1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
/*
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "scsi-disk.h"
#include "scsi.h"
/* debug ESP card */
//#define DEBUG_ESP
/*
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
* also produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
*/
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
#define ESP_REGS 16
#define TI_BUFSZ 32
typedef struct ESPState ESPState;
struct ESPState {
uint32_t it_shift;
qemu_irq irq;
uint8_t rregs[ESP_REGS];
uint8_t wregs[ESP_REGS];
int32_t ti_size;
uint32_t ti_rptr, ti_wptr;
uint8_t ti_buf[TI_BUFSZ];
uint32_t sense;
uint32_t dma;
SCSIDevice *scsi_dev[ESP_MAX_DEVS];
SCSIDevice *current_dev;
uint8_t cmdbuf[TI_BUFSZ];
uint32_t cmdlen;
uint32_t do_cmd;
/* The amount of data left in the current DMA transfer. */
uint32_t dma_left;
/* The size of the current DMA transfer. Zero if no transfer is in
progress. */
uint32_t dma_counter;
uint8_t *async_buf;
uint32_t async_len;
espdma_memory_read_write dma_memory_read;
espdma_memory_read_write dma_memory_write;
void *dma_opaque;
};
#define ESP_TCLO 0x0
#define ESP_TCMID 0x1
#define ESP_FIFO 0x2
#define ESP_CMD 0x3
#define ESP_RSTAT 0x4
#define ESP_WBUSID 0x4
#define ESP_RINTR 0x5
#define ESP_WSEL 0x5
#define ESP_RSEQ 0x6
#define ESP_WSYNTP 0x6
#define ESP_RFLAGS 0x7
#define ESP_WSYNO 0x7
#define ESP_CFG1 0x8
#define ESP_RRES1 0x9
#define ESP_WCCF 0x9
#define ESP_RRES2 0xa
#define ESP_WTEST 0xa
#define ESP_CFG2 0xb
#define ESP_CFG3 0xc
#define ESP_RES3 0xd
#define ESP_TCHI 0xe
#define ESP_RES4 0xf
#define CMD_DMA 0x80
#define CMD_CMD 0x7f
#define CMD_NOP 0x00
#define CMD_FLUSH 0x01
#define CMD_RESET 0x02
#define CMD_BUSRESET 0x03
#define CMD_TI 0x10
#define CMD_ICCS 0x11
#define CMD_MSGACC 0x12
#define CMD_SATN 0x1a
#define CMD_SELATN 0x42
#define CMD_SELATNS 0x43
#define CMD_ENSEL 0x44
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07
#define STAT_PIO_MASK 0x06
#define STAT_TC 0x10
#define STAT_PE 0x20
#define STAT_GE 0x40
#define STAT_INT 0x80
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_CD 0x4
#define CFG1_RESREPT 0x40
#define CFG2_MASK 0x15
#define TCHI_FAS100A 0x4
static void esp_raise_irq(ESPState *s)
{
if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
s->rregs[ESP_RSTAT] |= STAT_INT;
qemu_irq_raise(s->irq);
}
}
static void esp_lower_irq(ESPState *s)
{
if (s->rregs[ESP_RSTAT] & STAT_INT) {
s->rregs[ESP_RSTAT] &= ~STAT_INT;
qemu_irq_lower(s->irq);
}
}
static uint32_t get_cmd(ESPState *s, uint8_t *buf)
{
uint32_t dmalen;
int target;
dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
target = s->wregs[ESP_WBUSID] & 7;
DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
if (s->dma) {
s->dma_memory_read(s->dma_opaque, buf, dmalen);
} else {
buf[0] = 0;
memcpy(&buf[1], s->ti_buf, dmalen);
dmalen++;
}
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
if (s->current_dev) {
/* Started a new command before the old one finished. Cancel it. */
s->current_dev->cancel_io(s->current_dev, 0);
s->async_len = 0;
}
if (target >= ESP_MAX_DEVS || !s->scsi_dev[target]) {
// No such drive
s->rregs[ESP_RSTAT] = 0;
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = SEQ_0;
esp_raise_irq(s);
return 0;
}
s->current_dev = s->scsi_dev[target];
return dmalen;
}
static void do_cmd(ESPState *s, uint8_t *buf)
{
int32_t datalen;
int lun;
DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
lun = buf[0] & 7;
datalen = s->current_dev->send_command(s->current_dev, 0, &buf[1], lun);
s->ti_size = datalen;
if (datalen != 0) {
s->rregs[ESP_RSTAT] = STAT_TC;
s->dma_left = 0;
s->dma_counter = 0;
if (datalen > 0) {
s->rregs[ESP_RSTAT] |= STAT_DI;
s->current_dev->read_data(s->current_dev, 0);
} else {
s->rregs[ESP_RSTAT] |= STAT_DO;
s->current_dev->write_data(s->current_dev, 0);
}
}
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
int len;
len = get_cmd(s, buf);
if (len)
do_cmd(s, buf);
}
static void handle_satn_stop(ESPState *s)
{
s->cmdlen = get_cmd(s, s->cmdbuf);
if (s->cmdlen) {
DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
s->do_cmd = 1;
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
}
static void write_response(ESPState *s)
{
DPRINTF("Transfer status (sense=%d)\n", s->sense);
