aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/mps2-tz.c
blob: f79f090a4ac3b81d63c5e5292709d9d627a1ef4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
 *
 * Copyright (c) 2017 Linaro Limited
 * Written by Peter Maydell
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 or
 *  (at your option) any later version.
 */

/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
 * FPGA but is otherwise the same as the 2). Since the CPU itself
 * and most of the devices are in the FPGA, the details of the board
 * as seen by the guest depend significantly on the FPGA image.
 * This source file covers the following FPGA images, for TrustZone cores:
 *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
 *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
 *
 * Links to the TRM for the board itself and to the various Application
 * Notes which document the FPGA images can be found here:
 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
 *
 * Board TRM:
 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
 * Application Note AN505:
 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
 * Application Note AN521:
 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
 *
 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
 * (ARM ECM0601256) for the details of some of the device layout:
 *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
 * most of the device layout:
 *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
 *
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "hw/arm/arm.h"
#include "hw/arm/armv7m.h"
#include "hw/or-irq.h"
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/misc/unimp.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/timer/cmsdk-apb-timer.h"
#include "hw/misc/mps2-scc.h"
#include "hw/misc/mps2-fpgaio.h"
#include "hw/misc/tz-mpc.h"
#include "hw/misc/tz-msc.h"
#include "hw/arm/armsse.h"
#include "hw/dma/pl080.h"
#include "hw/ssi/pl022.h"
#include "net/net.h"
#include "hw/core/split-irq.h"

#define MPS2TZ_NUMIRQ 92

typedef enum MPS2TZFPGAType {
    FPGA_AN505,
    FPGA_AN521,
} MPS2TZFPGAType;

typedef struct {
    MachineClass parent;
    MPS2TZFPGAType fpga_type;
    uint32_t scc_id;
    const char *armsse_type;
} MPS2TZMachineClass;

typedef struct {
    MachineState parent;

    ARMSSE iotkit;
    MemoryRegion psram;
    MemoryRegion ssram[3];
    MemoryRegion ssram1_m;
    MPS2SCC scc;
    MPS2FPGAIO fpgaio;
    TZPPC ppc[5];
    TZMPC ssram_mpc[3];
    PL022State spi[5];
    UnimplementedDeviceState i2c[4];
    UnimplementedDeviceState i2s_audio;
    UnimplementedDeviceState gpio[4];
    UnimplementedDeviceState gfx;
    PL080State dma[4];
    TZMSC msc[4];
    CMSDKAPBUART uart[5];
    SplitIRQ sec_resp_splitter;
    qemu_or_irq uart_irq_orgate;
    DeviceState *lan9118;
    SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
} MPS2TZMachineState;

#define TYPE_MPS2TZ_MACHINE "mps2tz"
#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")

#define MPS2TZ_MACHINE(obj) \
    OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
#define MPS2TZ_MACHINE_GET_CLASS(obj) \
    OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
#define MPS2TZ_MACHINE_CLASS(klass) \
    OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)

/* Main SYSCLK frequency in Hz */
#define SYSCLK_FRQ 20000000

/* Create an alias of an entire original MemoryRegion @orig
 * located at @base in the memory map.
 */
static void make_ram_alias(MemoryRegion *mr, const char *name,
                           MemoryRegion *orig, hwaddr base)
{
    memory_region_init_alias(mr, NULL, name, orig, 0,
                             memory_region_size(orig));
    memory_region_add_subregion(get_system_memory(), base, mr);
}

static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
{
    /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);

    assert(irqno < MPS2TZ_NUMIRQ);

    switch (mmc->fpga_type) {
    case FPGA_AN505:
        return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
    case FPGA_AN521:
        return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
    default:
        g_assert_not_reached();
    }
}

/* Most of the devices in the AN505 FPGA image sit behind
 * Peripheral Protection Controllers. These data structures
 * define the layout of which devices sit behind which PPCs.
 * The devfn for each port is a function which creates, configures
 * and initializes the device, returning the MemoryRegion which
 * needs to be plugged into the downstream end of the PPC port.
 */
typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
                                const char *name, hwaddr size);

typedef struct PPCPortInfo {
    const char *name;
    MakeDevFn *devfn;
    void *opaque;
    hwaddr addr;
    hwaddr size;
} PPCPortInfo;

typedef struct PPCInfo {
    const char *name;
    PPCPortInfo ports[TZ_NUM_PORTS];
} PPCInfo;

static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
                                       void *opaque,
                                       const char *name, hwaddr size)
{
    /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
     * and return a pointer to its MemoryRegion.
     */
    UnimplementedDeviceState *uds = opaque;

