aboutsummaryrefslogtreecommitdiff
path: root/block/qcow2-cluster.c
blob: 99215fa8564167b40bdaaedac0bf6061e1d5f962 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
 * Block driver for the QCOW version 2 format
 *
 * Copyright (c) 2004-2006 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <zlib.h>

#include "qemu-common.h"
#include "block_int.h"
#include "block/qcow2.h"

int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
{
    BDRVQcowState *s = bs->opaque;
    int new_l1_size, new_l1_size2, ret, i;
    uint64_t *new_l1_table;
    uint64_t new_l1_table_offset;
    uint8_t data[12];

    new_l1_size = s->l1_size;
    if (min_size <= new_l1_size)
        return 0;
    while (min_size > new_l1_size) {
        new_l1_size = (new_l1_size * 3 + 1) / 2;
    }
#ifdef DEBUG_ALLOC2
    printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
#endif

    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
    new_l1_table = qemu_mallocz(new_l1_size2);
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));

    /* write new table (align to cluster) */
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);

    for(i = 0; i < s->l1_size; i++)
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
    ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
    if (ret != new_l1_size2)
        goto fail;
    for(i = 0; i < s->l1_size; i++)
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);

    /* set new table */
    cpu_to_be32w((uint32_t*)data, new_l1_size);
    cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
                sizeof(data)) != sizeof(data))
        goto fail;
    qemu_free(s->l1_table);
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
    s->l1_table_offset = new_l1_table_offset;
    s->l1_table = new_l1_table;
    s->l1_size = new_l1_size;
    return 0;
 fail:
    qemu_free(s->l1_table);
    return -EIO;
}

void qcow2_l2_cache_reset(BlockDriverState *bs)
{
    BDRVQcowState *s = bs->opaque;

    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
}

static inline int l2_cache_new_entry(BlockDriverState *bs)
{
    BDRVQcowState *s = bs->opaque;
    uint32_t min_count;
    int min_index, i;

    /* find a new entry in the least used one */
    min_index = 0;
    min_count = 0xffffffff;
    for(i = 0; i < L2_CACHE_SIZE; i++) {
        if (s->l2_cache_counts[i] < min_count) {
            min_count = s->l2_cache_counts[i];
            min_index = i;
        }
    }
    return min_index;
}

/*
 * seek_l2_table
 *
 * seek l2_offset in the l2_cache table
 * if not found, return NULL,
 * if found,
 *   increments the l2 cache hit count of the entry,
 *   if counter overflow, divide by two all counters
 *   return the pointer to the l2 cache entry
 *
 */

static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
{
    int i, j;

    for(i = 0; i < L2_CACHE_SIZE; i++) {
        if (l2_offset == s->l2_cache_offsets[i]) {
            /* increment the hit count */
            if (++s->l2_cache_counts[i] == 0xffffffff) {
                for(j = 0; j < L2_CACHE_SIZE; j++) {
                    s->l2_cache_counts[j] >>= 1;
                }
            }
            return s->l2_cache + (i << s->l2_bits);
        }
    }
    return NULL;
}

/*
 * l2_load
 *
 * Loads a L2 table into memory. If the table is in the cache, the cache
 * is used; otherwise the L2 table is loaded from the image file.
 *
 * Returns a pointer to the L2 table on success, or NULL if the read from
 * the image file failed.
 */

static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
{
    BDRVQcowState *s = bs->opaque;
    int min_index;
    uint64_t *l2_table;

    /* seek if the table for the given offset is in the cache */

    l2_table = seek_l2_table(s, l2_offset);
    if (l2_table != NULL)
        return l2_table;

    /* not found: load a new entry in the least used one */

    min_index = l2_cache_new_entry(bs);
    l2_table = s->l2_cache + (min_index << s->l2_bits);
    if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
        s->l2_size * sizeof(uint64_t))
        return NULL;
    s->l2_cache_offsets[min_index] = l2_offset;
    s->l2_cache_counts[min_index] = 1;

    return l2_table;
}

/*
 * l2_allocate
 *
 * Allocate a new l2 entry in the file. If l1_index points to an already
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 * table) copy the contents of the old L2 table into the newly allocated one.
 * Otherwise the new table is initialized with zeros.
 *
 */

static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
{
    BDRVQcowState *s = bs->opaque;
    int min_index;
    uint64_t old_l2_offset, tmp;
    uint64_t *l2_table, l2_offset;

    old_l2_offset = s->l1_table[l1_index];

