aboutsummaryrefslogtreecommitdiff
path: root/hw/mips/boston.c
blob: 1cb4b6aca2ebba7a641e6b4932a8e9b408466b96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 * MIPS Boston development board emulation.
 *
 * Copyright (c) 2016 Imagination Technologies
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"

#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/char/serial.h"
#include "hw/hw.h"
#include "hw/ide/pci.h"
#include "hw/ide/ahci.h"
#include "hw/loader.h"
#include "hw/loader-fit.h"
#include "hw/mips/cps.h"
#include "hw/mips/cpudevs.h"
#include "hw/pci-host/xilinx-pcie.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"

#include <libfdt.h>

#define TYPE_MIPS_BOSTON "mips-boston"
#define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)

typedef struct {
    SysBusDevice parent_obj;

    MachineState *mach;
    MIPSCPSState *cps;
    SerialState *uart;

    CharBackend lcd_display;
    char lcd_content[8];
    bool lcd_inited;

    hwaddr kernel_entry;
    hwaddr fdt_base;
} BostonState;

enum boston_plat_reg {
    PLAT_FPGA_BUILD     = 0x00,
    PLAT_CORE_CL        = 0x04,
    PLAT_WRAPPER_CL     = 0x08,
    PLAT_SYSCLK_STATUS  = 0x0c,
    PLAT_SOFTRST_CTL    = 0x10,
#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
    PLAT_DDR3_STATUS    = 0x14,
#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
    PLAT_PCIE_STATUS    = 0x18,
#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
    PLAT_FLASH_CTL      = 0x1c,
    PLAT_SPARE0         = 0x20,
    PLAT_SPARE1         = 0x24,
    PLAT_SPARE2         = 0x28,
    PLAT_SPARE3         = 0x2c,
    PLAT_MMCM_DIV       = 0x30,
#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
#define PLAT_MMCM_DIV_INPUT_SHIFT       8
#define PLAT_MMCM_DIV_MUL_SHIFT         16
#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
    PLAT_BUILD_CFG      = 0x34,
#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
    PLAT_DDR_CFG        = 0x38,
#define PLAT_DDR_CFG_SIZE               (0xf << 0)
#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
    PLAT_NOC_PCIE0_ADDR = 0x3c,
    PLAT_NOC_PCIE1_ADDR = 0x40,
    PLAT_NOC_PCIE2_ADDR = 0x44,
    PLAT_SYS_CTL        = 0x48,
};

static void boston_lcd_event(void *opaque, int event)
{
    BostonState *s = opaque;
    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
        qemu_chr_fe_printf(&s->lcd_display, "        ");
        s->lcd_inited = true;
    }
}

static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
                                unsigned size)
{
    BostonState *s = opaque;
    uint64_t val = 0;

    switch (size) {
    case 8:
        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
        /* fall through */
    case 4:
        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
        /* fall through */
    case 2:
        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
        /* fall through */
    case 1:
        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
        break;
    }

    return val;
}

static void boston_lcd_write(void *opaque, hwaddr addr,
                             uint64_t val, unsigned size)
{
    BostonState *s = opaque;

    switch (size) {
    case 8:
        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
        /* fall through */
    case 4:
        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
        /* fall through */
    case 2:
        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
        /* fall through */
    case 1:
        s->lcd_content[(addr + 0) & 0x7] = val;
        break;
    }

    qemu_chr_fe_printf(&s->lcd_display,
                       "\r%-8.8s", s->lcd_content);
}

static const MemoryRegionOps boston_lcd_ops = {
    .read = boston_lcd_read,
    .write = boston_lcd_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
                                    unsigned size)
{
    BostonState *s = opaque;
    uint32_t gic_freq, val;

    if (size != 4) {
        qemu_log_mask(LOG_UNIMP, "%uB platform register read", size);
        return 0;
    }

    switch (addr & 0xffff) {
    case PLAT_FPGA_BUILD:
    case PLAT_CORE_CL:
    case PLAT_WRAPPER_CL:
        return 0;
    case PLAT_DDR3_STATUS:
        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
    case PLAT_MMCM_DIV:
        gic_freq = mips_gictimer_get_freq(s->cps->gic.gic_timer) / 1000000;
        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
        return val;
    case PLAT_BUILD_CFG:
        val = PLAT_BUILD_CFG_PCIE0_EN;
        val |= PLAT_BUILD_CFG_PCIE1_EN;
        val |= PLAT_BUILD_CFG_PCIE2_EN;
        return val;
    case PLAT_DDR_CFG:
        val = s->mach->ram_size / G_BYTE;
        assert(!(val & ~PLAT_DDR_CFG_SIZE));
        val |= PLAT_DDR_CFG_MHZ;
        return val;
    default:
        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx,
                      addr & 0xffff);
        return 0;
    }
}

