/* * Copyright (C) 2010 Citrix Ltd. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include <sys/mman.h> #include "hw/pci/pci.h" #include "hw/i386/pc.h" #include "hw/xen/xen_common.h" #include "hw/xen/xen_backend.h" #include "qmp-commands.h" #include "sysemu/char.h" #include "qemu/range.h" #include "sysemu/xen-mapcache.h" #include "trace.h" #include "exec/address-spaces.h" #include <xen/hvm/ioreq.h> #include <xen/hvm/params.h> #include <xen/hvm/e820.h> //#define DEBUG_XEN #ifdef DEBUG_XEN #define DPRINTF(fmt, ...) \ do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; static MemoryRegion *framebuffer; static bool xen_in_migration; /* Compatibility with older version */ #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) { return shared_page->vcpu_iodata[i].vp_eport; } static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) { return &shared_page->vcpu_iodata[vcpu].vp_ioreq; } # define FMT_ioreq_size PRIx64 #else static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) { return shared_page->vcpu_ioreq[i].vp_eport; } static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) { return &shared_page->vcpu_ioreq[vcpu]; } # define FMT_ioreq_size "u" #endif #ifndef HVM_PARAM_BUFIOREQ_EVTCHN #define HVM_PARAM_BUFIOREQ_EVTCHN 26 #endif #define BUFFER_IO_MAX_DELAY 100 typedef struct XenPhysmap { hwaddr start_addr; ram_addr_t size; char *name; hwaddr phys_offset; QLIST_ENTRY(XenPhysmap) list; } XenPhysmap; typedef struct XenIOState { shared_iopage_t *shared_page; buffered_iopage_t *buffered_io_page; QEMUTimer *buffered_io_timer; /* the evtchn port for polling the notification, */ evtchn_port_t *ioreq_local_port; /* evtchn local port for buffered io */ evtchn_port_t bufioreq_local_port; /* the evtchn fd for polling */ XenEvtchn xce_handle; /* which vcpu we are serving */ int send_vcpu; struct xs_handle *xenstore; MemoryListener memory_listener; QLIST_HEAD(, XenPhysmap) physmap; hwaddr free_phys_offset; const XenPhysmap *log_for_dirtybit; Notifier exit; Notifier suspend; } XenIOState; /* Xen specific function for piix pci */ int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) { return irq_num + ((pci_dev->devfn >> 3) << 2); } void xen_piix3_set_irq(void *opaque, int irq_num, int level) { xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2, irq_num & 3, level); } void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) { int i; /* Scan for updates to PCI link routes (0x60-0x63). */ for (i = 0; i < len; i++) { uint8_t v = (val >> (8 * i)) & 0xff; if (v & 0x80) { v = 0; } v &= 0xf; if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v); } } } void xen_hvm_inject_msi(uint64_t addr, uint32_t data) { xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data); } static void xen_suspend_notifier(Notifier *notifier, void *data) { xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); } /* Xen Interrupt Controller */ static void xen_set_irq(void *opaque, int irq, int level) { xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level); } qemu_irq *xen_interrupt_controller_init(void) { return qemu_allocate_irqs(xen_set_irq, NULL, 16); } /* Memory Ops */ static void xen_ram_init(ram_addr_t ram_size) { MemoryRegion *sysmem = get_system_memory(); ram_addr_t below_4g_mem_size, above_4g_mem_size = 0; ram_addr_t block_len; block_len = ram_size; if (ram_size >= QEMU_BELOW_4G_RAM_END) { /* Xen does not allocate the memory continuously, and keep a hole at * QEMU_BELOW_4G_RAM_END of QEMU_BELOW_4G_MMIO_LENGTH */ block_len += QEMU_BELOW_4G_MMIO_LENGTH; } memory_region_init_ram(&ram_memory, "xen.ram", block_len); vmstate_register_ram_global(&ram_memory); if (ram_size >= QEMU_BELOW_4G_RAM_END) { above_4g_mem_size = ram_size - QEMU_BELOW_4G_RAM_END; below_4g_mem_size = QEMU_BELOW_4G_RAM_END; } else { below_4g_mem_size = ram_size; } memory_region_init_alias(&ram_640k, "xen.ram.640k", &ram_memory, 0, 0xa0000); memory_region_add_subregion(sysmem, 0, &ram_640k); /* Skip of the VGA IO memory space, it will be registered later by the VGA * emulated device. * * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load * the Options ROM, so it is registered here as RAM. */ memory_region_init_alias(&ram_lo, "xen.ram.lo", &ram_memory, 0xc0000, below_4g_mem_size - 0xc0000); memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); if (above_4g_mem_size > 0) { memory_region_init_alias(&ram_hi, "xen.ram.hi", &ram_memory, 0x100000000ULL, above_4g_mem_size); memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); } } void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr) { unsigned