/* * Copyright (C) 2010 Citrix Ltd. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include <sys/mman.h> #include "hw/pci/pci.h" #include "hw/i386/pc.h" #include "hw/xen/xen_common.h" #include "hw/xen/xen_backend.h" #include "qmp-commands.h" #include "sysemu/char.h" #include "qemu/error-report.h" #include "qemu/range.h" #include "sysemu/xen-mapcache.h" #include "trace.h" #include "exec/address-spaces.h" #include <xen/hvm/ioreq.h> #include <xen/hvm/params.h> #include <xen/hvm/e820.h> //#define DEBUG_XEN_HVM #ifdef DEBUG_XEN_HVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; static MemoryRegion *framebuffer; static bool xen_in_migration; /* Compatibility with older version */ /* This allows QEMU to build on a system that has Xen 4.5 or earlier * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h * needs to be included before this block and hw/xen/xen_common.h needs to * be included before xen/hvm/ioreq.h */ #ifndef IOREQ_TYPE_VMWARE_PORT #define IOREQ_TYPE_VMWARE_PORT 3 struct vmware_regs { uint32_t esi; uint32_t edi; uint32_t ebx; uint32_t ecx; uint32_t edx; }; typedef struct vmware_regs vmware_regs_t; struct shared_vmport_iopage { struct vmware_regs vcpu_vmport_regs[1]; }; typedef struct shared_vmport_iopage shared_vmport_iopage_t; #endif #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) { return shared_page->vcpu_iodata[i].vp_eport; } static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) { return &shared_page->vcpu_iodata[vcpu].vp_ioreq; } # define FMT_ioreq_size PRIx64 #else static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) { return shared_page->vcpu_ioreq[i].vp_eport; } static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) { return &shared_page->vcpu_ioreq[vcpu]; } # define FMT_ioreq_size "u" #endif #define BUFFER_IO_MAX_DELAY 100 typedef struct XenPhysmap { hwaddr start_addr; ram_addr_t size; const char *name; hwaddr phys_offset; QLIST_ENTRY(XenPhysmap) list; } XenPhysmap; typedef struct XenIOState { ioservid_t ioservid; shared_iopage_t *shared_page; shared_vmport_iopage_t *shared_vmport_page; buffered_iopage_t *buffered_io_page; QEMUTimer *buffered_io_timer; CPUState **cpu_by_vcpu_id; /* the evtchn port for polling the notification, */ evtchn_port_t *ioreq_local_port; /* evtchn local port for buffered io */ evtchn_port_t bufioreq_local_port; /* the evtchn fd for polling */ xenevtchn_handle *xce_handle; /* which vcpu we are serving */ int send_vcpu; struct xs_handle *xenstore; MemoryListener memory_listener; MemoryListener io_listener; DeviceListener device_listener; QLIST_HEAD(, XenPhysmap) physmap; hwaddr free_phys_offset; const XenPhysmap *log_for_dirtybit; Notifier exit; Notifier suspend; Notifier wakeup; } XenIOState; /* Xen specific function for piix pci */ int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) { return irq_num + ((pci_dev->devfn >> 3) << 2); } void xen_piix3_set_irq(void *opaque, int irq_num, int level) { xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2, irq_num & 3, level); } void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) { int i; /* Scan for updates to PCI link routes (0x60-0x63). */ for (i = 0; i < len; i++) { uint8_t v = (val >> (8 * i)) & 0xff; if (v & 0x80) { v = 0; } v &= 0xf; if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v); } } } void xen_hvm_inject_msi(uint64_t addr, uint32_t data) { xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data); } static void xen_suspend_notifier(Notifier *notifier, void *data) { xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); } /* Xen Interrupt Controller */ static void xen_set_irq(void *opaque, int irq, int level) { xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level); } qemu_irq *xen_interrupt_controller_init(void) { return qemu_allocate_irqs(xen_set_irq, NULL, 16); } /* Memory Ops */ static void xen_ram_init(PCMachineState *pcms, ram_addr_t ram_size, MemoryRegion **ram_memory_p) { MemoryRegion *sysmem = get_system_memory(); ram_addr_t block_len; uint64_t user_lowmem = object_property_get_int(qdev_get_machine(), PC_MACHINE_MAX_RAM_BELOW_4G, &error_abort); /* Handle the machine opt max-ram-below-4g. It is basically doing * min(xen limit, user limit). */ if (HVM_BELOW_4G_RAM_END <= user_lowmem) { user_lowmem = HVM_BELOW_4G_RAM_END; } if (ram_size >= user_lowmem) { pcms->above_4g_mem_size = ram_size - user_lowmem; pcms->below_4g_mem_size = user_lowmem; } else { pcms->above_4g_mem_size = 