    sysbus_init_child_obj(OBJECT(mms), name, uds,
                          sizeof(UnimplementedDeviceState),
                          TYPE_UNIMPLEMENTED_DEVICE);
    qdev_prop_set_string(DEVICE(uds), "name", name);
    qdev_prop_set_uint64(DEVICE(uds), "size", size);
    object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
}

static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
                               const char *name, hwaddr size)
{
    CMSDKAPBUART *uart = opaque;
    int i = uart - &mms->uart[0];
    int rxirqno = i * 2;
    int txirqno = i * 2 + 1;
    int combirqno = i + 10;
    SysBusDevice *s;
    DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);

    sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
                          TYPE_CMSDK_APB_UART);
    qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
    qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
    object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
    s = SYS_BUS_DEVICE(uart);
    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
    sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
    sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
    sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}

static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
                              const char *name, hwaddr size)
{
    MPS2SCC *scc = opaque;
    DeviceState *sccdev;
    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);

    object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
    sccdev = DEVICE(scc);
    qdev_set_parent_bus(sccdev, sysbus_get_default());
    qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
    qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
    qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
    object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
    return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
}

static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
                                 const char *name, hwaddr size)
{
    MPS2FPGAIO *fpgaio = opaque;

    object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
    qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
    object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
    return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
}

static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
                                  const char *name, hwaddr size)
{
    SysBusDevice *s;
    NICInfo *nd = &nd_table[0];

    /* In hardware this is a LAN9220; the LAN9118 is software compatible
     * except that it doesn't support the checksum-offload feature.
     */
    qemu_check_nic_model(nd, "lan9118");
    mms->lan9118 = qdev_create(NULL, "lan9118");
    qdev_set_nic_properties(mms->lan9118, nd);
    qdev_init_nofail(mms->lan9118);

    s = SYS_BUS_DEVICE(mms->lan9118);
    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
    return sysbus_mmio_get_region(s, 0);
}

static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
                              const char *name, hwaddr size)
{
    TZMPC *mpc = opaque;
    int i = mpc - &mms->ssram_mpc[0];
    MemoryRegion *ssram = &mms->ssram[i];
    MemoryRegion *upstream;
    char *mpcname = g_strdup_printf("%s-mpc", name);
    static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
    static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };

    memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);

    sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
                          TYPE_TZ_MPC);
    object_property_set_link(OBJECT(mpc), OBJECT(ssram),
                             "downstream", &error_fatal);
    object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
    /* Map the upstream end of the MPC into system memory */
    upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
    memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
    /* and connect its interrupt to the IoTKit */
    qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
                                qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
                                                       "mpcexp_status", i));

    /* The first SSRAM is a special case as it has an alias; accesses to
     * the alias region at 0x00400000 must also go to the MPC upstream.
     */
    if (i == 0) {
        make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
    }

    g_free(mpcname);
    /* Return the register interface MR for our caller to map behind the PPC */
    return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
}

static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
                              const char *name, hwaddr size)
{
    PL080State *dma = opaque;
    int i = dma - &mms->dma[0];
    SysBusDevice *s;
    char *mscname = g_strdup_printf("%s-msc", name);
    TZMSC *msc = &mms->msc[i];
    DeviceState *iotkitdev = DEVICE(&mms->iotkit);
    MemoryRegion *msc_upstream;
    MemoryRegion *msc_downstream;

    /*
     * Each DMA device is a PL081 whose transaction master interface
     * is guarded by a Master Security Controller. The downstream end of
     * the MSC connects to the IoTKit AHB Slave Expansion port, so the
     * DMA devices can see all devices and memory that the CPU does.
     */
    sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
    msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
    object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
                             "downstream", &error_fatal);
    object_property_set_link(OBJECT(msc), OBJECT(mms),
                             "idau", &error_fatal);
    object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);

    qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
                                qdev_get_gpio_in_named(iotkitdev,
                                                       "mscexp_status", i));
    qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
                                qdev_get_gpio_in_named(DEVICE(msc),
                                                       "irq_clear", 0));
    qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
                                qdev_get_gpio_in_named(DEVICE(msc),
                                                       "cfg_nonsec", 0));
    qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
                          ARRAY_SIZE(mms->ppc) + i,
                          qdev_get_gpio_in_named(DEVICE(msc),
                                                 "cfg_sec_resp", 0));
    msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);

    sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
    object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
                             "downstream", &error_fatal);
    object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);

    s = SYS_BUS_DEVICE(dma);
    /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
    sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));

    g_free(mscname);
    return sysbus_mmio_get_region(s, 0);
}

static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
                              const char *name, hwaddr size)
{
    /*
     * The AN505 has five PL022 SPI controllers.
     * One of these should have the LCD controller behind it; the others
     * are connected only to the FPGA's "general purpose SPI connector"
     * or "shield" expansion connectors.
     * Note that if we do implement devices behind SPI, the chip select
     * lines are set via the "MISC" register in the MPS2 FPGAIO device.
     */
    PL022State *spi = opaque;
    int i = spi - &mms->spi[0];
    SysBusDevice *s;

    sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
                          TYPE_PL022);
    object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
    s = SYS_BUS_DEVICE(spi);
    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
    return sysbus_mmio_get_region(s, 0);
}

static void mps2tz_common_init(MachineState *machine)
{
    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    MachineClass *mc = MACHINE_GET_CLASS(machine);
    MemoryRegion *system_memory = get_system_memory();
    DeviceState *iotkitdev;
    DeviceState *dev_splitter;
    int i;