long nr_pfn; xen_pfn_t *pfn_list; int i; if (runstate_check(RUN_STATE_INMIGRATE)) { /* RAM already populated in Xen */ fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", __func__, size, ram_addr); return; } if (mr == &ram_memory) { return; } trace_xen_ram_alloc(ram_addr, size); nr_pfn = size >> TARGET_PAGE_BITS; pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); for (i = 0; i < nr_pfn; i++) { pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; } if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { hw_error("xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr); } g_free(pfn_list); } static XenPhysmap *get_physmapping(XenIOState *state, hwaddr start_addr, ram_addr_t size) { XenPhysmap *physmap = NULL; start_addr &= TARGET_PAGE_MASK; QLIST_FOREACH(physmap, &state->physmap, list) { if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { return physmap; } } return NULL; } static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, ram_addr_t size, void *opaque) { hwaddr addr = start_addr & TARGET_PAGE_MASK; XenIOState *xen_io_state = opaque; XenPhysmap *physmap = NULL; QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { return physmap->start_addr; } } return start_addr; } #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340 static int xen_add_to_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size, MemoryRegion *mr, hwaddr offset_within_region) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; hwaddr pfn, start_gpfn; hwaddr phys_offset = memory_region_get_ram_addr(mr); char path[80], value[17]; if (get_physmapping(state, start_addr, size)) { return 0; } if (size <= 0) { return -1; } /* Xen can only handle a single dirty log region for now and we want * the linear framebuffer to be that region. * Avoid tracking any regions that is not videoram and avoid tracking * the legacy vga region. */ if (mr == framebuffer && start_addr > 0xbffff) { goto go_physmap; } return -1; go_physmap: DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", start_addr, start_addr + size); pfn = phys_offset >> TARGET_PAGE_BITS; start_gpfn = start_addr >> TARGET_PAGE_BITS; for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { unsigned long idx = pfn + i; xen_pfn_t gpfn = start_gpfn + i; rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); return -rc; } } physmap = g_malloc(sizeof (XenPhysmap)); physmap->start_addr = start_addr; physmap->size = size; physmap->name = (char *)mr->name; physmap->phys_offset = phys_offset; QLIST_INSERT_HEAD(&state->physmap, physmap, list); xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, start_addr >> TARGET_PAGE_BITS, (start_addr + size) >> TARGET_PAGE_BITS, XEN_DOMCTL_MEM_CACHEATTR_WB); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", xen_domid, (uint64_t)phys_offset); snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr); if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { return -1; } snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", xen_domid, (uint64_t)phys_offset); snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size); if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { return -1; } if (mr->name) { snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", xen_domid, (uint64_t)phys_offset); if (!xs_write(state->xenstore, 0, path, mr->name, strlen(mr->name))) { return -1; } } return 0; } static int xen_remove_from_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; hwaddr phys_offset = 0; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { return -1; } phys_offset = physmap->phys_offset; size = physmap->size; DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", from ", "%"HWADDR_PRIx"\n", phys_offset, phys_offset + size, start_addr); size >>= TARGET_PAGE_BITS; start_addr >>= TARGET_PAGE_BITS; phys_offset >>= TARGET_PAGE_BITS; for (i = 0; i < size; i++) { unsigned long idx = start_addr + i; xen_pfn_t gpfn = phys_offset + i; rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); return -rc; } } QLIST_REMOVE(physmap, list); if (state->log_for_dirtybit == physmap) { state->log_for_dirtybit = NULL; } g_free(physmap); return 0; } #else static int xen_add_to_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size, MemoryRegion *mr, hwaddr offset_within_region) { return -ENOSYS; } static int xen_remove_from_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { return -ENOSYS; } #endif static void xen_set_memory(struct MemoryListener *listener, MemoryRegionSection *section, bool add) { XenIOState *state = container_of(listener, XenIOState, memory_listener); hwaddr start_addr = section->offset_within_address_space; ram_addr_t size = int128_get64(section->size); bool log_dirty = memory_region_is_logging(section->mr); hvmmem_type_t mem_type; if (!memory_region_is_ram(section->mr)) { return; } if (!