0; pcms->below_4g_mem_size = ram_size; } if (!pcms->above_4g_mem_size) { block_len = ram_size; } else { /* * Xen does not allocate the memory continuously, it keeps a * hole of the size computed above or passed in. */ block_len = (1ULL << 32) + pcms->above_4g_mem_size; } memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, &error_fatal); *ram_memory_p = &ram_memory; vmstate_register_ram_global(&ram_memory); memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", &ram_memory, 0, 0xa0000); memory_region_add_subregion(sysmem, 0, &ram_640k); /* Skip of the VGA IO memory space, it will be registered later by the VGA * emulated device. * * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load * the Options ROM, so it is registered here as RAM. */ memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", &ram_memory, 0xc0000, pcms->below_4g_mem_size - 0xc0000); memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); if (pcms->above_4g_mem_size > 0) { memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", &ram_memory, 0x100000000ULL, pcms->above_4g_mem_size); memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); } } void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, Error **errp) { unsigned long nr_pfn; xen_pfn_t *pfn_list; int i; if (runstate_check(RUN_STATE_INMIGRATE)) { /* RAM already populated in Xen */ fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", __func__, size, ram_addr); return; } if (mr == &ram_memory) { return; } trace_xen_ram_alloc(ram_addr, size); nr_pfn = size >> TARGET_PAGE_BITS; pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); for (i = 0; i < nr_pfn; i++) { pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; } if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr); } g_free(pfn_list); } static XenPhysmap *get_physmapping(XenIOState *state, hwaddr start_addr, ram_addr_t size) { XenPhysmap *physmap = NULL; start_addr &= TARGET_PAGE_MASK; QLIST_FOREACH(physmap, &state->physmap, list) { if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { return physmap; } } return NULL; } static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, ram_addr_t size, void *opaque) { hwaddr addr = start_addr & TARGET_PAGE_MASK; XenIOState *xen_io_state = opaque; XenPhysmap *physmap = NULL; QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { return physmap->start_addr; } } return start_addr; } #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340 static int xen_add_to_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size, MemoryRegion *mr, hwaddr offset_within_region) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; hwaddr pfn, start_gpfn; hwaddr phys_offset = memory_region_get_ram_addr(mr); char path[80], value[17]; const char *mr_name; if (get_physmapping(state, start_addr, size)) { return 0; } if (size <= 0) { return -1; } /* Xen can only handle a single dirty log region for now and we want * the linear framebuffer to be that region. * Avoid tracking any regions that is not videoram and avoid tracking * the legacy vga region. */ if (mr == framebuffer && start_addr > 0xbffff) { goto go_physmap; } return -1; go_physmap: DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", start_addr, start_addr + size); pfn = phys_offset >> TARGET_PAGE_BITS; start_gpfn = start_addr >> TARGET_PAGE_BITS; for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { unsigned long idx = pfn + i; xen_pfn_t gpfn = start_gpfn + i; rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); return -rc; } } mr_name = memory_region_name(mr); physmap = g_malloc(sizeof (XenPhysmap)); physmap->start_addr = start_addr; physmap->size = size; physmap->name = mr_name; physmap->phys_offset = phys_offset; QLIST_INSERT_HEAD(&state->physmap, physmap, list); xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, start_addr >> TARGET_PAGE_BITS, (start_addr + size - 1) >> TARGET_PAGE_BITS, XEN_DOMCTL_MEM_CACHEATTR_WB); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", xen_domid, (uint64_t)phys_offset); snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr); if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { return -1; } snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", xen_domid, (uint64_t)phys_offset); snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size); if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { return -1; } if (mr_name) { snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", xen_domid, (uint64_t)phys_offset); if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) { return -1; } } return 0; } static int xen_remove_from_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; hwaddr phys_offset = 0; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { return -1; } phys_offset = physmap->phys_offset; size = physmap->size; DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); size >>= TARGET_PAGE_BITS; start_addr >>= TARGET_PAGE_BITS; phys_offset >>= TARGET_PAGE_BITS; for (i = 0; i < size; i++) { xen_pfn_t idx = start_addr + i; xen_pfn_t gpfn = phys_offset + i; rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); return -rc; } } QLIST_REMOVE(physmap, list); if (state->log_for_dirtybit == physmap) { state->log_for_dirtybit = NULL; } g_free(physmap); return 0; } #else static int xen_add_to_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size, MemoryRegion *mr, hwaddr offset_within_region) { return -ENOSYS; } static int xen_remove_from_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { return -ENOSYS; } #endif static void xen_set_memory(struct MemoryListener *listener, MemoryRegionSection *section, bool add) { XenIOState *state = container_of(listener, XenIOState, memory_listener); hwaddr start_addr = section->offset_within_address_space; ram_addr_t size = int128_get64(section->size); bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); hvmmem_type_t mem_type; if (section->mr == &ram_memory) { return; } else { if (add) { xen_map_memory_section(xen_xc, xen_domid, state->ioservid, section); } else { xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid, section); } } if (!memory_region_is_ram(section->mr)) { return; } if (log_dirty != add) { return; } trace_xen_client_set_memory(start_addr, size, log_dirty); start_addr &= TARGET_PAGE_MASK; size = TARGET_PAGE_ALIGN(size); if (add) { if (!memory_region_is_rom(section->mr)) { xen_add_to_physmap(state, start_addr, size, section->mr, section->offset_within_region); } else { mem_type = HVMMEM_ram_ro; if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type, start_addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS)) { DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n", start_addr); } } } else { if (xen_remove_from_physmap(state, start_addr, size) < 0) { DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); } } } static void xen_region_add(MemoryListener *listener, MemoryRegionSection *section) { memory_region_ref(section->mr); xen_set_memory(listener, section, true); } static void xen_region_del(MemoryListener *listener, MemoryRegionSection *section) { xen_set_memory(listener, section, false); memory_region_unref(section->mr); } static void xen_io_add(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, io_listener); memory_region_ref(section->mr); xen_map_io_section(xen_xc, xen_domid, state->ioservid, section); } static void xen_io_del(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, io_listener); xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section); memory_region_unref(section->mr); } static void xen_device_realize(DeviceListener *listener, DeviceState *dev) { XenIOState *state = container_of(listener, XenIOState, device_listener); if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { PCIDevice *pci_dev = PCI_DEVICE(dev); xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev); } } static void xen_device_unrealize(DeviceListener *listener, DeviceState *dev) { XenIOState *state = container_of(listener, XenIOState, device_listener); if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { PCIDevice *pci_dev = PCI_DEVICE(dev); xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev); } } static void xen_sync_dirty_bitmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { hwaddr npages = size >> TARGET_PAGE_BITS; const int width = sizeof(unsigned long) * 8; unsigned long bitmap[(npages + width - 1) / width]; int rc, i, j; const XenPhysmap *physmap = NULL; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { /* not handled */ return; } if (state->log_for_dirtybit == NULL) { state->log_for_dirtybit = physmap; } else if (state->log_for_dirtybit != physmap) { /* Only one range for dirty bitmap can be tracked. */ return; } rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid, start_addr >> TARGET_PAGE_BITS, npages, bitmap); if (rc < 0) { #ifndef ENODATA #define ENODATA ENOENT #endif if (errno == ENODATA) { memory_region_set_dirty(framebuffer, 