOOP mode.  */
        break;
    case 0x0c4: /* TCR */
        /* We transmit immediately, so raise GRA immediately.  */
        s->tcr = value;
        if (value & 1)
            s->eir |= FEC_INT_GRA;
        break;
    case 0x0e4: /* PALR */
        s->conf.macaddr.a[0] = value >> 24;
        s->conf.macaddr.a[1] = value >> 16;
        s->conf.macaddr.a[2] = value >> 8;
        s->conf.macaddr.a[3] = value;
        break;
    case 0x0e8: /* PAUR */
        s->conf.macaddr.a[4] = value >> 24;
        s->conf.macaddr.a[5] = value >> 16;
        break;
    case 0x0ec:
        /* OPD */
        break;
    case 0x118:
    case 0x11c:
    case 0x120:
    case 0x124:
        /* TODO: implement MAC hash filtering.  */
        break;
    case 0x144:
        s->tfwr = value & 3;
        break;
    case 0x14c:
        /* FRBR writes ignored.  */
        break;
    case 0x150:
        s->rfsr = (value & 0x3fc) | 0x400;
        break;
    case 0x180:
        s->erdsr = value & ~3;
        s->rx_descriptor = s->erdsr;
        break;
    case 0x184:
        s->etdsr = value & ~3;
        s->tx_descriptor = s->etdsr;
        break;
    case 0x188:
        s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
        break;
    case 0x200 ... 0x2e0:
        s->mib[(addr & 0x1ff) / 4] = value;
        break;
    default:
        hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
    }
    mcf_fec_update(s);
}

static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
{
    s->mib[MIB_RMON_R_PACKETS]++;
    s->mib[MIB_RMON_R_OCTETS] += size;
    if (size < 64) {
        s->mib[MIB_RMON_R_FRAG]++;
    } else if (size == 64) {
        s->mib[MIB_RMON_R_P64]++;
    } else if (size < 128) {
        s->mib[MIB_RMON_R_P65TO127]++;
    } else if (size < 256) {
        s->mib[MIB_RMON_R_P128TO255]++;
    } else if (size < 512) {
        s->mib[MIB_RMON_R_P256TO511]++;
    } else if (size < 1024) {
        s->mib[MIB_RMON_R_P512TO1023]++;
    } else if (size < 2048) {
        s->mib[MIB_RMON_R_P1024TO2047]++;
    } else {
        s->mib[MIB_RMON_R_P_GTE2048]++;
    }
    s->mib[MIB_IEEE_R_FRAME_OK]++;
    s->mib[MIB_IEEE_R_OCTETS_OK] += size;
}

static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
{
    mcf_fec_bd bd;
    uint32_t addr;

    /* Walk descriptor list to determine if we have enough buffer */
    addr = s->rx_descriptor;
    while (want > 0) {
        mcf_fec_read_bd(&bd, addr);
        if ((bd.flags & FEC_BD_E) == 0) {
            return 0;
        }
        if (want < s->emrbr) {
            return 1;
        }
        want -= s->emrbr;
        /* Advance to the next descriptor.  */
        if ((bd.flags & FEC_BD_W) != 0) {
            addr = s->erdsr;
        } else {
            addr += 8;
        }
    }
    return 0;
}

static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
    mcf_fec_state *s = qemu_get_nic_opaque(nc);
    mcf_fec_bd bd;
    uint32_t flags = 0;
    uint32_t addr;
    uint32_t crc;
    uint32_t buf_addr;
    uint8_t *crc_ptr;
    unsigned int buf_len;
    size_t retsize;

    DPRINTF("do_rx len %d\n", size);
    if (!s->rx_enabled) {
        return -1;
    }
    /* 4 bytes for the CRC.  */
    size += 4;
    crc = cpu_to_be32(crc32(~0, buf, size));
    crc_ptr = (uint8_t *)&crc;
    /* Huge frames are truncted.  */
    if (size > FEC_MAX_FRAME_SIZE) {
        size = FEC_MAX_FRAME_SIZE;
        flags |= FEC_BD_TR | FEC_BD_LG;
    }
    /* Frames larger than the user limit just set error flags.  */
    if (size > (s->rcr >> 16)) {
        flags |= FEC_BD_LG;
    }
    /* Check if we have enough space in current descriptors */
    if (!mcf_fec_have_receive_space(s, size)) {
        return 0;
    }
    addr = s->rx_descriptor;
    retsize = size;
    while (size > 0) {
        mcf_fec_read_bd(&bd, addr);
        buf_len = (size <= s->emrbr) ? size: s->emrbr;
        bd.length = buf_len;
        size -= buf_len;
        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
        /* The last 4 bytes are the CRC.  */
        if (size < 4)
            buf_len += size - 4;
        buf_addr = bd.data;
        cpu_physical_memory_write(buf_addr, buf, buf_len);
        buf += buf_len;
        if (size < 4) {
            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
            crc_ptr += 4 - size;
        }
        bd.flags &= ~FEC_BD_E;
        if (size == 0) {
            /* Last buffer in frame.  */
            bd.flags |= flags | FEC_BD_L;
            DPRINTF("rx frame flags %04x\n", bd.flags);
            s->eir |= FEC_INT_RXF;
        } else {
            s->eir |= FEC_INT_RXB;
        }
        mcf_fec_write_bd(&bd, addr);
        /* Advance to the next descriptor.  */
        if ((bd.flags & FEC_BD_W) != 0) {
            addr = s->erdsr;
        } else {
            addr += 8;
        }
    }
    s->rx_descriptor = addr;
    mcf_fec_rx_stats(s, retsize);
    mcf_fec_enable_rx(s);
    mcf_fec_update(s);
    return retsize;
}

static const MemoryRegionOps mcf_fec_ops = {
    .read = mcf_fec_read,
    .write = mcf_fec_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static NetClientInfo net_mcf_fec_info = {
    .type = NET_CLIENT_DRIVER_NIC,
    .size = sizeof(NICState),
    .receive = mcf_fec_receive,
};

static void mcf_fec_realize(DeviceState *dev, Error **errp)
{
    mcf_fec_state *s = MCF_FEC_NET(dev);

    s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
                          object_get_typename(OBJECT(dev)), dev->id, s);
    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}

static void mcf_fec_instance_init(Object *obj)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    mcf_fec_state *s = MCF_FEC_NET(obj);
    int i;

    memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
    sysbus_init_mmio(sbd, &s->iomem);
    for (i = 0; i < FEC_NUM_IRQ; i++) {
        sysbus_init_irq(sbd, &s->irq[i]);
    }
}

static Property mcf_fec_properties[] = {
    DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
    DEFINE_PROP_END_OF_LIST(),
};

static void mcf_fec_class_init(ObjectClass *oc, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(oc);

    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
    dc->realize = mcf_fec_realize;
    dc->desc = "MCF Fast Ethernet Controller network device";
    dc->reset = mcf_fec_reset;
    dc->props = mcf_fec_properties;
}

static const TypeInfo mcf_fec_info = {
    .name          = TYPE_MCF_FEC_NET,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(mcf_fec_state),
    .instance_init = mcf_fec_instance_init,
    .class_init    = mcf_fec_class_init,
};

static void mcf_fec_register_types(void)
{
    type_register_static(&mcf_fec_info);
}

type_init(mcf_fec_register_types)