(section->mr != &ram_memory && ( (log_dirty && add) || (!log_dirty && !add)))) { return; } trace_xen_client_set_memory(start_addr, size, log_dirty); start_addr &= TARGET_PAGE_MASK; size = TARGET_PAGE_ALIGN(size); if (add) { if (!memory_region_is_rom(section->mr)) { xen_add_to_physmap(state, start_addr, size, section->mr, section->offset_within_region); } else { mem_type = HVMMEM_ram_ro; if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type, start_addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS)) { DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n", start_addr); } } } else { if (xen_remove_from_physmap(state, start_addr, size) < 0) { DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); } } } static void xen_region_add(MemoryListener *listener, MemoryRegionSection *section) { xen_set_memory(listener, section, true); } static void xen_region_del(MemoryListener *listener, MemoryRegionSection *section) { xen_set_memory(listener, section, false); } static void xen_sync_dirty_bitmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { hwaddr npages = size >> TARGET_PAGE_BITS; const int width = sizeof(unsigned long) * 8; unsigned long bitmap[(npages + width - 1) / width]; int rc, i, j; const XenPhysmap *physmap = NULL; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { /* not handled */ return; } if (state->log_for_dirtybit == NULL) { state->log_for_dirtybit = physmap; } else if (state->log_for_dirtybit != physmap) { /* Only one range for dirty bitmap can be tracked. */ return; } rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid, start_addr >> TARGET_PAGE_BITS, npages, bitmap); if (rc < 0) { if (rc != -ENODATA) { memory_region_set_dirty(framebuffer, 0, size); DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx ", 0x" TARGET_FMT_plx "): %s\n", start_addr, start_addr + size, strerror(-rc)); } return; } for (i = 0; i < ARRAY_SIZE(bitmap); i++) { unsigned long map = bitmap[i]; while (map != 0) { j = ffsl(map) - 1; map &= ~(1ul << j); memory_region_set_dirty(framebuffer, (i * width + j) * TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); }; } } static void xen_log_start(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, memory_listener); xen_sync_dirty_bitmap(state, section->offset_within_address_space, int128_get64(section->size)); } static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, memory_listener); state->log_for_dirtybit = NULL; /* Disable dirty bit tracking */ xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL); } static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, memory_listener); xen_sync_dirty_bitmap(state, section->offset_within_address_space, int128_get64(section->size)); } static void xen_log_global_start(MemoryListener *listener) { if (xen_enabled()) { xen_in_migration = true; } } static void xen_log_global_stop(MemoryListener *listener) { xen_in_migration = false; } static MemoryListener xen_memory_listener = { .region_add = xen_region_add, .region_del = xen_region_del, .log_start = xen_log_start, .log_stop = xen_log_stop, .log_sync = xen_log_sync, .log_global_start = xen_log_global_start, .log_global_stop = xen_log_global_stop, .priority = 10, }; void qmp_xen_set_global_dirty_log(bool enable, Error **errp) { if (enable) { memory_global_dirty_log_start(); } else { memory_global_dirty_log_stop(); } } /* get the ioreq packets from share mem */ static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) { ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); if (req->state != STATE_IOREQ_READY) { DPRINTF("I/O request not ready: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); return NULL; } xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ req->state = STATE_IOREQ_INPROCESS; return req; } /* use poll to get the port notification */ /* ioreq_vec--out,the */ /* retval--the number of ioreq packet */ static ioreq_t *cpu_get_ioreq(XenIOState *state) { int i; evtchn_port_t port; port = xc_evtchn_pending(state->xce_handle); if (port == state->bufioreq_local_port) { qemu_mod_timer(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_get_clock_ms(rt_clock)); return NULL; } if (port != -1) { for (i = 0; i < smp_cpus; i++) { if (state->ioreq_local_port[i] == port) { break; } } if (i == smp_cpus) { hw_error("Fatal error while trying to get io event!