aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/vixl/a64/instructions-a64.h
blob: 7e0dbae36af0cbf069eb3046cc6924d5eed85d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
#define VIXL_A64_INSTRUCTIONS_A64_H_

#include "vixl/globals.h"
#include "vixl/utils.h"
#include "vixl/a64/constants-a64.h"

namespace vixl {
// ISA constants. --------------------------------------------------------------

typedef uint32_t Instr;
const unsigned kInstructionSize = 4;
const unsigned kInstructionSizeLog2 = 2;
const unsigned kLiteralEntrySize = 4;
const unsigned kLiteralEntrySizeLog2 = 2;
const unsigned kMaxLoadLiteralRange = 1 * MBytes;

// This is the nominal page size (as used by the adrp instruction); the actual
// size of the memory pages allocated by the kernel is likely to differ.
const unsigned kPageSize = 4 * KBytes;
const unsigned kPageSizeLog2 = 12;

const unsigned kBRegSize = 8;
const unsigned kBRegSizeLog2 = 3;
const unsigned kBRegSizeInBytes = kBRegSize / 8;
const unsigned kBRegSizeInBytesLog2 = kBRegSizeLog2 - 3;
const unsigned kHRegSize = 16;
const unsigned kHRegSizeLog2 = 4;
const unsigned kHRegSizeInBytes = kHRegSize / 8;
const unsigned kHRegSizeInBytesLog2 = kHRegSizeLog2 - 3;
const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
const unsigned kWRegSizeInBytes = kWRegSize / 8;
const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
const unsigned kXRegSize = 64;
const unsigned kXRegSizeLog2 = 6;
const unsigned kXRegSizeInBytes = kXRegSize / 8;
const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
const unsigned kSRegSize = 32;
const unsigned kSRegSizeLog2 = 5;
const unsigned kSRegSizeInBytes = kSRegSize / 8;
const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
const unsigned kDRegSize = 64;
const unsigned kDRegSizeLog2 = 6;
const unsigned kDRegSizeInBytes = kDRegSize / 8;
const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
const unsigned kQRegSize = 128;
const unsigned kQRegSizeLog2 = 7;
const unsigned kQRegSizeInBytes = kQRegSize / 8;
const unsigned kQRegSizeInBytesLog2 = kQRegSizeLog2 - 3;
const uint64_t kWRegMask = UINT64_C(0xffffffff);
const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSRegMask = UINT64_C(0xffffffff);
const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSSignMask = UINT64_C(0x80000000);
const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
const uint64_t kWSignMask = UINT64_C(0x80000000);
const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
const uint64_t kByteMask = UINT64_C(0xff);
const uint64_t kHalfWordMask = UINT64_C(0xffff);
const uint64_t kWordMask = UINT64_C(0xffffffff);
const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
const int64_t kXMinInt = INT64_C(0x8000000000000000);
const int32_t kWMaxInt = INT32_C(0x7fffffff);
const int32_t kWMinInt = INT32_C(0x80000000);
const unsigned kLinkRegCode = 30;
const unsigned kZeroRegCode = 31;
const unsigned kSPRegInternalCode = 63;
const unsigned kRegCodeMask = 0x1f;

const unsigned kAddressTagOffset = 56;
const unsigned kAddressTagWidth = 8;
const uint64_t kAddressTagMask =
    ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));

// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;
const unsigned kFloat16MantissaBits = 10;
const unsigned kFloat16ExponentBits = 5;

// Floating-point infinity values.
extern const float16 kFP16PositiveInfinity;
extern const float16 kFP16NegativeInfinity;
extern const float kFP32PositiveInfinity;
extern const float kFP32NegativeInfinity;
extern const double kFP64PositiveInfinity;
extern const double kFP64NegativeInfinity;