    /* allocate a new l2 entry */

    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));

    /* update the L1 entry */

    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;

    tmp = cpu_to_be64(l2_offset | QCOW_OFLAG_COPIED);
    if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
                    &tmp, sizeof(tmp)) != sizeof(tmp))
        return NULL;

    /* allocate a new entry in the l2 cache */

    min_index = l2_cache_new_entry(bs);
    l2_table = s->l2_cache + (min_index << s->l2_bits);

    if (old_l2_offset == 0) {
        /* if there was no old l2 table, clear the new table */
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
    } else {
        /* if there was an old l2 table, read it from the disk */
        if (bdrv_pread(s->hd, old_l2_offset,
                       l2_table, s->l2_size * sizeof(uint64_t)) !=
            s->l2_size * sizeof(uint64_t))
            return NULL;
    }
    /* write the l2 table to the file */
    if (bdrv_pwrite(s->hd, l2_offset,
                    l2_table, s->l2_size * sizeof(uint64_t)) !=
        s->l2_size * sizeof(uint64_t))
        return NULL;

    /* update the l2 cache entry */

    s->l2_cache_offsets[min_index] = l2_offset;
    s->l2_cache_counts[min_index] = 1;

    return l2_table;
}

static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
        uint64_t *l2_table, uint64_t start, uint64_t mask)
{
    int i;
    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;

    if (!offset)
        return 0;

    for (i = start; i < start + nb_clusters; i++)
        if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
            break;

	return (i - start);
}

static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
{
    int i = 0;

    while(nb_clusters-- && l2_table[i] == 0)
        i++;

    return i;
}

/* The crypt function is compatible with the linux cryptoloop
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
   supported */
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
                           uint8_t *out_buf, const uint8_t *in_buf,
                           int nb_sectors, int enc,
                           const AES_KEY *key)
{
    union {
        uint64_t ll[2];
        uint8_t b[16];
    } ivec;
    int i;

    for(i = 0; i < nb_sectors; i++) {
        ivec.ll[0] = cpu_to_le64(sector_num);
        ivec.ll[1] = 0;
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
                        ivec.b, enc);
        sector_num++;
        in_buf += 512;
        out_buf += 512;
    }
}


static int qcow_read(BlockDriverState *bs, int64_t sector_num,
                     uint8_t *buf, int nb_sectors)
{
    BDRVQcowState *s = bs->opaque;
    int ret, index_in_cluster, n, n1;
    uint64_t cluster_offset;

    while (nb_sectors > 0) {
        n = nb_sectors;
        cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
        if (!cluster_offset) {
            if (bs->backing_hd) {
                /* read from the base image */
                n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
                if (n1 > 0) {
                    ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
                    if (ret < 0)
                        return -1;
                }
            } else {
                memset(buf, 0, 512 * n);
            }
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
            if (qcow2_decompress_cluster(s, cluster_offset) < 0)
                return -1;
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
        } else {
            ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
            if (ret != n * 512)
                return -1;
            if (s->crypt_method) {
                qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
                                &s->aes_decrypt_key);
            }
        }
        nb_sectors -= n;
        sector_num += n;
        buf += n * 512;
    }
    return 0;
}

static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
                        uint64_t cluster_offset, int n_start, int n_end)
{
    BDRVQcowState *s = bs->opaque;
    int n, ret;

    n = n_end - n_start;
    if (n <= 0)
        return 0;
    ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
    if (ret < 0)
        return ret;
    if (s->crypt_method) {
        qcow2_encrypt_sectors(s, start_sect + n_start,
                        s->cluster_data,
                        s->cluster_data, n, 1,
                        &s->aes_encrypt_key);
    }
    ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
                     s->cluster_data, n);
    if (ret < 0)
        return ret;
    return 0;
}


/*
 * get_cluster_offset
 *
 * For a given offset of the disk image, return cluster offset in
 * qcow2 file.
 *
 * on entry, *num is the number of contiguous clusters we'd like to
 * access following offset.
 *
 * on exit, *num is the number of contiguous clusters we can read.
 *
 * Return 1, if the offset is found
 * Return 0, otherwise.
 *
 */

uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
    int *num)
{
    BDRVQcowState *s = bs->opaque;
    int l1_index, l2_index;
    uint64_t l2_offset, *l2_table, cluster_offset;
    int l1_bits, c;
    int index_in_cluster, nb_available, nb_needed, nb_clusters;

    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
    nb_needed = *num + index_in_cluster;

    l1_bits = s->l2_bits + s->cluster_bits;

