aboutsummaryrefslogtreecommitdiff
path: root/cpu-all.h
blob: 931ea052dc986b2b09d7d6a18a6dde4ec2a390b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
 * defines common to all virtual CPUs
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H

#if defined(__arm__) || defined(__sparc__)
#define WORDS_ALIGNED
#endif

/* some important defines: 
 * 
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
 * 
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
 * 
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
 * 
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */

/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
typedef union {
    double d;
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
    struct {
        uint32_t lower;
        uint32_t upper;
    } l;
#else
    struct {
        uint32_t upper;
        uint32_t lower;
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;

/* CPU memory access without any memory or io remapping */

/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
 * 
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
 * 
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
static inline int ldub_raw(void *ptr)
{
    return *(uint8_t *)ptr;
}

static inline int ldsb_raw(void *ptr)
{
    return *(int8_t *)ptr;
}

static inline void stb_raw(void *ptr, int v)
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))

/* conservative code for little endian unaligned accesses */
static inline int lduw_raw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}

static inline int ldsw_raw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}

static inline int ldl_raw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}

static inline uint64_t ldq_raw(void *ptr)
{
    uint8_t *p = ptr;
    uint32_t v1, v2;
    v1 = ldl_raw(p);
    v2 = ldl_raw(p + 4);
    return v1 | ((uint64_t)v2 << 32);
}

static inline void stw_raw(void *ptr, int v)
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}

static inline void stl_raw(void *ptr, int v)
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}

static inline void stq_raw(void *ptr, uint64_t v)
{
    uint8_t *p = ptr;
    stl_raw(p, (uint32_t)v);
    stl_raw(p + 4, v >> 32);
}

/* float access */

static inline float ldfl_raw(void *ptr)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.i = ldl_raw(ptr);
    return u.f;
}

static inline void stfl_raw(void *ptr, float v)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.f = v;
    stl_raw(ptr, u.i);
}

static inline double ldfq_raw(void *ptr)
{
    CPU_DoubleU u;
    u.l.lower = ldl_raw(ptr);
    u.l.upper = ldl_raw(ptr + 4);
    return u.d;
}

static inline void stfq_raw(void *ptr, double v)
{
    CPU_DoubleU u;
    u.d = v;
    stl_raw(ptr, u.l.lower);
    stl_raw(ptr + 4, u.l.upper);
}

#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))

static inline int lduw_raw(void *ptr)
{
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return ((b[0] << 8) | b[1]);
#endif
}

static inline int ldsw_raw(void *ptr)
{
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return (int16_t)((b[0] << 8) | b[1]);
#endif
}

static inline int ldl_raw(void *ptr)
{
#if defined(__i386__)
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}

static inline uint64_t ldq_raw(void *ptr)
{
    uint32_t a,b;
    a = ldl_raw(ptr);
    b = ldl_raw(ptr+4);
    return (((uint64_t)a<<32)|b);
}

static inline void stw_raw(void *ptr, int v)
{
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
#endif
}

static inline void stl_raw(void *ptr, int v)
{
#if defined(__i386__)
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
#endif
}

static inline void stq_raw(void *ptr, uint64_t v)
{
    stl_raw(ptr, v >> 32);
    stl_raw(ptr + 4, v);
}

/* float access */

static inline float ldfl_raw(void *ptr)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.i = ldl_raw(ptr);
    return u.f;
}

static inline void stfl_raw(void *ptr, float v)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.f = v;
    stl_raw(ptr, u.i);
}

static inline double ldfq_raw(void *ptr)
{
    CPU_DoubleU u;
    u.l.upper = ldl_raw(ptr);
    u.l.lower = ldl_raw(ptr + 4);
    return u.d;
}

static inline void stfq_raw(void *ptr, double v)
{
    CPU_DoubleU u;
    u.d = v;
    stl_raw(ptr, u.l.upper);
    stl_raw(ptr + 4, u.l.lower);
}

#else

static inline int lduw_raw(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw_raw(void *ptr)
{
    return *(int16_t *)ptr;
}

static inline int ldl_raw(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq_raw(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw_raw(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_raw(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_raw(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float ldfl_raw(void *ptr)
{
    return *(float *)ptr;
}

static inline double ldfq_raw(void *ptr)
{
    return *(double *)ptr;
}

static inline void stfl_raw(void *ptr, float v)
{
    *(float *)ptr = v;
}

static inline void stfq_raw(void *ptr, double v)
{
    *(double *)ptr = v;
}
#endif

