/* * Copyright (C) 2010 Citrix Ltd. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include <sys/mman.h> #include "hw/pci.h" #include "hw/pc.h" #include "hw/xen_common.h" #include "hw/xen_backend.h" #include "range.h" #include "xen-mapcache.h" #include "trace.h" #include <xen/hvm/ioreq.h> #include <xen/hvm/params.h> //#define DEBUG_XEN #ifdef DEBUG_XEN #define DPRINTF(fmt, ...) \ do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif /* Compatibility with older version */ #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) { return shared_page->vcpu_iodata[i].vp_eport; } static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) { return &shared_page->vcpu_iodata[vcpu].vp_ioreq; } # define FMT_ioreq_size PRIx64 #else static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) { return shared_page->vcpu_ioreq[i].vp_eport; } static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) { return &shared_page->vcpu_ioreq[vcpu]; } # define FMT_ioreq_size "u" #endif #define BUFFER_IO_MAX_DELAY 100 typedef struct XenPhysmap { target_phys_addr_t start_addr; ram_addr_t size; target_phys_addr_t phys_offset; QLIST_ENTRY(XenPhysmap) list; } XenPhysmap; typedef struct XenIOState { shared_iopage_t *shared_page; buffered_iopage_t *buffered_io_page; QEMUTimer *buffered_io_timer; /* the evtchn port for polling the notification, */ evtchn_port_t *ioreq_local_port; /* the evtchn fd for polling */ XenEvtchn xce_handle; /* which vcpu we are serving */ int send_vcpu; struct xs_handle *xenstore; CPUPhysMemoryClient client; QLIST_HEAD(, XenPhysmap) physmap; const XenPhysmap *log_for_dirtybit; Notifier exit; } XenIOState; /* Xen specific function for piix pci */ int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) { return irq_num + ((pci_dev->devfn >> 3) << 2); } void xen_piix3_set_irq(void *opaque, int irq_num, int level) { xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2, irq_num & 3, level); } void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) { int i; /* Scan for updates to PCI link routes (0x60-0x63). */ for (i = 0; i < len; i++) { uint8_t v = (val >> (8 * i)) & 0xff; if (v & 0x80) { v = 0; } v &= 0xf; if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v); } } } void xen_cmos_set_s3_resume(void *opaque, int irq, int level) { pc_cmos_set_s3_resume(opaque, irq, level); if (level) { xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); } } /* Xen Interrupt Controller */ static void xen_set_irq(void *opaque, int irq, int level) { xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level); } qemu_irq *xen_interrupt_controller_init(void) { return qemu_allocate_irqs(xen_set_irq, NULL, 16); } /* Memory Ops */ static void xen_ram_init(ram_addr_t ram_size) { RAMBlock *new_block; ram_addr_t below_4g_mem_size, above_4g_mem_size = 0; new_block = qemu_mallocz(sizeof (*new_block)); pstrcpy(new_block->idstr, sizeof (new_block->idstr), "xen.ram"); new_block->host = NULL; new_block->offset = 0; new_block->length = ram_size; QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next); ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty, new_block->length >> TARGET_PAGE_BITS); memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), 0xff, new_block->length >> TARGET_PAGE_BITS); if (ram_size >= 0xe0000000 ) { above_4g_mem_size = ram_size - 0xe0000000; below_4g_mem_size = 0xe0000000; } else { below_4g_mem_size = ram_size; } cpu_register_physical_memory(0, below_4g_mem_size, new_block->offset); #if TARGET_PHYS_ADDR_BITS > 32 if (above_4g_mem_size > 0) { cpu_register_physical_memory(0x100000000ULL, above_4g_mem_size, new_block->offset + below_4g_mem_size); } #endif } void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size) { unsigned long nr_pfn; xen_pfn_t *pfn_list; int i; trace_xen_ram_alloc(ram_addr, size); nr_pfn = size >> TARGET_PAGE_BITS; pfn_list = qemu_malloc(sizeof (*pfn_list) * nr_pfn); for (i = 0; i < nr_pfn; i++) { pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; } if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { hw_error("xen: failed to populate ram at %lx", ram_addr); } qemu_free(pfn_list); } static XenPhysmap *get_physmapping(XenIOState *state, target_phys_addr_t start_addr, ram_addr_t size) { XenPhysmap *physmap = NULL; start_addr &= TARGET_PAGE_MASK; QLIST_FOREACH(physmap, &state->physmap, list) { if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { return physmap; } } return NULL; } #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340 static int xen_add_to_physmap(XenIOState *state, target_phys_addr_t start_addr, ram_addr_t size, target_phys_addr_t phys_offset) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; target_phys_addr_t pfn, start_gpfn; RAMBlock *block; if (get_physmapping(state, start_addr, size)) { return 0; } if (size <= 0) { return -1; } /* Xen can only handle a single dirty log region for now and we want * the linear framebuffer to be that region. * Avoid tracking any regions that is not videoram and avoid tracking * the legacy vga region. */ QLIST_FOREACH(block, &ram_list.blocks, next) { if (!strcmp(block->idstr, "vga.vram") && block->offset == phys_offset && start_addr > 0xbffff) { goto go_physmap; } } return -1; go_physmap: DPRINTF("mapping vram to %llx - %llx, from %llx\n", start_addr, start_addr + size, phys_offset); pfn = phys_offset >> TARGET_PAGE_BITS; start_gpfn = start_addr >> TARGET_PAGE_BITS; for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { unsigned long idx = pfn + i; xen_pfn_t gpfn = start_gpfn + i; rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); return -rc; } } physmap = qemu_malloc(sizeof (XenPhysmap)); physmap->start_addr = start_addr; physmap->size = size; physmap->phys_offset = phys_offset; QLIST_INSERT_HEAD(&state->physmap, physmap, list); xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, start_addr >> TARGET_PAGE_BITS, (start_addr + size) >> TARGET_PAGE_BITS, XEN_DOMCTL_MEM_CACHEATTR_WB); return 0; } static int xen_remove_from_physmap(XenIOState *state, target_phys_addr_t start_addr, ram_addr_t size) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; target_phys_addr_t phys_offset = 0; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { return -1; } phys_offset = physmap->phys_offset; size = physmap->size; DPRINTF("unmapping vram to %llx - %llx, from %llx\n", phys_offset, phys_offset + size, start_addr); size >>= TARGET_PAGE_BITS; start_addr >>= TARGET_PAGE_BITS; phys_offset >>= TARGET_PAGE_BITS; for (i = 0; i < size; i++) { unsigned long idx = start_addr + i; xen_pfn_t gpfn = phys_offset + i; rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); return -rc; } } QLIST_REMOVE(physmap, list); if (state->log_for_dirtybit == physmap) { state->log_for_dirtybit = NULL; } free(physmap); return 0; } #else static int xen_add_to_physmap(XenIOState *state, target_phys_addr_t start_addr, ram_addr_t size, target_phys_addr_t phys_offset) { return -ENOSYS; } static int xen_remove_from_physmap(XenIOState *state, target_phys_addr_t start_addr, ram_addr_t size) { return -ENOSYS; } #endif static void xen_client_set_memory(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset, bool log_dirty) { XenIOState *state = container_of(client, XenIOState, client); ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; hvmmem_type_t mem_type; if (!