static void boston_platreg_write(void *opaque, hwaddr addr,
                                 uint64_t val, unsigned size)
{
    if (size != 4) {
        qemu_log_mask(LOG_UNIMP, "%uB platform register write", size);
        return;
    }

    switch (addr & 0xffff) {
    case PLAT_FPGA_BUILD:
    case PLAT_CORE_CL:
    case PLAT_WRAPPER_CL:
    case PLAT_DDR3_STATUS:
    case PLAT_PCIE_STATUS:
    case PLAT_MMCM_DIV:
    case PLAT_BUILD_CFG:
    case PLAT_DDR_CFG:
        /* read only */
        break;
    case PLAT_SOFTRST_CTL:
        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
        }
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
                      " = 0x%" PRIx64, addr & 0xffff, val);
        break;
    }
}

static const MemoryRegionOps boston_platreg_ops = {
    .read = boston_platreg_read,
    .write = boston_platreg_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static void boston_flash_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
}

static const MemoryRegionOps boston_flash_ops = {
    .write = boston_flash_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static const TypeInfo boston_device = {
    .name          = TYPE_MIPS_BOSTON,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(BostonState),
};

static void boston_register_types(void)
{
    type_register_static(&boston_device);
}
type_init(boston_register_types)

static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
                         bool is_64b)
{
    const uint32_t cm_base = 0x16100000;
    const uint32_t gic_base = 0x16120000;
    const uint32_t cpc_base = 0x16200000;

    /* Move CM GCRs */
    if (is_64b) {
        stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
        stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
    } else {
        stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
        stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
    }
    stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
    stl_p(p++, 0x01094025);                     /* or   $8, $9 */
    stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
    if (is_64b) {
        stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
    } else {
        stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
    }
    stl_p(p++, 0x012a4025);                     /* or   $8, $10 */

    /* Move & enable GIC GCRs */
    stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
    if (is_64b) {
        stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
    } else {
        stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
    }

    /* Move & enable CPC GCRs */
    stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
    if (is_64b) {
        stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
    } else {
        stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
    }

    /*
     * Setup argument registers to follow the UHI boot protocol:
     *
     * a0/$4 = -2
     * a1/$5 = virtual address of FDT
     * a2/$6 = 0
     * a3/$7 = 0
     */
    stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
                                                /* lui  $5, hi(fdt_addr) */
    stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
    if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
        stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
    }
    stl_p(p++, 0x34060000);                     /* li   $6, 0 */
    stl_p(p++, 0x34070000);                     /* li   $7, 0 */

    /* Load kernel entry address & jump to it */
                                                /* lui  $25, hi(kernel_entry) */
    stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
                                                /* ori  $25, lo(kernel_entry) */
    stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
    stl_p(p++, 0x03200009);                     /* jr   $25 */
}

static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
                                     const void *match_data, hwaddr *load_addr)
{
    BostonState *s = BOSTON(opaque);
    MachineState *machine = s->mach;
    const char *cmdline;
    int err;
    void *fdt;
    size_t fdt_sz, ram_low_sz, ram_high_sz;

    fdt_sz = fdt_totalsize(fdt_orig) * 2;
    fdt = g_malloc0(fdt_sz);

    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
    if (err) {
        fprintf(stderr, "unable to open FDT\n");
        return NULL;
    }

    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
            ? machine->kernel_cmdline : " ";
    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
    if (err < 0) {
        fprintf(stderr, "couldn't set /chosen/bootargs\n");
        return NULL;
    }

    ram_low_sz = MIN(256 * M_BYTE, machine->ram_size);
    ram_high_sz = machine->ram_size - ram_low_sz;
    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
                                 1, 0x00000000, 1, ram_low_sz,
                                 1, 0x90000000, 1, ram_high_sz);

    fdt = g_realloc(fdt, fdt_totalsize(fdt));
    qemu_fdt_dumpdtb(fdt, fdt_sz);

    s->fdt_base = *load_addr;

    return fdt;
}

static const void *boston_kernel_filter(void *opaque, const void *kernel,
                                        hwaddr *load_addr, hwaddr *entry_addr)
{
    BostonState *s = BOSTON(opaque);

    s->kernel_entry = *entry_addr;

    return kernel;
}

static const struct fit_loader_match boston_matches[] = {
    { "img,boston" },
    { NULL },
};

static const struct fit_loader boston_fit_loader = {
    .matches = boston_matches,
    .addr_to_phys = cpu_mips_kseg0_to_phys,
    .fdt_filter = boston_fdt_filter,
    .kernel_filter = boston_kernel_filter,
};

static inline XilinxPCIEHost *
xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
                 hwaddr cfg_base, uint64_t cfg_size,
                 hwaddr mmio_base, uint64_t mmio_size,
                 qemu_irq irq, bool link_up)
{
    DeviceState *dev;
    MemoryRegion *cfg, *mmio;

    dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);