    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
        error_report("This board can only be used with CPU %s",
                     mc->default_cpu_type);
        exit(1);
    }

    sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
                          sizeof(mms->iotkit), mmc->armsse_type);
    iotkitdev = DEVICE(&mms->iotkit);
    object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
                             "memory", &error_abort);
    qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
    qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
    object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
                             &error_fatal);

    /*
     * The AN521 needs us to create splitters to feed the IRQ inputs
     * for each CPU in the SSE-200 from each device in the board.
     */
    if (mmc->fpga_type == FPGA_AN521) {
        for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
            char *name = g_strdup_printf("mps2-irq-splitter%d", i);
            SplitIRQ *splitter = &mms->cpu_irq_splitter[i];

            object_initialize_child(OBJECT(machine), name,
                                    splitter, sizeof(*splitter),
                                    TYPE_SPLIT_IRQ, &error_fatal, NULL);
            g_free(name);

            object_property_set_int(OBJECT(splitter), 2, "num-lines",
                                    &error_fatal);
            object_property_set_bool(OBJECT(splitter), true, "realized",
                                     &error_fatal);
            qdev_connect_gpio_out(DEVICE(splitter), 0,
                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
                                                         "EXP_IRQ", i));
            qdev_connect_gpio_out(DEVICE(splitter), 1,
                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
                                                         "EXP_CPU1_IRQ", i));
        }
    }

    /* The sec_resp_cfg output from the IoTKit must be split into multiple
     * lines, one for each of the PPCs we create here, plus one per MSC.
     */
    object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
                      TYPE_SPLIT_IRQ);
    object_property_add_child(OBJECT(machine), "sec-resp-splitter",
                              OBJECT(&mms->sec_resp_splitter), &error_abort);
    object_property_set_int(OBJECT(&mms->sec_resp_splitter),
                            ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
                            "num-lines", &error_fatal);
    object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
                             "realized", &error_fatal);
    dev_splitter = DEVICE(&mms->sec_resp_splitter);
    qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
                                qdev_get_gpio_in(dev_splitter, 0));

    /* The IoTKit sets up much of the memory layout, including
     * the aliases between secure and non-secure regions in the
     * address space. The FPGA itself contains:
     *
     * 0x00000000..0x003fffff  SSRAM1
     * 0x00400000..0x007fffff  alias of SSRAM1
     * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
     * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
     * 0x80000000..0x80ffffff  16MB PSRAM
     */

    /* The FPGA images have an odd combination of different RAMs,
     * because in hardware they are different implementations and
     * connected to different buses, giving varying performance/size
     * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
     * call the 16MB our "system memory", as it's the largest lump.
     */
    memory_region_allocate_system_memory(&mms->psram,
                                         NULL, "mps.ram", 0x01000000);
    memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);

    /* The overflow IRQs for all UARTs are ORed together.
     * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
     * Create the OR gate for this.
     */
    object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
                      TYPE_OR_IRQ);
    object_property_add_child(OBJECT(mms), "uart-irq-orgate",
                              OBJECT(&mms->uart_irq_orgate), &error_abort);
    object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
                            &error_fatal);
    object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
                             "realized", &error_fatal);
    qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
                          get_sse_irq_in(mms, 15));

    /* Most of the devices in the FPGA are behind Peripheral Protection
     * Controllers. The required order for initializing things is:
     *  + initialize the PPC
     *  + initialize, configure and realize downstream devices
     *  + connect downstream device MemoryRegions to the PPC
     *  + realize the PPC
     *  + map the PPC's MemoryRegions to the places in the address map
     *    where the downstream devices should appear
     *  + wire up the PPC's control lines to the IoTKit object
     */

    const PPCInfo ppcs[] = { {
            .name = "apb_ppcexp0",
            .ports = {
                { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
                { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
                { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
            },
        }, {
            .name = "apb_ppcexp1",
            .ports = {
                { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
                { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
                { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
                { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
                { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
                { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
                { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
                { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
                { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
                { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
                { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
                { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
                { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
                { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
            },
        }, {
            .name = "apb_ppcexp2",
            .ports = {
                { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
                  0x40301000, 0x1000 },
                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
            },
        }, {
            .name = "ahb_ppcexp0",
            .ports = {
                { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
                { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
            },
        }, {
            .name = "ahb_ppcexp1",
            .ports = {
                { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
                { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
                { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
                { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
            },
        },
    };