\n"); } /* unmask the wanted port again */ xc_evtchn_unmask(state->xce_handle, port); /* get the io packet from shared memory */ state->send_vcpu = i; return cpu_get_ioreq_from_shared_memory(state, i); } /* read error or read nothing */ return NULL; } static uint32_t do_inp(pio_addr_t addr, unsigned long size) { switch (size) { case 1: return cpu_inb(addr); case 2: return cpu_inw(addr); case 4: return cpu_inl(addr); default: hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size); } } static void do_outp(pio_addr_t addr, unsigned long size, uint32_t val) { switch (size) { case 1: return cpu_outb(addr, val); case 2: return cpu_outw(addr, val); case 4: return cpu_outl(addr, val); default: hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size); } } /* * Helper functions which read/write an object from/to physical guest * memory, as part of the implementation of an ioreq. * * Equivalent to * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, * val, req->size, 0/1) * except without the integer overflow problems. */ static void rw_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val, int rw) { /* Do everything unsigned so overflow just results in a truncated result * and accesses to undesired parts of guest memory, which is up * to the guest */ hwaddr offset = (hwaddr)req->size * i; if (req->df) { addr -= offset; } else { addr += offset; } cpu_physical_memory_rw(addr, val, req->size, rw); } static inline void read_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val) { rw_phys_req_item(addr, req, i, val, 0); } static inline void write_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val) { rw_phys_req_item(addr, req, i, val, 1); } static void cpu_ioreq_pio(ioreq_t *req) { uint32_t i; if (req->dir == IOREQ_READ) { if (!req->data_is_ptr) { req->data = do_inp(req->addr, req->size); } else { uint32_t tmp; for (i = 0; i < req->count; i++) { tmp = do_inp(req->addr, req->size); write_phys_req_item(req->data, req, i, &tmp); } } } else if (req->dir == IOREQ_WRITE) { if (!req->data_is_ptr) { do_outp(req->addr, req->size, req->data); } else { for (i = 0; i < req->count; i++) { uint32_t tmp = 0; read_phys_req_item(req->data, req, i, &tmp); do_outp(req->addr, req->size, tmp); } } } } static void cpu_ioreq_move(ioreq_t *req) { uint32_t i; if (!req->data_is_ptr) { if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->addr, req, i, &req->data); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { write_phys_req_item(req->addr, req, i, &req->data); } } } else { uint64_t tmp; if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->addr, req, i, &tmp); write_phys_req_item(req->data, req, i, &tmp); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->data, req, i, &tmp); write_phys_req_item(req->addr, req, i, &tmp); } } } } static void handle_ioreq(ioreq_t *req) { if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && (req->size < sizeof (target_ulong))) { req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; } switch (req->type) { case IOREQ_TYPE_PIO: cpu_ioreq_pio(req); break; case IOREQ_TYPE_COPY: cpu_ioreq_move(req); break; case IOREQ_TYPE_TIMEOFFSET: break; case IOREQ_TYPE_INVALIDATE: xen_invalidate_map_cache(); break; default: hw_error("Invalid ioreq type 0x%x\n", req->type); } } static int handle_buffered_iopage(XenIOState *state) { buf_ioreq_t *buf_req = NULL; ioreq_t req; int qw; if (!state->buffered_io_page) { return 0; } memset(&req, 0x00, sizeof(req)); while (state->buffered_io_page->read_pointer != state->buffered_io_page->write_pointer) { buf_req = &state->buffered_io_page->buf_ioreq[ state->buffered_io_page->read_pointer % IOREQ_BUFFER_SLOT_NUM]; req.size = 1UL << buf_req->size; req.count = 1; req.addr = buf_req->addr; req.data = buf_req->data; req.state = STATE_IOREQ_READY; req.dir = buf_req->dir; req.df = 1; req.type = buf_req->type; req.data_is_ptr = 0; qw = (req.size == 8); if (qw) { buf_req = &state->buffered_io_page->buf_ioreq[ (state->buffered_io_page->read_pointer + 1) % IOREQ_BUFFER_SLOT_NUM]; req.data |= ((uint64_t)buf_req->data) << 32; } handle_ioreq(&req); xen_mb(); state->buffered_io_page->read_pointer += qw ? 