(start_addr != phys_offset && ( (log_dirty && flags < IO_MEM_UNASSIGNED) || (!log_dirty && flags == IO_MEM_UNASSIGNED)))) { return; } trace_xen_client_set_memory(start_addr, size, phys_offset, log_dirty); start_addr &= TARGET_PAGE_MASK; size = TARGET_PAGE_ALIGN(size); phys_offset &= TARGET_PAGE_MASK; switch (flags) { case IO_MEM_RAM: xen_add_to_physmap(state, start_addr, size, phys_offset); break; case IO_MEM_ROM: mem_type = HVMMEM_ram_ro; if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type, start_addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS)) { DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n", start_addr); } break; case IO_MEM_UNASSIGNED: if (xen_remove_from_physmap(state, start_addr, size) < 0) { DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); } break; } } static int xen_sync_dirty_bitmap(XenIOState *state, target_phys_addr_t start_addr, ram_addr_t size) { target_phys_addr_t npages = size >> TARGET_PAGE_BITS; target_phys_addr_t vram_offset = 0; const int width = sizeof(unsigned long) * 8; unsigned long bitmap[(npages + width - 1) / width]; int rc, i, j; const XenPhysmap *physmap = NULL; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { /* not handled */ return -1; } if (state->log_for_dirtybit == NULL) { state->log_for_dirtybit = physmap; } else if (state->log_for_dirtybit != physmap) { return -1; } vram_offset = physmap->phys_offset; rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid, start_addr >> TARGET_PAGE_BITS, npages, bitmap); if (rc) { return rc; } for (i = 0; i < ARRAY_SIZE(bitmap); i++) { unsigned long map = bitmap[i]; while (map != 0) { j = ffsl(map) - 1; map &= ~(1ul << j); cpu_physical_memory_set_dirty(vram_offset + (i * width + j) * TARGET_PAGE_SIZE); }; } return 0; } static int xen_log_start(CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size) { XenIOState *state = container_of(client, XenIOState, client); return xen_sync_dirty_bitmap(state, phys_addr, size); } static int xen_log_stop(CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size) { XenIOState *state = container_of(client, XenIOState, client); state->log_for_dirtybit = NULL; /* Disable dirty bit tracking */ return xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL); } static int xen_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, target_phys_addr_t end_addr) { XenIOState *state = container_of(client, XenIOState, client); return xen_sync_dirty_bitmap(state, start_addr, end_addr - start_addr); } static int xen_client_migration_log(struct CPUPhysMemoryClient *client, int enable) { return 0; } static CPUPhysMemoryClient xen_cpu_phys_memory_client = { .set_memory = xen_client_set_memory, .sync_dirty_bitmap = xen_client_sync_dirty_bitmap, .migration_log = xen_client_migration_log, .log_start = xen_log_start, .log_stop = xen_log_stop, }; /* VCPU Operations, MMIO, IO ring ... */ static void xen_reset_vcpu(void *opaque) { CPUState *env = opaque; env->halted = 1; } void xen_vcpu_init(void) { CPUState *first_cpu; if ((first_cpu = qemu_get_cpu(0))) { qemu_register_reset(xen_reset_vcpu, first_cpu); xen_reset_vcpu(first_cpu); } } /* get the ioreq packets from share mem */ static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) { ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); if (req->state != STATE_IOREQ_READY) { DPRINTF("I/O request not ready: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); return NULL; } xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ req->state = STATE_IOREQ_INPROCESS; return req; } /* use poll to get the port notification */ /* ioreq_vec--out,the */ /* retval--the number of ioreq packet */ static ioreq_t *cpu_get_ioreq(XenIOState *state) { int i; evtchn_port_t port; port = xc_evtchn_pending(state->xce_handle); if (port != -1) { for (i = 0; i < smp_cpus; i++) { if (state->ioreq_local_port[i] == port) { break; } } if (i == smp_cpus) { hw_error("Fatal error while trying to get io event!