0, size); DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx ", 0x" TARGET_FMT_plx "): %s\n", start_addr, start_addr + size, strerror(errno)); } return; } for (i = 0; i < ARRAY_SIZE(bitmap); i++) { unsigned long map = bitmap[i]; while (map != 0) { j = ctzl(map); map &= ~(1ul << j); memory_region_set_dirty(framebuffer, (i * width + j) * TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); }; } } static void xen_log_start(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { XenIOState *state = container_of(listener, XenIOState, memory_listener); if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { xen_sync_dirty_bitmap(state, section->offset_within_address_space, int128_get64(section->size)); } } static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { XenIOState *state = container_of(listener, XenIOState, memory_listener); if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { state->log_for_dirtybit = NULL; /* Disable dirty bit tracking */ xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL); } } static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, memory_listener); xen_sync_dirty_bitmap(state, section->offset_within_address_space, int128_get64(section->size)); } static void xen_log_global_start(MemoryListener *listener) { if (xen_enabled()) { xen_in_migration = true; } } static void xen_log_global_stop(MemoryListener *listener) { xen_in_migration = false; } static MemoryListener xen_memory_listener = { .region_add = xen_region_add, .region_del = xen_region_del, .log_start = xen_log_start, .log_stop = xen_log_stop, .log_sync = xen_log_sync, .log_global_start = xen_log_global_start, .log_global_stop = xen_log_global_stop, .priority = 10, }; static MemoryListener xen_io_listener = { .region_add = xen_io_add, .region_del = xen_io_del, .priority = 10, }; static DeviceListener xen_device_listener = { .realize = xen_device_realize, .unrealize = xen_device_unrealize, }; /* get the ioreq packets from share mem */ static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) { ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); if (req->state != STATE_IOREQ_READY) { DPRINTF("I/O request not ready: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); return NULL; } xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ req->state = STATE_IOREQ_INPROCESS; return req; } /* use poll to get the port notification */ /* ioreq_vec--out,the */ /* retval--the number of ioreq packet */ static ioreq_t *cpu_get_ioreq(XenIOState *state) { int i; evtchn_port_t port; port = xenevtchn_pending(state->xce_handle); if (port == state->bufioreq_local_port) { timer_mod(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); return NULL; } if (port != -1) { for (i = 0; i < max_cpus; i++) { if (state->ioreq_local_port[i] == port) { break; } } if (i == max_cpus) { hw_error("Fatal error while trying to get io event!\n"); } /* unmask the wanted port again */ xenevtchn_unmask(state->xce_handle, port); /* get the io packet from shared memory */ state->send_vcpu = i; return cpu_get_ioreq_from_shared_memory(state, i); } /* read error or read nothing */ return NULL; } static uint32_t do_inp(pio_addr_t addr, unsigned long size) { switch (size) { case 1: return cpu_inb(addr); case 2: return cpu_inw(addr); case 4: return cpu_inl(addr); default: hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size); } } static void do_outp(pio_addr_t addr, unsigned long size, uint32_t val) { switch (size) { case 1: return cpu_outb(addr, val); case 2: return cpu_outw(addr, val); case 4: return cpu_outl(addr, val); default: hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size); } } /* * Helper functions which read/write an object from/to physical guest * memory, as part of the implementation of an ioreq. * * Equivalent to * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, * val, req->size, 0/1) * except without the integer overflow problems. */ static void rw_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val, int rw) { /* Do everything unsigned so overflow just results in a truncated result * and accesses to undesired parts of guest memory, which is up * to the guest */ hwaddr offset = (hwaddr)req->size * i; if (req->df) { addr -= offset; } else { addr += offset; } cpu_physical_memory_rw(addr, val, req->size, rw); } static inline void read_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val) { rw_phys_req_item(addr, req, i, val, 0); } static inline void