2 : 1; } return req.count; } static void handle_buffered_io(void *opaque) { XenIOState *state = opaque; if (handle_buffered_iopage(state)) { qemu_mod_timer(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_get_clock_ms(rt_clock)); } else { qemu_del_timer(state->buffered_io_timer); xc_evtchn_unmask(state->xce_handle, state->bufioreq_local_port); } } static void cpu_handle_ioreq(void *opaque) { XenIOState *state = opaque; ioreq_t *req = cpu_get_ioreq(state); handle_buffered_iopage(state); if (req) { handle_ioreq(req); if (req->state != STATE_IOREQ_INPROCESS) { fprintf(stderr, "Badness in I/O request ... not in service?!: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); destroy_hvm_domain(false); return; } xen_wmb(); /* Update ioreq contents /then/ update state. */ /* * We do this before we send the response so that the tools * have the opportunity to pick up on the reset before the * guest resumes and does a hlt with interrupts disabled which * causes Xen to powerdown the domain. */ if (runstate_is_running()) { if (qemu_shutdown_requested_get()) { destroy_hvm_domain(false); } if (qemu_reset_requested_get()) { qemu_system_reset(VMRESET_REPORT); destroy_hvm_domain(true); } } req->state = STATE_IORESP_READY; xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]); } } static int store_dev_info(int domid, CharDriverState *cs, const char *string) { struct xs_handle *xs = NULL; char *path = NULL; char *newpath = NULL; char *pts = NULL; int ret = -1; /* Only continue if we're talking to a pty. */ if (strncmp(cs->filename, "pty:", 4)) { return 0; } pts = cs->filename + 4; /* We now have everything we need to set the xenstore entry. */ xs = xs_open(0); if (xs == NULL) { fprintf(stderr, "Could not contact XenStore\n"); goto out; } path = xs_get_domain_path(xs, domid); if (path == NULL) { fprintf(stderr, "xs_get_domain_path() error\n"); goto out; } newpath = realloc(path, (strlen(path) + strlen(string) + strlen("/tty") + 1)); if (newpath == NULL) { fprintf(stderr, "realloc error\n"); goto out; } path = newpath; strcat(path, string); strcat(path, "/tty"); if (!xs_write(xs, XBT_NULL, path, pts, strlen(pts))) { fprintf(stderr, "xs_write for '%s' fail", string); goto out; } ret = 0; out: free(path); xs_close(xs); return ret; } void xenstore_store_pv_console_info(int i, CharDriverState *chr) { if (i == 0) { store_dev_info(xen_domid, chr, "/console"); } else { char buf[32]; snprintf(buf, sizeof(buf), "/device/console/%d", i); store_dev_info(xen_domid, chr, buf); } } static void xenstore_record_dm_state(struct xs_handle *xs, const char *state) { char path[50]; if (xs == NULL) { fprintf(stderr, "xenstore connection not initialized\n"); exit(1); } snprintf(path, sizeof (path), "/local/domain/0/device-model/%u/state", xen_domid); if (!xs_write(xs, XBT_NULL, path, state, strlen(state))) { fprintf(stderr, "error recording dm state\n"); exit(1); } } static void xen_main_loop_prepare(XenIOState *state) { int evtchn_fd = -1; if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) { evtchn_fd = xc_evtchn_fd(state->xce_handle); } state->buffered_io_timer = qemu_new_timer_ms(rt_clock, handle_buffered_io, state); if (evtchn_fd != -1) { qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); } } /* Initialise Xen */ static void xen_change_state_handler(void *opaque, int running, RunState state) { if (running) { /* record state running */ xenstore_record_dm_state(xenstore, "running"); } } static void xen_hvm_change_state_handler(void *opaque, int running, RunState rstate) { XenIOState *xstate = opaque; if (running) { xen_main_loop_prepare(xstate); } } static void xen_exit_notifier(Notifier *n, void *data) { XenIOState *state = container_of(n, XenIOState, exit); xc_evtchn_close(state->xce_handle); xs_daemon_close(state->xenstore); } int xen_init(void) { xen_xc = xen_xc_interface_open(0, 0, 0); if (xen_xc == XC_HANDLER_INITIAL_VALUE) { xen_be_printf(NULL, 0, "can't open xen interface\n"); return -1; } qemu_add_vm_change_state_handler(xen_change_state_handler, NULL); return 0; } static void xen_read_physmap(XenIOState *state) { XenPhysmap *physmap = NULL; unsigned int len, num, i; char path[80], *value = NULL; char **entries = NULL; snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap", xen_domid); entries = xs_directory(state->xenstore, 0, path, &num); if (entries == NULL) return; for (i = 0; i < num; i++) { physmap = g_malloc(sizeof (XenPhysmap)); physmap->phys_offset = strtoull(entries[i], NULL, 16); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/start_addr", xen_domid, entries[i]); value = xs_read(state->xenstore, 0, path, &len); if (value == NULL) { g_free(physmap); continue; } physmap->start_addr = strtoull(value, NULL, 