\n"); } /* unmask the wanted port again */ xc_evtchn_unmask(state->xce_handle, port); /* get the io packet from shared memory */ state->send_vcpu = i; return cpu_get_ioreq_from_shared_memory(state, i); } /* read error or read nothing */ return NULL; } static uint32_t do_inp(pio_addr_t addr, unsigned long size) { switch (size) { case 1: return cpu_inb(addr); case 2: return cpu_inw(addr); case 4: return cpu_inl(addr); default: hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size); } } static void do_outp(pio_addr_t addr, unsigned long size, uint32_t val) { switch (size) { case 1: return cpu_outb(addr, val); case 2: return cpu_outw(addr, val); case 4: return cpu_outl(addr, val); default: hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size); } } static void cpu_ioreq_pio(ioreq_t *req) { int i, sign; sign = req->df ? -1 : 1; if (req->dir == IOREQ_READ) { if (!req->data_is_ptr) { req->data = do_inp(req->addr, req->size); } else { uint32_t tmp; for (i = 0; i < req->count; i++) { tmp = do_inp(req->addr, req->size); cpu_physical_memory_write(req->data + (sign * i * req->size), (uint8_t *) &tmp, req->size); } } } else if (req->dir == IOREQ_WRITE) { if (!req->data_is_ptr) { do_outp(req->addr, req->size, req->data); } else { for (i = 0; i < req->count; i++) { uint32_t tmp = 0; cpu_physical_memory_read(req->data + (sign * i * req->size), (uint8_t*) &tmp, req->size); do_outp(req->addr, req->size, tmp); } } } } static void cpu_ioreq_move(ioreq_t *req) { int i, sign; sign = req->df ? -1 : 1; if (!req->data_is_ptr) { if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { cpu_physical_memory_read(req->addr + (sign * i * req->size), (uint8_t *) &req->data, req->size); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { cpu_physical_memory_write(req->addr + (sign * i * req->size), (uint8_t *) &req->data, req->size); } } } else { target_ulong tmp; if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { cpu_physical_memory_read(req->addr + (sign * i * req->size), (uint8_t*) &tmp, req->size); cpu_physical_memory_write(req->data + (sign * i * req->size), (uint8_t*) &tmp, req->size); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { cpu_physical_memory_read(req->data + (sign * i * req->size), (uint8_t*) &tmp, req->size); cpu_physical_memory_write(req->addr + (sign * i * req->size), (uint8_t*) &tmp, req->size); } } } } static void handle_ioreq(ioreq_t *req) { if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && (req->size < sizeof (target_ulong))) { req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; } switch (req->type) { case IOREQ_TYPE_PIO: cpu_ioreq_pio(req); break; case IOREQ_TYPE_COPY: cpu_ioreq_move(req); break; case IOREQ_TYPE_TIMEOFFSET: break; case IOREQ_TYPE_INVALIDATE: qemu_invalidate_map_cache(); break; default: hw_error("Invalid ioreq type 0x%x\n", req->type); } } static void handle_buffered_iopage(XenIOState *state) { buf_ioreq_t *buf_req = NULL; ioreq_t req; int qw; if (!state->buffered_io_page) { return; } while (state->buffered_io_page->read_pointer != state->buffered_io_page->write_pointer) { buf_req = &state->buffered_io_page->buf_ioreq[ state->buffered_io_page->read_pointer % IOREQ_BUFFER_SLOT_NUM]; req.size = 1UL << buf_req->size; req.count = 1; req.addr = buf_req->addr; req.data = buf_req->data; req.state = STATE_IOREQ_READY; req.dir = buf_req->dir; req.df = 1; req.type = buf_req->type; req.data_is_ptr = 0; qw = (req.size == 8); if (qw) { buf_req = &state->buffered_io_page->buf_ioreq[ (state->buffered_io_page->read_pointer + 1) % IOREQ_BUFFER_SLOT_NUM]; req.data |= ((uint64_t)buf_req->data) << 32; } handle_ioreq(&req); xen_mb(); state->buffered_io_page->read_pointer += qw ? 2 : 1; } } static void handle_buffered_io(void *opaque) { XenIOState *state = opaque; handle_buffered_iopage(state); qemu_mod_timer(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_get_clock_ms(rt_clock)); } static void cpu_handle_ioreq(void *opaque) { XenIOState *state = opaque; ioreq_t *req = cpu_get_ioreq(state); handle_buffered_iopage(state); if (req) { handle_ioreq(req); if (req->state != STATE_IOREQ_INPROCESS) { fprintf(stderr, "Badness in I/O request ... not in service?!: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); destroy_hvm_domain(); return; } xen_wmb(); /* Update ioreq contents /then/ update state. */ /* * We do this before we send the response so that the tools * have the opportunity to pick up on the reset before the * guest resumes and does a hlt with interrupts disabled which * causes