    for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
        const PPCInfo *ppcinfo = &ppcs[i];
        TZPPC *ppc = &mms->ppc[i];
        DeviceState *ppcdev;
        int port;
        char *gpioname;

        sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
                              sizeof(TZPPC), TYPE_TZ_PPC);
        ppcdev = DEVICE(ppc);

        for (port = 0; port < TZ_NUM_PORTS; port++) {
            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
            MemoryRegion *mr;
            char *portname;

            if (!pinfo->devfn) {
                continue;
            }

            mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
            portname = g_strdup_printf("port[%d]", port);
            object_property_set_link(OBJECT(ppc), OBJECT(mr),
                                     portname, &error_fatal);
            g_free(portname);
        }

        object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);

        for (port = 0; port < TZ_NUM_PORTS; port++) {
            const PPCPortInfo *pinfo = &ppcinfo->ports[port];

            if (!pinfo->devfn) {
                continue;
            }
            sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);

            gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
                                        qdev_get_gpio_in_named(ppcdev,
                                                               "cfg_nonsec",
                                                               port));
            g_free(gpioname);
            gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
                                        qdev_get_gpio_in_named(ppcdev,
                                                               "cfg_ap", port));
            g_free(gpioname);
        }

        gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
                                    qdev_get_gpio_in_named(ppcdev,
                                                           "irq_enable", 0));
        g_free(gpioname);
        gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
                                    qdev_get_gpio_in_named(ppcdev,
                                                           "irq_clear", 0));
        g_free(gpioname);
        gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
        qdev_connect_gpio_out_named(ppcdev, "irq", 0,
                                    qdev_get_gpio_in_named(iotkitdev,
                                                           gpioname, 0));
        g_free(gpioname);

        qdev_connect_gpio_out(dev_splitter, i,
                              qdev_get_gpio_in_named(ppcdev,
                                                     "cfg_sec_resp", 0));
    }

    create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);

    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
}

static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
                               int *iregion, bool *exempt, bool *ns, bool *nsc)
{
    /*
     * The MPS2 TZ FPGA images have IDAUs in them which are connected to
     * the Master Security Controllers. Thes have the same logic as
     * is used by the IoTKit for the IDAU connected to the CPU, except
     * that MSCs don't care about the NSC attribute.
     */
    int region = extract32(address, 28, 4);

    *ns = !(region & 1);
    *nsc = false;
    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
    *exempt = (address & 0xeff00000) == 0xe0000000;
    *iregion = region;
}

static void mps2tz_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);

    mc->init = mps2tz_common_init;
    iic->check = mps2_tz_idau_check;
}

static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);

    mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
    mc->default_cpus = 1;
    mc->min_cpus = mc->default_cpus;
    mc->max_cpus = mc->default_cpus;
    mmc->fpga_type = FPGA_AN505;
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
    mmc->scc_id = 0x41045050;
    mmc->armsse_type = TYPE_IOTKIT;
}

static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);

    mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
    mc->default_cpus = 2;
    mc->min_cpus = mc->default_cpus;
    mc->max_cpus = mc->default_cpus;
    mmc->fpga_type = FPGA_AN521;
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
    mmc->scc_id = 0x41045210;
    mmc->armsse_type = TYPE_SSE200;
}

static const TypeInfo mps2tz_info = {
    .name = TYPE_MPS2TZ_MACHINE,
    .parent = TYPE_MACHINE,
    .abstract = true,
    .instance_size = sizeof(MPS2TZMachineState),
    .class_size = sizeof(MPS2TZMachineClass),
    .class_init = mps2tz_class_init,
    .interfaces = (InterfaceInfo[]) {
        { TYPE_IDAU_INTERFACE },
        { }
    },
};

static const TypeInfo mps2tz_an505_info = {
    .name = TYPE_MPS2TZ_AN505_MACHINE,
    .parent = TYPE_MPS2TZ_MACHINE,
    .class_init = mps2tz_an505_class_init,
};

static const TypeInfo mps2tz_an521_info = {
    .name = TYPE_MPS2TZ_AN521_MACHINE,
    .parent = TYPE_MPS2TZ_MACHINE,
    .class_init = mps2tz_an521_class_init,
};

static void mps2tz_machine_init(void)
{
    type_register_static(&mps2tz_info);
    type_register_static(&mps2tz_an505_info);
    type_register_static(&mps2tz_an521_info);
}

type_init(mps2tz_machine_init);