16); free(value); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/size", xen_domid, entries[i]); value = xs_read(state->xenstore, 0, path, &len); if (value == NULL) { g_free(physmap); continue; } physmap->size = strtoull(value, NULL, 16); free(value); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/name", xen_domid, entries[i]); physmap->name = xs_read(state->xenstore, 0, path, &len); QLIST_INSERT_HEAD(&state->physmap, physmap, list); } free(entries); } int xen_hvm_init(void) { int i, rc; unsigned long ioreq_pfn; unsigned long bufioreq_evtchn; XenIOState *state; state = g_malloc0(sizeof (XenIOState)); state->xce_handle = xen_xc_evtchn_open(NULL, 0); if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) { perror("xen: event channel open"); g_free(state); return -errno; } state->xenstore = xs_daemon_open(); if (state->xenstore == NULL) { perror("xen: xenstore open"); g_free(state); return -errno; } state->exit.notify = xen_exit_notifier; qemu_add_exit_notifier(&state->exit); state->suspend.notify = xen_suspend_notifier; qemu_register_suspend_notifier(&state->suspend); xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_IOREQ_PFN, &ioreq_pfn); DPRINTF("shared page at pfn %lx\n", ioreq_pfn); state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE, PROT_READ|PROT_WRITE, ioreq_pfn); if (state->shared_page == NULL) { hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT, errno, xen_xc); } xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_BUFIOREQ_PFN, &ioreq_pfn); DPRINTF("buffered io page at pfn %lx\n", ioreq_pfn); state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE, PROT_READ|PROT_WRITE, ioreq_pfn); if (state->buffered_io_page == NULL) { hw_error("map buffered IO page returned error %d", errno); } state->ioreq_local_port = g_malloc0(smp_cpus * sizeof (evtchn_port_t)); /* FIXME: how about if we overflow the page here? */ for (i = 0; i < smp_cpus; i++) { rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid, xen_vcpu_eport(state->shared_page, i)); if (rc == -1) { fprintf(stderr, "bind interdomain ioctl error %d\n", errno); return -1; } state->ioreq_local_port[i] = rc; } rc = xc_get_hvm_param(xen_xc, xen_domid, HVM_PARAM_BUFIOREQ_EVTCHN, &bufioreq_evtchn); if (rc < 0) { fprintf(stderr, "failed to get HVM_PARAM_BUFIOREQ_EVTCHN\n"); return -1; } rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid, (uint32_t)bufioreq_evtchn); if (rc == -1) { fprintf(stderr, "bind interdomain ioctl error %d\n", errno); return -1; } state->bufioreq_local_port = rc; /* Init RAM management */ xen_map_cache_init(xen_phys_offset_to_gaddr, state); xen_ram_init(ram_size); qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); state->memory_listener = xen_memory_listener; QLIST_INIT(&state->physmap); memory_listener_register(&state->memory_listener, &address_space_memory); state->log_for_dirtybit = NULL; /* Initialize backend core & drivers */ if (xen_be_init() != 0) { fprintf(stderr, "%s: xen backend core setup failed\n", __FUNCTION__); exit(1); } xen_be_register("console", &xen_console_ops); xen_be_register("vkbd", &xen_kbdmouse_ops); xen_be_register("qdisk", &xen_blkdev_ops); xen_read_physmap(state); return 0; } void destroy_hvm_domain(bool reboot) { XenXC xc_handle; int sts; xc_handle = xen_xc_interface_open(0, 0, 0); if (xc_handle == XC_HANDLER_INITIAL_VALUE) { fprintf(stderr, "Cannot acquire xenctrl handle\n"); } else { sts = xc_domain_shutdown(xc_handle, xen_domid, reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); if (sts != 0) { fprintf(stderr, "xc_domain_shutdown failed to issue %s, " "sts %d, %s\n", reboot ? "reboot" : "poweroff", sts, strerror(errno)); } else { fprintf(stderr, "Issued domain %d %s\n", xen_domid, reboot ? "reboot" : "poweroff"); } xc_interface_close(xc_handle); } } void xen_register_framebuffer(MemoryRegion *mr) { framebuffer = mr; } void xen_shutdown_fatal_error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "Will destroy the domain.\n"); /* destroy the domain */ qemu_system_shutdown_request(); } void xen_modified_memory(ram_addr_t start, ram_addr_t length) { if (unlikely(xen_in_migration)) { int rc; ram_addr_t start_pfn, nb_pages; if (length == 0) { length = TARGET_PAGE_SIZE; } start_pfn = start >> TARGET_PAGE_BITS; nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) - start_pfn; rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages); if (rc) { fprintf(stderr, "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", __func__, start, nb_pages, rc, strerror(-rc)); } } }