    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
    qdev_prop_set_bit(dev, "link_up", link_up);

    qdev_init_nofail(dev);

    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);

    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);

    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);

    return XILINX_PCIE_HOST(dev);
}

static void boston_mach_init(MachineState *machine)
{
    DeviceState *dev;
    BostonState *s;
    Error *err = NULL;
    MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
    MemoryRegion *sys_mem = get_system_memory();
    XilinxPCIEHost *pcie2;
    PCIDevice *ahci;
    DriveInfo *hd[6];
    Chardev *chr;
    int fw_size, fit_err;
    bool is_64b;

    if ((machine->ram_size % G_BYTE) ||
        (machine->ram_size > (2 * G_BYTE))) {
        error_report("Memory size must be 1GB or 2GB");
        exit(1);
    }

    dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
    qdev_init_nofail(dev);

    s = BOSTON(dev);
    s->mach = machine;

    if (!cpu_supports_cps_smp(machine->cpu_type)) {
        error_report("Boston requires CPUs which support CPS");
        exit(1);
    }

    is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);

    s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
    qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());

    object_property_set_str(OBJECT(s->cps), machine->cpu_type, "cpu-type",
                            &err);
    object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
    object_property_set_bool(OBJECT(s->cps), true, "realized", &err);

    if (err != NULL) {
        error_report("%s", error_get_pretty(err));
        exit(1);
    }

    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);

    flash =  g_new(MemoryRegion, 1);
    memory_region_init_rom_device_nomigrate(flash, NULL, &boston_flash_ops, s,
                                  "boston.flash", 128 * M_BYTE, &err);
    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);

    ddr = g_new(MemoryRegion, 1);
    memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
                                         machine->ram_size);
    memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);

    ddr_low_alias = g_new(MemoryRegion, 1);
    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
                             ddr, 0, MIN(machine->ram_size, (256 * M_BYTE)));
    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);

    xilinx_pcie_init(sys_mem, 0,
                     0x10000000, 32 * M_BYTE,
                     0x40000000, 1 * G_BYTE,
                     get_cps_irq(s->cps, 2), false);

    xilinx_pcie_init(sys_mem, 1,
                     0x12000000, 32 * M_BYTE,
                     0x20000000, 512 * M_BYTE,
                     get_cps_irq(s->cps, 1), false);

    pcie2 = xilinx_pcie_init(sys_mem, 2,
                             0x14000000, 32 * M_BYTE,
                             0x16000000, 1 * M_BYTE,
                             get_cps_irq(s->cps, 0), true);

    platreg = g_new(MemoryRegion, 1);
    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
                          "boston-platregs", 0x1000);
    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);

    if (!serial_hds[0]) {
        serial_hds[0] = qemu_chr_new("serial0", "null");
    }

    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
                             get_cps_irq(s->cps, 3), 10000000,
                             serial_hds[0], DEVICE_NATIVE_ENDIAN);

    lcd = g_new(MemoryRegion, 1);
    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);

    chr = qemu_chr_new("lcd", "vc:320x240");
    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
                             boston_lcd_event, NULL, s, NULL, true);

    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
                                           PCI_DEVFN(0, 0),
                                           true, TYPE_ICH9_AHCI);
    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
    ide_drive_get(hd, ahci_get_num_ports(ahci));
    ahci_ide_create_devs(ahci, hd);

    if (machine->firmware) {
        fw_size = load_image_targphys(machine->firmware,
                                      0x1fc00000, 4 * M_BYTE);
        if (fw_size == -1) {
            error_printf("unable to load firmware image '%s'\n",
                          machine->firmware);
            exit(1);
        }
    } else if (machine->kernel_filename) {
        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
        if (fit_err) {
            error_printf("unable to load FIT image\n");
            exit(1);
        }

        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
                     s->kernel_entry, s->fdt_base, is_64b);
    } else if (!qtest_enabled()) {
        error_printf("Please provide either a -kernel or -bios argument\n");
        exit(1);
    }
}

static void boston_mach_class_init(MachineClass *mc)
{
    mc->desc = "MIPS Boston";
    mc->init = boston_mach_init;
    mc->block_default_type = IF_IDE;
    mc->default_ram_size = 1 * G_BYTE;
    mc->max_cpus = 16;
    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
}

DEFINE_MACHINE("boston", boston_mach_class_init)