// The default NaN values (for FPCR.DN=1).
extern const float16 kFP16DefaultNaN;
extern const float kFP32DefaultNaN;
extern const double kFP64DefaultNaN;

unsigned CalcLSDataSize(LoadStoreOp op);
unsigned CalcLSPairDataSize(LoadStorePairOp op);

enum ImmBranchType {
  UnknownBranchType = 0,
  CondBranchType    = 1,
  UncondBranchType  = 2,
  CompareBranchType = 3,
  TestBranchType    = 4
};

enum AddrMode {
  Offset,
  PreIndex,
  PostIndex
};

enum FPRounding {
  // The first four values are encodable directly by FPCR<RMode>.
  FPTieEven = 0x0,
  FPPositiveInfinity = 0x1,
  FPNegativeInfinity = 0x2,
  FPZero = 0x3,

  // The final rounding modes are only available when explicitly specified by
  // the instruction (such as with fcvta). It cannot be set in FPCR.
  FPTieAway,
  FPRoundOdd
};

enum Reg31Mode {
  Reg31IsStackPointer,
  Reg31IsZeroRegister
};

// Instructions. ---------------------------------------------------------------

class Instruction {
 public:
  Instr InstructionBits() const {
    return *(reinterpret_cast<const Instr*>(this));
  }

  void SetInstructionBits(Instr new_instr) {
    *(reinterpret_cast<Instr*>(this)) = new_instr;
  }

  int Bit(int pos) const {
    return (InstructionBits() >> pos) & 1;
  }

  uint32_t Bits(int msb, int lsb) const {
    return unsigned_bitextract_32(msb, lsb, InstructionBits());
  }

  int32_t SignedBits(int msb, int lsb) const {
    int32_t bits = *(reinterpret_cast<const int32_t*>(this));
    return signed_bitextract_32(msb, lsb, bits);
  }

  Instr Mask(uint32_t mask) const {
    return InstructionBits() & mask;
  }

  #define DEFINE_GETTER(Name, HighBit, LowBit, Func)             \
  int32_t Name() const { return Func(HighBit, LowBit); }
  INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
  #undef DEFINE_GETTER

  // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
  // formed from ImmPCRelLo and ImmPCRelHi.
  int ImmPCRel() const {
    int offset =
        static_cast<int>((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
    int width = ImmPCRelLo_width + ImmPCRelHi_width;
    return signed_bitextract_32(width - 1, 0, offset);
  }

  uint64_t ImmLogical() const;
  unsigned ImmNEONabcdefgh() const;
  float ImmFP32() const;
  double ImmFP64() const;
  float ImmNEONFP32() const;
  double ImmNEONFP64() const;

  unsigned SizeLS() const {
    return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
  }

  unsigned SizeLSPair() const {
    return CalcLSPairDataSize(
        static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
  }

  int NEONLSIndex(int access_size_shift) const {
    int64_t q = NEONQ();
    int64_t s = NEONS();
    int64_t size = NEONLSSize();
    int64_t index = (q << 3) | (s << 2) | size;
    return static_cast<int>(index >> access_size_shift);
  }

  // Helpers.
  bool IsCondBranchImm() const {
    return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
  }

  bool IsUncondBranchImm() const {
    return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
  }

  bool IsCompareBranch() const {
    return Mask(CompareBranchFMask) == CompareBranchFixed;
  }

  bool IsTestBranch() const {
    return Mask(TestBranchFMask) == TestBranchFixed;
  }

  bool IsImmBranch() const {
    return BranchType() != UnknownBranchType;
  }

  bool IsPCRelAddressing() const {
    return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
  }

  bool IsLogicalImmediate() const {
    return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
  }

  bool IsAddSubImmediate() const {
    return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
  }

  bool IsAddSubExtended() const {
    return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
  }

  bool IsLoadOrStore() const {
    return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
  }

  bool IsLoad() const;
  bool IsStore() const;

  bool IsLoadLiteral() const {
    // This includes PRFM_lit.
    return Mask(LoadLiteralFMask) == LoadLiteralFixed;
  }

  bool IsMovn() const {
    return (Mask(MoveWideImmediateMask) == MOVN_x) ||
           (Mask(MoveWideImmediateMask) == MOVN_w);
  }

  static int ImmBranchRangeBitwidth(ImmBranchType branch_type);
  static int32_t ImmBranchForwardRange(ImmBranchType branch_type);
  static bool IsValidImmPCOffset(ImmBranchType branch_type, int64_t offset);