s->ti_buf[0] = s->sense;
s->ti_buf[1] = 0;
if (s->dma) {
s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
} else {
s->ti_size = 2;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[ESP_RFLAGS] = 2;
}
esp_raise_irq(s);
}
static void esp_dma_done(ESPState *s)
{
s->rregs[ESP_RSTAT] |= STAT_TC;
s->rregs[ESP_RINTR] = INTR_BS;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
s->rregs[ESP_TCLO] = 0;
s->rregs[ESP_TCMID] = 0;
esp_raise_irq(s);
}
static void esp_do_dma(ESPState *s)
{
uint32_t len;
int to_device;
to_device = (s->ti_size < 0);
len = s->dma_left;
if (s->do_cmd) {
DPRINTF("command len %d + %d\n", s->cmdlen, len);
s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
if (to_device) {
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
} else {
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
}
s->dma_left -= len;
s->async_buf += len;
s->async_len -= len;
if (to_device)
s->ti_size += len;
else
s->ti_size -= len;
if (s->async_len == 0) {
if (to_device) {
// ti_size is negative
s->current_dev->write_data(s->current_dev, 0);
} else {
s->current_dev->read_data(s->current_dev, 0);
/* If there is still data to be read from the device then
complete the DMA operation immeriately. Otherwise defer
until the scsi layer has completed. */
if (s->dma_left == 0 && s->ti_size > 0) {
esp_dma_done(s);
}
}
} else {
/* Partially filled a scsi buffer. Complete immediately. */
esp_dma_done(s);
}
}
static void esp_command_complete(void *opaque, int reason, uint32_t tag,
uint32_t arg)
{
ESPState *s = (ESPState *)opaque;
if (reason == SCSI_REASON_DONE) {
DPRINTF("SCSI Command complete\n");
if (s->ti_size != 0)
DPRINTF("SCSI command completed unexpectedly\n");
s->ti_size = 0;
s->dma_left = 0;
s->async_len = 0;
if (arg)
DPRINTF("Command failed\n");
s->sense = arg;
s->rregs[ESP_RSTAT] = STAT_ST;
esp_dma_done(s);
s->current_dev = NULL;
} else {
DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
s->async_len = arg;
s->async_buf = s->current_dev->get_buf(s->current_dev, 0);
if (s->dma_left) {
esp_do_dma(s);
} else if (s->dma_counter != 0 && s->ti_size <= 0) {
/* If this was the last part of a DMA transfer then the
completion interrupt is deferred to here. */
esp_dma_done(s);
}
}
}
static void handle_ti(ESPState *s)
{
uint32_t dmalen, minlen;
dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
if (dmalen==0) {
dmalen=0x10000;
}
s->dma_counter = dmalen;
if (s->do_cmd)
minlen = (dmalen < 32) ? dmalen : 32;
else if (s->ti_size < 0)
minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
else
minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
DPRINTF("Transfer Information len %d\n", minlen);
if (s->dma) {
s->dma_left = minlen;
s->rregs[ESP_RSTAT] &= ~STAT_TC;
esp_do_dma(s);
} else if (s->do_cmd) {
DPRINTF("command len %d\n", s->cmdlen);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
}
static void esp_reset(void *opaque)
{
ESPState *s = opaque;
esp_lower_irq(s);
memset(s->rregs, 0, ESP_REGS);
memset(s->wregs, 0, ESP_REGS);
s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->dma = 0;
s->do_cmd = 0;
}
static void parent_esp_reset(void *opaque, int irq, int level)
{
if (level)
esp_reset(opaque);
}
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
switch (saddr) {
case ESP_FIFO:
if (s->ti_size > 0) {
s->ti_size--;
if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
/* Data in/out. */
fprintf(stderr, "esp: PIO data read not implemented\n");
s->rregs[ESP_FIFO] = 0;
} else {
s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
}
esp_raise_irq(s);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
s->ti_wptr = 0;
}
break;
case ESP_RINTR:
// Clear interrupt/error status bits
s->rregs[ESP_RSTAT] &= ~(STAT_GE | STAT_PE);
esp_lower_irq(s);
break;
default:
break;
}
return s->rregs[saddr];
}
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr],
val);
switch (saddr) {
case ESP_TCLO:
case ESP_TCMID:
s->rregs[ESP_RSTAT] &= ~STAT_TC;
break;
case ESP_FIFO:
if (s->do_cmd) {
s->cmdbuf[s->cmdlen++] = val & 0xff;
} else if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
uint8_t buf;
buf = val & 0xff;
s->ti_size--;
fprintf(stderr, "esp: PIO data write not implemented\n");
} else {
s->ti_size++;
s->ti_buf[s->ti_wptr++] = val & 0xff;
}