    /* compute how many bytes there are between the offset and
     * the end of the l1 entry
     */

    nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));

    /* compute the number of available sectors */

    nb_available = (nb_available >> 9) + index_in_cluster;

    if (nb_needed > nb_available) {
        nb_needed = nb_available;
    }

    cluster_offset = 0;

    /* seek the the l2 offset in the l1 table */

    l1_index = offset >> l1_bits;
    if (l1_index >= s->l1_size)
        goto out;

    l2_offset = s->l1_table[l1_index];

    /* seek the l2 table of the given l2 offset */

    if (!l2_offset)
        goto out;

    /* load the l2 table in memory */

    l2_offset &= ~QCOW_OFLAG_COPIED;
    l2_table = l2_load(bs, l2_offset);
    if (l2_table == NULL)
        return 0;

    /* find the cluster offset for the given disk offset */

    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
    nb_clusters = size_to_clusters(s, nb_needed << 9);

    if (!cluster_offset) {
        /* how many empty clusters ? */
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
    } else {
        /* how many allocated clusters ? */
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
    }

   nb_available = (c * s->cluster_sectors);
out:
    if (nb_available > nb_needed)
        nb_available = nb_needed;

    *num = nb_available - index_in_cluster;

    return cluster_offset & ~QCOW_OFLAG_COPIED;
}

/*
 * get_cluster_table
 *
 * for a given disk offset, load (and allocate if needed)
 * the l2 table.
 *
 * the l2 table offset in the qcow2 file and the cluster index
 * in the l2 table are given to the caller.
 *
 */

static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
                             uint64_t **new_l2_table,
                             uint64_t *new_l2_offset,
                             int *new_l2_index)
{
    BDRVQcowState *s = bs->opaque;
    int l1_index, l2_index, ret;
    uint64_t l2_offset, *l2_table;

    /* seek the the l2 offset in the l1 table */

    l1_index = offset >> (s->l2_bits + s->cluster_bits);
    if (l1_index >= s->l1_size) {
        ret = qcow2_grow_l1_table(bs, l1_index + 1);
        if (ret < 0)
            return 0;
    }
    l2_offset = s->l1_table[l1_index];

    /* seek the l2 table of the given l2 offset */

    if (l2_offset & QCOW_OFLAG_COPIED) {
        /* load the l2 table in memory */
        l2_offset &= ~QCOW_OFLAG_COPIED;
        l2_table = l2_load(bs, l2_offset);
        if (l2_table == NULL)
            return 0;
    } else {
        if (l2_offset)
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
        l2_table = l2_allocate(bs, l1_index);
        if (l2_table == NULL)
            return 0;
        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
    }

    /* find the cluster offset for the given disk offset */

    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);

    *new_l2_table = l2_table;
    *new_l2_offset = l2_offset;
    *new_l2_index = l2_index;

    return 1;
}

/*
 * alloc_compressed_cluster_offset
 *
 * For a given offset of the disk image, return cluster offset in
 * qcow2 file.
 *
 * If the offset is not found, allocate a new compressed cluster.
 *
 * Return the cluster offset if successful,
 * Return 0, otherwise.
 *
 */

uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
                                               uint64_t offset,
                                               int compressed_size)
{
    BDRVQcowState *s = bs->opaque;
    int l2_index, ret;
    uint64_t l2_offset, *l2_table, cluster_offset;
    int nb_csectors;

    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
    if (ret == 0)
        return 0;

    cluster_offset = be64_to_cpu(l2_table[l2_index]);
    if (cluster_offset & QCOW_OFLAG_COPIED)
        return cluster_offset & ~QCOW_OFLAG_COPIED;

    if (cluster_offset)
        qcow2_free_any_clusters(bs, cluster_offset, 1);

    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
                  (cluster_offset >> 9);

    cluster_offset |= QCOW_OFLAG_COMPRESSED |
                      ((uint64_t)nb_csectors << s->csize_shift);

    /* update L2 table */

    /* compressed clusters never have the copied flag */

    l2_table[l2_index] = cpu_to_be64(cluster_offset);
    if (bdrv_pwrite(s->hd,
                    l2_offset + l2_index * sizeof(uint64_t),
                    l2_table + l2_index,
                    sizeof(uint64_t)) != sizeof(uint64_t))
        return 0;

    return cluster_offset;
}

int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
    QCowL2Meta *m)
{
    BDRVQcowState *s = bs->opaque;
    int i, j = 0, l2_index, ret;
    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;

    if (m->nb_clusters == 0)
        return 0;

    old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));