  // Indicate whether Rd can be the stack pointer or the zero register. This
  // does not check that the instruction actually has an Rd field.
  Reg31Mode RdMode() const {
    // The following instructions use sp or wsp as Rd:
    //  Add/sub (immediate) when not setting the flags.
    //  Add/sub (extended) when not setting the flags.
    //  Logical (immediate) when not setting the flags.
    // Otherwise, r31 is the zero register.
    if (IsAddSubImmediate() || IsAddSubExtended()) {
      if (Mask(AddSubSetFlagsBit)) {
        return Reg31IsZeroRegister;
      } else {
        return Reg31IsStackPointer;
      }
    }
    if (IsLogicalImmediate()) {
      // Of the logical (immediate) instructions, only ANDS (and its aliases)
      // can set the flags. The others can all write into sp.
      // Note that some logical operations are not available to
      // immediate-operand instructions, so we have to combine two masks here.
      if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
        return Reg31IsZeroRegister;
      } else {
        return Reg31IsStackPointer;
      }
    }
    return Reg31IsZeroRegister;
  }

  // Indicate whether Rn can be the stack pointer or the zero register. This
  // does not check that the instruction actually has an Rn field.
  Reg31Mode RnMode() const {
    // The following instructions use sp or wsp as Rn:
    //  All loads and stores.
    //  Add/sub (immediate).
    //  Add/sub (extended).
    // Otherwise, r31 is the zero register.
    if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
      return Reg31IsStackPointer;
    }
    return Reg31IsZeroRegister;
  }

  ImmBranchType BranchType() const {
    if (IsCondBranchImm()) {
      return CondBranchType;
    } else if (IsUncondBranchImm()) {
      return UncondBranchType;
    } else if (IsCompareBranch()) {
      return CompareBranchType;
    } else if (IsTestBranch()) {
      return TestBranchType;
    } else {
      return UnknownBranchType;
    }
  }

  // Find the target of this instruction. 'this' may be a branch or a
  // PC-relative addressing instruction.
  const Instruction* ImmPCOffsetTarget() const;

  // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
  // a PC-relative addressing instruction.
  void SetImmPCOffsetTarget(const Instruction* target);
  // Patch a literal load instruction to load from 'source'.
  void SetImmLLiteral(const Instruction* source);

  // The range of a load literal instruction, expressed as 'instr +- range'.
  // The range is actually the 'positive' range; the branch instruction can
  // target [instr - range - kInstructionSize, instr + range].
  static const int kLoadLiteralImmBitwidth = 19;
  static const int kLoadLiteralRange =
      (1 << kLoadLiteralImmBitwidth) / 2 - kInstructionSize;

  // Calculate the address of a literal referred to by a load-literal
  // instruction, and return it as the specified type.
  //
  // The literal itself is safely mutable only if the backing buffer is safely
  // mutable.
  template <typename T>
  T LiteralAddress() const {
    uint64_t base_raw = reinterpret_cast<uint64_t>(this);
    int64_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
    uint64_t address_raw = base_raw + offset;

    // Cast the address using a C-style cast. A reinterpret_cast would be
    // appropriate, but it can't cast one integral type to another.
    T address = (T)(address_raw);

    // Assert that the address can be represented by the specified type.
    VIXL_ASSERT((uint64_t)(address) == address_raw);

    return address;
  }

  uint32_t Literal32() const {
    uint32_t literal;
    memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
    return literal;
  }

  uint64_t Literal64() const {
    uint64_t literal;
    memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
    return literal;
  }

  float LiteralFP32() const {
    return rawbits_to_float(Literal32());
  }

  double LiteralFP64() const {
    return rawbits_to_double(Literal64());
  }

  const Instruction* NextInstruction() const {
    return this + kInstructionSize;
  }

  const Instruction* InstructionAtOffset(int64_t offset) const {
    VIXL_ASSERT(IsWordAligned(this + offset));
    return this + offset;
  }

  template<typename T> static Instruction* Cast(T src) {
    return reinterpret_cast<Instruction*>(src);
  }

  template<typename T> static const Instruction* CastConst(T src) {
    return reinterpret_cast<const Instruction*>(src);
  }

 private:
  int ImmBranch() const;

  static float Imm8ToFP32(uint32_t imm8);
  static double Imm8ToFP64(uint32_t imm8);

  void SetPCRelImmTarget(const Instruction* target);
  void SetBranchImmTarget(const Instruction* target);
};