write_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val) { rw_phys_req_item(addr, req, i, val, 1); } static void cpu_ioreq_pio(ioreq_t *req) { uint32_t i; trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); if (req->dir == IOREQ_READ) { if (!req->data_is_ptr) { req->data = do_inp(req->addr, req->size); trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, req->size); } else { uint32_t tmp; for (i = 0; i < req->count; i++) { tmp = do_inp(req->addr, req->size); write_phys_req_item(req->data, req, i, &tmp); } } } else if (req->dir == IOREQ_WRITE) { if (!req->data_is_ptr) { trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, req->size); do_outp(req->addr, req->size, req->data); } else { for (i = 0; i < req->count; i++) { uint32_t tmp = 0; read_phys_req_item(req->data, req, i, &tmp); do_outp(req->addr, req->size, tmp); } } } } static void cpu_ioreq_move(ioreq_t *req) { uint32_t i; trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); if (!req->data_is_ptr) { if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->addr, req, i, &req->data); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { write_phys_req_item(req->addr, req, i, &req->data); } } } else { uint64_t tmp; if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->addr, req, i, &tmp); write_phys_req_item(req->data, req, i, &tmp); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->data, req, i, &tmp); write_phys_req_item(req->addr, req, i, &tmp); } } } } static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) { X86CPU *cpu; CPUX86State *env; cpu = X86_CPU(current_cpu); env = &cpu->env; env->regs[R_EAX] = req->data; env->regs[R_EBX] = vmport_regs->ebx; env->regs[R_ECX] = vmport_regs->ecx; env->regs[R_EDX] = vmport_regs->edx; env->regs[R_ESI] = vmport_regs->esi; env->regs[R_EDI] = vmport_regs->edi; } static void regs_from_cpu(vmware_regs_t *vmport_regs) { X86CPU *cpu = X86_CPU(current_cpu); CPUX86State *env = &cpu->env; vmport_regs->ebx = env->regs[R_EBX]; vmport_regs->ecx = env->regs[R_ECX]; vmport_regs->edx = env->regs[R_EDX]; vmport_regs->esi = env->regs[R_ESI]; vmport_regs->edi = env->regs[R_EDI]; } static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) { vmware_regs_t *vmport_regs; assert(state->shared_vmport_page); vmport_regs = &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; regs_to_cpu(vmport_regs, req); cpu_ioreq_pio(req); regs_from_cpu(vmport_regs); current_cpu = NULL; } static void handle_ioreq(XenIOState *state, ioreq_t *req) { trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && (req->size < sizeof (target_ulong))) { req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; } if (req->dir == IOREQ_WRITE) trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); switch (req->type) { case IOREQ_TYPE_PIO: cpu_ioreq_pio(req); break; case IOREQ_TYPE_COPY: cpu_ioreq_move(req); break; case IOREQ_TYPE_VMWARE_PORT: handle_vmport_ioreq(state, req); break; case IOREQ_TYPE_TIMEOFFSET: break; case IOREQ_TYPE_INVALIDATE: xen_invalidate_map_cache(); break; case IOREQ_TYPE_PCI_CONFIG: { uint32_t sbdf = req->addr >> 32; uint32_t val; /* Fake a write to port 0xCF8 so that * the config space access will target the * correct device model. */ val = (1u << 31) | ((req->addr & 0x0f00) << 16) | ((sbdf & 0xffff) << 8) | (req->addr & 0xfc); do_outp(0xcf8, 4, val); /* Now issue the config space access via * port 0xCFC */ req->addr = 0xcfc | (req->addr & 0x03); cpu_ioreq_pio(req); break; } default: hw_error("Invalid ioreq type 0x%x\n", req->type); } if (req->dir == IOREQ_READ) { trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); } } static int handle_buffered_iopage(XenIOState *state) { buffered_iopage_t *buf_page = state->buffered_io_page; buf_ioreq_t *buf_req = NULL; ioreq_t req; int qw; if (!buf_page) { return 0; } memset(&req, 0x00, sizeof(req)); for (;;) { uint32_t rdptr = buf_page->read_pointer, wrptr; xen_rmb(); wrptr = buf_page->write_pointer; xen_rmb(); if (rdptr != buf_page->read_pointer) { continue; } if (rdptr == wrptr) { break; } buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; req.size = 1UL << buf_req->size; req.count = 1; req.addr = buf_req->addr; req.data = buf_req->data; req.state = STATE_IOREQ_READY; req.dir = buf_req->dir; req.df = 1; req.type = buf_req->type; req.data_is_ptr = 0; qw = (req.size == 8); if (qw) { buf_req = &buf_page->buf_ioreq[(rdptr + 1) % IOREQ_BUFFER_SLOT_NUM]; req.data |= ((uint64_t)buf_req->data) << 