aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/utils.h
blob: 83c928c8e32b18bc375f981e309cc8bff1ece341 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef VIXL_UTILS_H
#define VIXL_UTILS_H

#include <math.h>
#include <string.h>
#include "globals.h"

namespace vixl {

// Check number width.
inline bool is_intn(unsigned n, int64_t x) {
  VIXL_ASSERT((0 < n) && (n < 64));
  int64_t limit = INT64_C(1) << (n - 1);
  return (-limit <= x) && (x < limit);
}

inline bool is_uintn(unsigned n, int64_t x) {
  VIXL_ASSERT((0 < n) && (n < 64));
  return !(x >> n);
}

inline unsigned truncate_to_intn(unsigned n, int64_t x) {
  VIXL_ASSERT((0 < n) && (n < 64));
  return (x & ((INT64_C(1) << n) - 1));
}

#define INT_1_TO_63_LIST(V)                                                    \
V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
V(57) V(58) V(59) V(60) V(61) V(62) V(63)

#define DECLARE_IS_INT_N(N)                                                    \
inline bool is_int##N(int64_t x) { return is_intn(N, x); }
#define DECLARE_IS_UINT_N(N)                                                   \
inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
#define DECLARE_TRUNCATE_TO_INT_N(N)                                           \
inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
#undef DECLARE_IS_INT_N
#undef DECLARE_IS_UINT_N
#undef DECLARE_TRUNCATE_TO_INT_N

// Bit field extraction.
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
  return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
}

inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
  return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
}

inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
  return (x << (31 - msb)) >> (lsb + 31 - msb);
}

inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
  return (x << (63 - msb)) >> (lsb + 63 - msb);
}

// Floating point representation.
uint32_t float_to_rawbits(float value);
uint64_t double_to_rawbits(double value);
float rawbits_to_float(uint32_t bits);
double rawbits_to_double(uint64_t bits);


// NaN tests.
inline bool IsSignallingNaN(double num) {
  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
  uint64_t raw = double_to_rawbits(num);
  if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
    return true;
  }
  return false;
}


inline bool IsSignallingNaN(float num) {
  const uint32_t kFP32QuietNaNMask = 0x00400000;
  uint32_t raw = float_to_rawbits(num);
  if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
    return true;
  }
  return false;
}


template <typename T>
inline bool IsQuietNaN(T num) {
  return isnan(num) && !IsSignallingNaN(num);
}


// Convert the NaN in 'num' to a quiet NaN.
inline double ToQuietNaN(double num) {
  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
  VIXL_ASSERT(isnan(num));
  return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
}


inline float ToQuietNaN(float num) {
  const uint32_t kFP32QuietNaNMask = 0x00400000;
  VIXL_ASSERT(isnan(num));
  return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
}


// Fused multiply-add.
inline double FusedMultiplyAdd(double op1, double op2, double a) {
  return fma(op1, op2, a);
}


inline float FusedMultiplyAdd(float op1, float op2, float a) {
  return fmaf(op1, op2, a);
}


// Bit counting.
int CountLeadingZeros(uint64_t value, int width);
int CountLeadingSignBits(int64_t value, int width);
int CountTrailingZeros(uint64_t value, int width);
int CountSetBits(uint64_t value, int width);

// Pointer alignment
// TODO: rename/refactor to make it specific to instructions.
template<typename T>
bool IsWordAligned(T pointer) {
  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
  return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
}

// Increment a pointer until it has the specified alignment.
template<class T>
T AlignUp(T pointer, size_t alignment) {
  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
  uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
  size_t align_step = (alignment - pointer_raw) % alignment;
  VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
  return reinterpret_cast<T>(pointer_raw + align_step);
}

// Decrement a pointer until it has the specified alignment.
template<class T>
T AlignDown(T pointer, size_t alignment) {
  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
  uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
  size_t align_step = pointer_raw % alignment;
  VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
  return reinterpret_cast<T>(pointer_raw - align_step);
}


}  // namespace vixl

#endif  // VIXL_UTILS_H