// Functions for handling NEON vector format information.
enum VectorFormat {
  kFormatUndefined = 0xffffffff,
  kFormat8B  = NEON_8B,
  kFormat16B = NEON_16B,
  kFormat4H  = NEON_4H,
  kFormat8H  = NEON_8H,
  kFormat2S  = NEON_2S,
  kFormat4S  = NEON_4S,
  kFormat1D  = NEON_1D,
  kFormat2D  = NEON_2D,

  // Scalar formats. We add the scalar bit to distinguish between scalar and
  // vector enumerations; the bit is always set in the encoding of scalar ops
  // and always clear for vector ops. Although kFormatD and kFormat1D appear
  // to be the same, their meaning is subtly different. The first is a scalar
  // operation, the second a vector operation that only affects one lane.
  kFormatB = NEON_B | NEONScalar,
  kFormatH = NEON_H | NEONScalar,
  kFormatS = NEON_S | NEONScalar,
  kFormatD = NEON_D | NEONScalar
};

VectorFormat VectorFormatHalfWidth(const VectorFormat vform);
VectorFormat VectorFormatDoubleWidth(const VectorFormat vform);
VectorFormat VectorFormatDoubleLanes(const VectorFormat vform);
VectorFormat VectorFormatHalfLanes(const VectorFormat vform);
VectorFormat ScalarFormatFromLaneSize(int lanesize);
VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform);
VectorFormat VectorFormatFillQ(const VectorFormat vform);
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
// TODO: Make the return types of these functions consistent.
unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
int LaneSizeInBytesFromFormat(VectorFormat vform);
int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
int LaneCountFromFormat(VectorFormat vform);
int MaxLaneCountFromFormat(VectorFormat vform);
bool IsVectorFormat(VectorFormat vform);
int64_t MaxIntFromFormat(VectorFormat vform);
int64_t MinIntFromFormat(VectorFormat vform);
uint64_t MaxUintFromFormat(VectorFormat vform);


enum NEONFormat {
  NF_UNDEF = 0,
  NF_8B    = 1,
  NF_16B   = 2,
  NF_4H    = 3,
  NF_8H    = 4,
  NF_2S    = 5,
  NF_4S    = 6,
  NF_1D    = 7,
  NF_2D    = 8,
  NF_B     = 9,
  NF_H     = 10,
  NF_S     = 11,
  NF_D     = 12
};

static const unsigned kNEONFormatMaxBits = 6;

struct NEONFormatMap {
  // The bit positions in the instruction to consider.
  uint8_t bits[kNEONFormatMaxBits];

  // Mapping from concatenated bits to format.
  NEONFormat map[1 << kNEONFormatMaxBits];
};

class NEONFormatDecoder {
 public:
  enum SubstitutionMode {
    kPlaceholder,
    kFormat
  };

  // Construct a format decoder with increasingly specific format maps for each
  // subsitution. If no format map is specified, the default is the integer
  // format map.
  explicit NEONFormatDecoder(const Instruction* instr) {
    instrbits_ = instr->InstructionBits();
    SetFormatMaps(IntegerFormatMap());
  }
  NEONFormatDecoder(const Instruction* instr,
                    const NEONFormatMap* format) {
    instrbits_ = instr->InstructionBits();
    SetFormatMaps(format);
  }
  NEONFormatDecoder(const Instruction* instr,
                    const NEONFormatMap* format0,
                    const NEONFormatMap* format1) {
    instrbits_ = instr->InstructionBits();
    SetFormatMaps(format0, format1);
  }
  NEONFormatDecoder(const Instruction* instr,
                    const NEONFormatMap* format0,
                    const NEONFormatMap* format1,
                    const NEONFormatMap* format2) {
    instrbits_ = instr->InstructionBits();
    SetFormatMaps(format0, format1, format2);
  }