Xen to powerdown the domain. */ if (vm_running) { if (qemu_shutdown_requested_get()) { destroy_hvm_domain(); } if (qemu_reset_requested_get()) { qemu_system_reset(VMRESET_REPORT); } } req->state = STATE_IORESP_READY; xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]); } } static void xenstore_record_dm_state(XenIOState *s, const char *state) { char path[50]; snprintf(path, sizeof (path), "/local/domain/0/device-model/%u/state", xen_domid); if (!xs_write(s->xenstore, XBT_NULL, path, state, strlen(state))) { fprintf(stderr, "error recording dm state\n"); exit(1); } } static void xen_main_loop_prepare(XenIOState *state) { int evtchn_fd = -1; if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) { evtchn_fd = xc_evtchn_fd(state->xce_handle); } state->buffered_io_timer = qemu_new_timer_ms(rt_clock, handle_buffered_io, state); qemu_mod_timer(state->buffered_io_timer, qemu_get_clock_ms(rt_clock)); if (evtchn_fd != -1) { qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); } /* record state running */ xenstore_record_dm_state(state, "running"); } /* Initialise Xen */ static void xen_vm_change_state_handler(void *opaque, int running, int reason) { XenIOState *state = opaque; if (running) { xen_main_loop_prepare(state); } } static void xen_exit_notifier(Notifier *n) { XenIOState *state = container_of(n, XenIOState, exit); xc_evtchn_close(state->xce_handle); xs_daemon_close(state->xenstore); } int xen_init(void) { xen_xc = xen_xc_interface_open(0, 0, 0); if (xen_xc == XC_HANDLER_INITIAL_VALUE) { xen_be_printf(NULL, 0, "can't open xen interface\n"); return -1; } return 0; } int xen_hvm_init(void) { int i, rc; unsigned long ioreq_pfn; XenIOState *state; state = qemu_mallocz(sizeof (XenIOState)); state->xce_handle = xen_xc_evtchn_open(NULL, 0); if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) { perror("xen: event channel open"); return -errno; } state->xenstore = xs_daemon_open(); if (state->xenstore == NULL) { perror("xen: xenstore open"); return -errno; } state->exit.notify = xen_exit_notifier; qemu_add_exit_notifier(&state->exit); xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_IOREQ_PFN, &ioreq_pfn); DPRINTF("shared page at pfn %lx\n", ioreq_pfn); state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE, PROT_READ|PROT_WRITE, ioreq_pfn); if (state->shared_page == NULL) { hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT, errno, xen_xc); } xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_BUFIOREQ_PFN, &ioreq_pfn); DPRINTF("buffered io page at pfn %lx\n", ioreq_pfn); state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE, PROT_READ|PROT_WRITE, ioreq_pfn); if (state->buffered_io_page == NULL) { hw_error("map buffered IO page returned error %d", errno); } state->ioreq_local_port = qemu_mallocz(smp_cpus * sizeof (evtchn_port_t)); /* FIXME: how about if we overflow the page here? */ for (i = 0; i < smp_cpus; i++) { rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid, xen_vcpu_eport(state->shared_page, i)); if (rc == -1) { fprintf(stderr, "bind interdomain ioctl error %d\n", errno); return -1; } state->ioreq_local_port[i] = rc; } /* Init RAM management */ qemu_map_cache_init(); xen_ram_init(ram_size); qemu_add_vm_change_state_handler(xen_vm_change_state_handler, state); state->client = xen_cpu_phys_memory_client; QLIST_INIT(&state->physmap); cpu_register_phys_memory_client(&state->client); state->log_for_dirtybit = NULL; return 0; } void destroy_hvm_domain(void) { XenXC xc_handle; int sts; xc_handle = xen_xc_interface_open(0, 0, 0); if (xc_handle == XC_HANDLER_INITIAL_VALUE) { fprintf(stderr, "Cannot acquire xenctrl handle\n"); } else { sts = xc_domain_shutdown(xc_handle, xen_domid, SHUTDOWN_poweroff); if (sts != 0) { fprintf(stderr, "? xc_domain_shutdown failed to issue poweroff, " "sts %d, %s\n", sts, strerror(errno)); } else { fprintf(stderr, "Issued domain %d poweroff\n", xen_domid); } xc_interface_close(xc_handle); } }