32; } handle_ioreq(state, &req); atomic_add(&buf_page->read_pointer, qw + 1); } return req.count; } static void handle_buffered_io(void *opaque) { XenIOState *state = opaque; if (handle_buffered_iopage(state)) { timer_mod(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); } else { timer_del(state->buffered_io_timer); xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); } } static void cpu_handle_ioreq(void *opaque) { XenIOState *state = opaque; ioreq_t *req = cpu_get_ioreq(state); handle_buffered_iopage(state); if (req) { handle_ioreq(state, req); if (req->state != STATE_IOREQ_INPROCESS) { fprintf(stderr, "Badness in I/O request ... not in service?!: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size ", type: %"FMT_ioreq_size"\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size, req->type); destroy_hvm_domain(false); return; } xen_wmb(); /* Update ioreq contents /then/ update state. */ /* * We do this before we send the response so that the tools * have the opportunity to pick up on the reset before the * guest resumes and does a hlt with interrupts disabled which * causes Xen to powerdown the domain. */ if (runstate_is_running()) { if (qemu_shutdown_requested_get()) { destroy_hvm_domain(false); } if (qemu_reset_requested_get()) { qemu_system_reset(VMRESET_REPORT); destroy_hvm_domain(true); } } req->state = STATE_IORESP_READY; xenevtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]); } } static void xen_main_loop_prepare(XenIOState *state) { int evtchn_fd = -1; if (state->xce_handle != NULL) { evtchn_fd = xenevtchn_fd(state->xce_handle); } state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, state); if (evtchn_fd != -1) { CPUState *cpu_state; DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); CPU_FOREACH(cpu_state) { DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", __func__, cpu_state->cpu_index, cpu_state); state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; } qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); } } static void xen_hvm_change_state_handler(void *opaque, int running, RunState rstate) { XenIOState *state = opaque; if (running) { xen_main_loop_prepare(state); } xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, (rstate == RUN_STATE_RUNNING)); } static void xen_exit_notifier(Notifier *n, void *data) { XenIOState *state = container_of(n, XenIOState, exit); xenevtchn_close(state->xce_handle); xs_daemon_close(state->xenstore); } static void xen_read_physmap(XenIOState *state) { XenPhysmap *physmap = NULL; unsigned int len, num, i; char path[80], *value = NULL; char **entries = NULL; snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap", xen_domid); entries = xs_directory(state->xenstore, 0, path, &num); if (entries == NULL) return; for (i = 0; i < num; i++) { physmap = g_malloc(sizeof (XenPhysmap)); physmap->phys_offset = strtoull(entries[i], NULL, 16); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/start_addr", xen_domid, entries[i]); value = xs_read(state->xenstore, 0, path, &len); if (value == NULL) { g_free(physmap); continue; } physmap->start_addr = strtoull(value, NULL, 16); free(value); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/size", xen_domid, entries[i]); value = xs_read(state->xenstore, 0, path, &len); if (value == NULL) { g_free(physmap); continue; } physmap->size = strtoull(value, NULL, 16); free(value); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/name", xen_domid, entries[i]); physmap->name = xs_read(state->xenstore, 0, path, &len); QLIST_INSERT_HEAD(&state->physmap, physmap, list); } free(entries); } static void xen_wakeup_notifier(Notifier *notifier, void *data) { xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); } void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) { int i, rc; xen_pfn_t ioreq_pfn; xen_pfn_t bufioreq_pfn; evtchn_port_t bufioreq_evtchn; XenIOState *state; state = g_malloc0(sizeof (XenIOState)); state->xce_handle = xenevtchn_open(NULL, 0); if (state->xce_handle == NULL) { perror("xen: event channel open"); goto err; } state->xenstore = xs_daemon_open(); if (state->xenstore == NULL) { perror("xen: xenstore open"); goto err; } rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid); if (rc < 0) { perror("xen: ioreq server create"); goto err; } state->exit.notify = xen_exit_notifier; qemu_add_exit_notifier(&state->exit); state->suspend.notify = xen_suspend_notifier; qemu_register_suspend_notifier(&state->suspend); state->wakeup.notify = xen_wakeup_notifier; qemu_register_wakeup_notifier(&state->wakeup); rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid, &ioreq_pfn, &bufioreq_pfn, &bufioreq_evtchn); if (rc < 0) { error_report("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT, errno, xen_xc); goto err; } DPRINTF("shared page at pfn %lx\n", ioreq_pfn); DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1, &ioreq_pfn, NULL); if (state->shared_page == NULL) { error_report("map shared IO page returned error %d handle=" XC_INTERFACE_FMT, errno, xen_xc); goto err; } rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); if (!rc) { DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); state->shared_vmport_page = xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1, &ioreq_pfn, NULL); if (state->shared_vmport_page == NULL) { error_report("map shared vmport IO page returned error %d handle=" XC_INTERFACE_FMT, errno, xen_xc); goto err; } } else if (rc != -ENOSYS) { error_report("get vmport regs pfn returned error %d, rc=%d", errno, rc); goto err; } state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1, &bufioreq_pfn, NULL); if (state->buffered_io_page == NULL) { error_report("map buffered IO page returned error %d", errno); goto err; } /* Note: cpus is empty at this point in init */ state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true); if (rc < 0) { error_report("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT, errno, xen_xc); goto err; } state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); /* FIXME: how about if we overflow the page here? */ for (i = 0; i < max_cpus; i++) { rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, xen_vcpu_eport(state->shared_page, i)); if (rc == -1) { error_report("shared evtchn %d bind error %d", i, errno); goto err; } state->ioreq_local_port[i] = rc; } rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, bufioreq_evtchn); if (rc == -1) { error_report("buffered evtchn bind error %d", errno); goto err; } state->bufioreq_local_port = rc; /* Init RAM management */ xen_map_cache_init(xen_phys_offset_to_gaddr, state); xen_ram_init(pcms, ram_size, ram_memory); qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); state->memory_listener = xen_memory_listener; QLIST_INIT(&state->physmap); memory_listener_register(&state->memory_listener, &address_space_memory); state->log_for_dirtybit = NULL; state->io_listener = xen_io_listener; memory_listener_register(&state->io_listener, &address_space_io); state->device_listener = xen_device_listener; device_listener_register(&state->device_listener); /* Initialize backend core & drivers */ if (xen_be_init() != 0) { error_report("xen backend core setup failed"); goto err; } xen_be_register("console", &xen_console_ops); xen_be_register("vkbd", &xen_kbdmouse_ops); xen_be_register("qdisk", &xen_blkdev_ops); xen_read_physmap(state); return; err: error_report("xen hardware virtual machine initialisation failed"); exit(1); } void destroy_hvm_domain(bool reboot) { XenXC xc_handle; int sts; xc_handle = xen_xc_interface_open(0, 0, 0); if (xc_handle == XC_HANDLER_INITIAL_VALUE) { fprintf(stderr, "Cannot acquire xenctrl handle\n"); } else { sts = xc_domain_shutdown(xc_handle, xen_domid, reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); if (sts != 0) { fprintf(stderr, "xc_domain_shutdown failed to issue %s, " "sts %d, %s\n", reboot ? "reboot" : "poweroff", sts, strerror(errno)); } else { fprintf(stderr, "Issued domain %d %s\n", xen_domid, reboot ? "reboot" : "poweroff"); } xc_interface_close(xc_handle); } } void xen_register_framebuffer(MemoryRegion *mr) { framebuffer = mr; } void xen_shutdown_fatal_error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "Will destroy the domain.\n"); /* destroy the domain */ qemu_system_shutdown_request(); } void xen_modified_memory(ram_addr_t start, ram_addr_t length) { if (unlikely(xen_in_migration)) { int rc; ram_addr_t start_pfn, nb_pages; if (length == 0) { length = TARGET_PAGE_SIZE; } start_pfn = start >> TARGET_PAGE_BITS; nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) - start_pfn; rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages); if (rc) { fprintf(stderr, "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", __func__, start, nb_pages, rc, strerror(-rc)); } } } void qmp_xen_set_global_dirty_log(bool enable, Error **errp) { if (enable) { memory_global_dirty_log_start(); } else { memory_global_dirty_log_stop(); } }