  // Set the format mapping for all or individual substitutions.
  void SetFormatMaps(const NEONFormatMap* format0,
                     const NEONFormatMap* format1 = NULL,
                     const NEONFormatMap* format2 = NULL) {
    VIXL_ASSERT(format0 != NULL);
    formats_[0] = format0;
    formats_[1] = (format1 == NULL) ? formats_[0] : format1;
    formats_[2] = (format2 == NULL) ? formats_[1] : format2;
  }
  void SetFormatMap(unsigned index, const NEONFormatMap* format) {
    VIXL_ASSERT(index <= (sizeof(formats_) / sizeof(formats_[0])));
    VIXL_ASSERT(format != NULL);
    formats_[index] = format;
  }

  // Substitute %s in the input string with the placeholder string for each
  // register, ie. "'B", "'H", etc.
  const char* SubstitutePlaceholders(const char* string) {
    return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
  }

  // Substitute %s in the input string with a new string based on the
  // substitution mode.
  const char* Substitute(const char* string,
                         SubstitutionMode mode0 = kFormat,
                         SubstitutionMode mode1 = kFormat,
                         SubstitutionMode mode2 = kFormat) {
    snprintf(form_buffer_, sizeof(form_buffer_), string,
             GetSubstitute(0, mode0),
             GetSubstitute(1, mode1),
             GetSubstitute(2, mode2));
    return form_buffer_;
  }

  // Append a "2" to a mnemonic string based of the state of the Q bit.
  const char* Mnemonic(const char* mnemonic) {
    if ((instrbits_ & NEON_Q) != 0) {
      snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
      return mne_buffer_;
    }
    return mnemonic;
  }

  VectorFormat GetVectorFormat(int format_index = 0) {
    return GetVectorFormat(formats_[format_index]);
  }

  VectorFormat GetVectorFormat(const NEONFormatMap* format_map) {
    static const VectorFormat vform[] = {
      kFormatUndefined,
      kFormat8B, kFormat16B, kFormat4H, kFormat8H,
      kFormat2S, kFormat4S, kFormat1D, kFormat2D,
      kFormatB, kFormatH, kFormatS, kFormatD
    };
    VIXL_ASSERT(GetNEONFormat(format_map) < (sizeof(vform) / sizeof(vform[0])));
    return vform[GetNEONFormat(format_map)];
  }

  // Built in mappings for common cases.

  // The integer format map uses three bits (Q, size<1:0>) to encode the
  // "standard" set of NEON integer vector formats.
  static const NEONFormatMap* IntegerFormatMap() {
    static const NEONFormatMap map = {
      {23, 22, 30},
      {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}
    };
    return &map;
  }

  // The long integer format map uses two bits (size<1:0>) to encode the
  // long set of NEON integer vector formats. These are used in narrow, wide
  // and long operations.
  static const NEONFormatMap* LongIntegerFormatMap() {
    static const NEONFormatMap map = {
      {23, 22}, {NF_8H, NF_4S, NF_2D}
    };
    return &map;
  }

  // The FP format map uses two bits (Q, size<0>) to encode the NEON FP vector
  // formats: NF_2S, NF_4S, NF_2D.
  static const NEONFormatMap* FPFormatMap() {
    // The FP format map assumes two bits (Q, size<0>) are used to encode the
    // NEON FP vector formats: NF_2S, NF_4S, NF_2D.
    static const NEONFormatMap map = {
      {22, 30}, {NF_2S, NF_4S, NF_UNDEF, NF_2D}
    };
    return &map;
  }

  // The load/store format map uses three bits (Q, 11, 10) to encode the
  // set of NEON vector formats.
  static const NEONFormatMap* LoadStoreFormatMap() {
    static const NEONFormatMap map = {
      {11, 10, 30},
      {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
    };
    return &map;
  }

  // The logical format map uses one bit (Q) to encode the NEON vector format:
  // NF_8B, NF_16B.
  static const NEONFormatMap* LogicalFormatMap() {
    static const NEONFormatMap map = {
      {30}, {NF_8B, NF_16B}
    };
    return &map;
  }