    /* copy content of unmodified sectors */
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
    if (m->n_start) {
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
        if (ret < 0)
            goto err;
    }

    if (m->nb_available & (s->cluster_sectors - 1)) {
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
                m->nb_available - end, s->cluster_sectors);
        if (ret < 0)
            goto err;
    }

    ret = -EIO;
    /* update L2 table */
    if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
        goto err;

    for (i = 0; i < m->nb_clusters; i++) {
        /* if two concurrent writes happen to the same unallocated cluster
	 * each write allocates separate cluster and writes data concurrently.
	 * The first one to complete updates l2 table with pointer to its
	 * cluster the second one has to do RMW (which is done above by
	 * copy_sectors()), update l2 table with its cluster pointer and free
	 * old cluster. This is what this loop does */
        if(l2_table[l2_index + i] != 0)
            old_cluster[j++] = l2_table[l2_index + i];

        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
     }

    if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t),
                l2_table + l2_index, m->nb_clusters * sizeof(uint64_t)) !=
            m->nb_clusters * sizeof(uint64_t))
        goto err;

    for (i = 0; i < j; i++)
        qcow2_free_any_clusters(bs,
            be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);

    ret = 0;
err:
    qemu_free(old_cluster);
    return ret;
 }

/*
 * alloc_cluster_offset
 *
 * For a given offset of the disk image, return cluster offset in
 * qcow2 file.
 *
 * If the offset is not found, allocate a new cluster.
 *
 * Return the cluster offset if successful,
 * Return 0, otherwise.
 *
 */

uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs,
                                    uint64_t offset,
                                    int n_start, int n_end,
                                    int *num, QCowL2Meta *m)
{
    BDRVQcowState *s = bs->opaque;
    int l2_index, ret;
    uint64_t l2_offset, *l2_table, cluster_offset;
    int nb_clusters, i = 0;

    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
    if (ret == 0)
        return 0;

    nb_clusters = size_to_clusters(s, n_end << 9);

    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);

    cluster_offset = be64_to_cpu(l2_table[l2_index]);

    /* We keep all QCOW_OFLAG_COPIED clusters */

    if (cluster_offset & QCOW_OFLAG_COPIED) {
        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
                &l2_table[l2_index], 0, 0);

        cluster_offset &= ~QCOW_OFLAG_COPIED;
        m->nb_clusters = 0;

        goto out;
    }

    /* for the moment, multiple compressed clusters are not managed */

    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
        nb_clusters = 1;

    /* how many available clusters ? */

    while (i < nb_clusters) {
        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
                &l2_table[l2_index], i, 0);

        if(be64_to_cpu(l2_table[l2_index + i]))
            break;

        i += count_contiguous_free_clusters(nb_clusters - i,
                &l2_table[l2_index + i]);

        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);

        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
                (cluster_offset & QCOW_OFLAG_COMPRESSED))
            break;
    }
    nb_clusters = i;

    /* allocate a new cluster */

    cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);

    /* save info needed for meta data update */
    m->offset = offset;
    m->n_start = n_start;
    m->nb_clusters = nb_clusters;

out:
    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);

    *num = m->nb_available - n_start;

    return cluster_offset;
}

static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
                             const uint8_t *buf, int buf_size)
{
    z_stream strm1, *strm = &strm1;
    int ret, out_len;

    memset(strm, 0, sizeof(*strm));

    strm->next_in = (uint8_t *)buf;
    strm->avail_in = buf_size;
    strm->next_out = out_buf;
    strm->avail_out = out_buf_size;

    ret = inflateInit2(strm, -12);
    if (ret != Z_OK)
        return -1;
    ret = inflate(strm, Z_FINISH);
    out_len = strm->next_out - out_buf;
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
        out_len != out_buf_size) {
        inflateEnd(strm);
        return -1;
    }
    inflateEnd(strm);
    return 0;
}

int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
{
    int ret, csize, nb_csectors, sector_offset;
    uint64_t coffset;

    coffset = cluster_offset & s->cluster_offset_mask;
    if (s->cluster_cache_offset != coffset) {
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
        sector_offset = coffset & 511;
        csize = nb_csectors * 512 - sector_offset;
        ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
        if (ret < 0) {
            return -1;
        }
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
                              s->cluster_data + sector_offset, csize) < 0) {
            return -1;
        }
        s->cluster_cache_offset = coffset;
    }
    return 0;
}