break;
case ESP_CMD:
s->rregs[saddr] = val;
if (val & CMD_DMA) {
s->dma = 1;
/* Reload DMA counter. */
s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
} else {
s->dma = 0;
}
switch(val & CMD_CMD) {
case CMD_NOP:
DPRINTF("NOP (%2.2x)\n", val);
break;
case CMD_FLUSH:
DPRINTF("Flush FIFO (%2.2x)\n", val);
//s->ti_size = 0;
s->rregs[ESP_RINTR] = INTR_FC;
s->rregs[ESP_RSEQ] = 0;
break;
case CMD_RESET:
DPRINTF("Chip reset (%2.2x)\n", val);
esp_reset(s);
break;
case CMD_BUSRESET:
DPRINTF("Bus reset (%2.2x)\n", val);
s->rregs[ESP_RINTR] = INTR_RST;
if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
esp_raise_irq(s);
}
break;
case CMD_TI:
handle_ti(s);
break;
case CMD_ICCS:
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
write_response(s);
break;
case CMD_MSGACC:
DPRINTF("Message Accepted (%2.2x)\n", val);
write_response(s);
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = 0;
break;
case CMD_SATN:
DPRINTF("Set ATN (%2.2x)\n", val);
break;
case CMD_SELATN:
DPRINTF("Set ATN (%2.2x)\n", val);
handle_satn(s);
break;
case CMD_SELATNS:
DPRINTF("Set ATN & stop (%2.2x)\n", val);
handle_satn_stop(s);
break;
case CMD_ENSEL:
DPRINTF("Enable selection (%2.2x)\n", val);
break;
default:
DPRINTF("Unhandled ESP command (%2.2x)\n", val);
break;
}
break;
case ESP_WBUSID ... ESP_WSYNO:
break;
case ESP_CFG1:
s->rregs[saddr] = val;
break;
case ESP_WCCF ... ESP_WTEST:
break;
case ESP_CFG2:
s->rregs[saddr] = val & CFG2_MASK;
break;
case ESP_CFG3 ... ESP_RES4:
s->rregs[saddr] = val;
break;
default:
break;
}
s->wregs[saddr] = val;
}
static CPUReadMemoryFunc *esp_mem_read[3] = {
esp_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *esp_mem_write[3] = {
esp_mem_writeb,
NULL,
NULL,
};
static void esp_save(QEMUFile *f, void *opaque)
{
ESPState *s = opaque;
qemu_put_buffer(f, s->rregs, ESP_REGS);
qemu_put_buffer(f, s->wregs, ESP_REGS);
qemu_put_be32s(f, &s->ti_size);
qemu_put_be32s(f, &s->ti_rptr);
qemu_put_be32s(f, &s->ti_wptr);
qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_put_be32s(f, &s->sense);
qemu_put_be32s(f, &s->dma);
qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
qemu_put_be32s(f, &s->cmdlen);
qemu_put_be32s(f, &s->do_cmd);
qemu_put_be32s(f, &s->dma_left);
// There should be no transfers in progress, so dma_counter is not saved
}
static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
ESPState *s = opaque;
if (version_id != 3)
return -EINVAL; // Cannot emulate 2
qemu_get_buffer(f, s->rregs, ESP_REGS);
qemu_get_buffer(f, s->wregs, ESP_REGS);
qemu_get_be32s(f, &s->ti_size);
qemu_get_be32s(f, &s->ti_rptr);
qemu_get_be32s(f, &s->ti_wptr);
qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_get_be32s(f, &s->sense);
qemu_get_be32s(f, &s->dma);
qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
qemu_get_be32s(f, &s->cmdlen);
qemu_get_be32s(f, &s->do_cmd);
qemu_get_be32s(f, &s->dma_left);
return 0;
}
void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
{
ESPState *s = (ESPState *)opaque;
if (id < 0) {
for (id = 0; id < ESP_MAX_DEVS; id++) {
if (s->scsi_dev[id] == NULL)
break;
}
}
if (id >= ESP_MAX_DEVS) {
DPRINTF("Bad Device ID %d\n", id);
return;
}
if (s->scsi_dev[id]) {
DPRINTF("Destroying device %d\n", id);
s->scsi_dev[id]->destroy(s->scsi_dev[id]);
}
DPRINTF("Attaching block device %d\n", id);
/* Command queueing is not implemented. */
s->scsi_dev[id] = scsi_generic_init(bd, 0, esp_command_complete, s);
if (s->scsi_dev[id] == NULL)
s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
}
void *esp_init(target_phys_addr_t espaddr, int it_shift,
espdma_memory_read_write dma_memory_read,
espdma_memory_read_write dma_memory_write,
void *dma_opaque, qemu_irq irq, qemu_irq *reset)
{
ESPState *s;
int esp_io_memory;
s = qemu_mallocz(sizeof(ESPState));
if (!s)
return NULL;
s->irq = irq;
s->it_shift = it_shift;
s->dma_memory_read = dma_memory_read;
s->dma_memory_write = dma_memory_write;
s->dma_opaque = dma_opaque;
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
cpu_register_physical_memory(espaddr, ESP_REGS << it_shift, esp_io_memory);
esp_reset(s);
register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
qemu_register_reset(esp_reset, s);
*reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
return s;
}
|