  // The triangular format map uses between two and five bits to encode the NEON
  // vector format:
  // xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
  // x1000->2S, x1001->4S,  10001->2D, all others undefined.
  static const NEONFormatMap* TriangularFormatMap() {
    static const NEONFormatMap map = {
      {19, 18, 17, 16, 30},
      {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S,
       NF_4S, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_UNDEF, NF_2D,
       NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S, NF_4S, NF_8B, NF_16B,
       NF_4H, NF_8H, NF_8B, NF_16B}
    };
    return &map;
  }

  // The scalar format map uses two bits (size<1:0>) to encode the NEON scalar
  // formats: NF_B, NF_H, NF_S, NF_D.
  static const NEONFormatMap* ScalarFormatMap() {
    static const NEONFormatMap map = {
      {23, 22}, {NF_B, NF_H, NF_S, NF_D}
    };
    return &map;
  }

  // The long scalar format map uses two bits (size<1:0>) to encode the longer
  // NEON scalar formats: NF_H, NF_S, NF_D.
  static const NEONFormatMap* LongScalarFormatMap() {
    static const NEONFormatMap map = {
      {23, 22}, {NF_H, NF_S, NF_D}
    };
    return &map;
  }

  // The FP scalar format map assumes one bit (size<0>) is used to encode the
  // NEON FP scalar formats: NF_S, NF_D.
  static const NEONFormatMap* FPScalarFormatMap() {
    static const NEONFormatMap map = {
      {22}, {NF_S, NF_D}
    };
    return &map;
  }

  // The triangular scalar format map uses between one and four bits to encode
  // the NEON FP scalar formats:
  // xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
  static const NEONFormatMap* TriangularScalarFormatMap() {
    static const NEONFormatMap map = {
      {19, 18, 17, 16},
      {NF_UNDEF, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B,
       NF_D,     NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B}
    };
    return &map;
  }

 private:
  // Get a pointer to a string that represents the format or placeholder for
  // the specified substitution index, based on the format map and instruction.
  const char* GetSubstitute(int index, SubstitutionMode mode) {
    if (mode == kFormat) {
      return NEONFormatAsString(GetNEONFormat(formats_[index]));
    }
    VIXL_ASSERT(mode == kPlaceholder);
    return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
  }

  // Get the NEONFormat enumerated value for bits obtained from the
  // instruction based on the specified format mapping.
  NEONFormat GetNEONFormat(const NEONFormatMap* format_map) {
    return format_map->map[PickBits(format_map->bits)];
  }

  // Convert a NEONFormat into a string.
  static const char* NEONFormatAsString(NEONFormat format) {
    static const char* formats[] = {
      "undefined",
      "8b", "16b", "4h", "8h", "2s", "4s", "1d", "2d",
      "b", "h", "s", "d"
    };
    VIXL_ASSERT(format < (sizeof(formats) / sizeof(formats[0])));
    return formats[format];
  }

  // Convert a NEONFormat into a register placeholder string.
  static const char* NEONFormatAsPlaceholder(NEONFormat format) {
    VIXL_ASSERT((format == NF_B) || (format == NF_H) ||
                (format == NF_S) || (format == NF_D) ||
                (format == NF_UNDEF));
    static const char* formats[] = {
      "undefined",
      "undefined", "undefined", "undefined", "undefined",
      "undefined", "undefined", "undefined", "undefined",
      "'B", "'H", "'S", "'D"
    };
    return formats[format];
  }

  // Select bits from instrbits_ defined by the bits array, concatenate them,
  // and return the value.
  uint8_t PickBits(const uint8_t bits[]) {
    uint8_t result = 0;
    for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
      if (bits[b] == 0) break;
      result <<= 1;
      result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
    }
    return result;
  }

  Instr instrbits_;
  const NEONFormatMap* formats_[3];
  char form_buffer_[64];
  char mne_buffer_[16];
};
}  // namespace vixl

#endif  // VIXL_A64_INSTRUCTIONS_A64_H_