/* MMU memory access macros */

#if defined(CONFIG_USER_ONLY) 

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)

#endif /* defined(CONFIG_USER_ONLY) */

/* page related stuff */

#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)

extern unsigned long real_host_page_size;
extern unsigned long host_page_bits;
extern unsigned long host_page_size;
extern unsigned long host_page_mask;

#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
#define PAGE_WRITE_ORG 0x0010 

void page_dump(FILE *f);
int page_get_flags(unsigned long address);
void page_set_flags(unsigned long start, unsigned long end, int flags);
void page_unprotect_range(uint8_t *data, unsigned long data_size);

#define SINGLE_CPU_DEFINES
#ifdef SINGLE_CPU_DEFINES

#if defined(TARGET_I386)

#define CPUState CPUX86State
#define cpu_init cpu_x86_init
#define cpu_exec cpu_x86_exec
#define cpu_gen_code cpu_x86_gen_code
#define cpu_interrupt cpu_x86_interrupt
#define cpu_signal_handler cpu_x86_signal_handler
#define cpu_dump_state cpu_x86_dump_state

#elif defined(TARGET_ARM)

#define CPUState CPUARMState
#define cpu_init cpu_arm_init
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_interrupt cpu_arm_interrupt
#define cpu_signal_handler cpu_arm_signal_handler
#define cpu_dump_state cpu_arm_dump_state

#elif defined(TARGET_SPARC)

#define CPUState CPUSPARCState
#define cpu_init cpu_sparc_init
#define cpu_exec cpu_sparc_exec
#define cpu_gen_code cpu_sparc_gen_code
#define cpu_interrupt cpu_sparc_interrupt
#define cpu_signal_handler cpu_sparc_signal_handler
#define cpu_dump_state cpu_sparc_dump_state

#elif defined(TARGET_PPC)

#define CPUState CPUPPCState
#define cpu_init cpu_ppc_init
#define cpu_exec cpu_ppc_exec
#define cpu_gen_code cpu_ppc_gen_code
#define cpu_interrupt cpu_ppc_interrupt
#define cpu_signal_handler cpu_ppc_signal_handler
#define cpu_dump_state cpu_ppc_dump_state

#else

#error unsupported target CPU

#endif

#endif /* SINGLE_CPU_DEFINES */

#define DEFAULT_GDBSTUB_PORT 1234

void cpu_abort(CPUState *env, const char *fmt, ...);
extern CPUState *cpu_single_env;
extern int code_copy_enabled;

#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
void cpu_interrupt(CPUState *s, int mask);

int cpu_breakpoint_insert(CPUState *env, uint32_t pc);
int cpu_breakpoint_remove(CPUState *env, uint32_t pc);
void cpu_single_step(CPUState *env, int enabled);

/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);

#define CPU_LOG_ALL 1
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);

/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif

/* memory API */

extern int phys_ram_size;
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
extern uint8_t *phys_ram_dirty;

/* physical memory access */
#define IO_MEM_NB_ENTRIES  256
#define TLB_INVALID_MASK   (1 << 3)
#define IO_MEM_SHIFT       4

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
#define IO_MEM_CODE        (3 << IO_MEM_SHIFT) /* used internally, never use directly */
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */

/* NOTE: vaddr is only used internally. Never use it except if you know what you do */
typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value, uint32_t vaddr);
typedef uint32_t CPUReadMemoryFunc(uint32_t addr);

void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
                                  long phys_offset);
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
                           CPUWriteMemoryFunc **mem_write);

void cpu_physical_memory_rw(CPUState *env, uint8_t *buf, target_ulong addr, 
                            int len, int is_write);
int cpu_memory_rw_debug(CPUState *env, 
                        uint8_t *buf, target_ulong addr, int len, int is_write);

/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(target_ulong addr)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS];
}

static inline void cpu_physical_memory_set_dirty(target_ulong addr)
{
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 1;
}

void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end);

/* gdb stub API */
extern int gdbstub_fd;
CPUState *cpu_gdbstub_get_env(void *opaque);
int cpu_gdbstub(void *opaque, int (*main_loop)(void *opaque), int port);

#endif /* CPU_ALL_H */