/* * QEMU VNC display driver * * Copyright (C) 2006 Anthony Liguori * Copyright (C) 2006 Fabrice Bellard * Copyright (C) 2009 Red Hat, Inc * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vnc.h" #include "sysemu.h" #include "qemu_socket.h" #include "qemu-timer.h" #define VNC_REFRESH_INTERVAL (1000 / 30) #include "vnc_keysym.h" #include "d3des.h" #define count_bits(c, v) { \ for (c = 0; v; v >>= 1) \ { \ c += v & 1; \ } \ } static VncDisplay *vnc_display; /* needed for info vnc */ static DisplayChangeListener *dcl; static char *addr_to_string(const char *format, struct sockaddr_storage *sa, socklen_t salen) { char *addr; char host[NI_MAXHOST]; char serv[NI_MAXSERV]; int err; if ((err = getnameinfo((struct sockaddr *)sa, salen, host, sizeof(host), serv, sizeof(serv), NI_NUMERICHOST | NI_NUMERICSERV)) != 0) { VNC_DEBUG("Cannot resolve address %d: %s\n", err, gai_strerror(err)); return NULL; } if (asprintf(&addr, format, host, serv) < 0) return NULL; return addr; } char *vnc_socket_local_addr(const char *format, int fd) { struct sockaddr_storage sa; socklen_t salen; salen = sizeof(sa); if (getsockname(fd, (struct sockaddr*)&sa, &salen) < 0) return NULL; return addr_to_string(format, &sa, salen); } char *vnc_socket_remote_addr(const char *format, int fd) { struct sockaddr_storage sa; socklen_t salen; salen = sizeof(sa); if (getpeername(fd, (struct sockaddr*)&sa, &salen) < 0) return NULL; return addr_to_string(format, &sa, salen); } static const char *vnc_auth_name(VncDisplay *vd) { switch (vd->auth) { case VNC_AUTH_INVALID: return "invalid"; case VNC_AUTH_NONE: return "none"; case VNC_AUTH_VNC: return "vnc"; case VNC_AUTH_RA2: return "ra2"; case VNC_AUTH_RA2NE: return "ra2ne"; case VNC_AUTH_TIGHT: return "tight"; case VNC_AUTH_ULTRA: return "ultra"; case VNC_AUTH_TLS: return "tls"; case VNC_AUTH_VENCRYPT: #ifdef CONFIG_VNC_TLS switch (vd->subauth) { case VNC_AUTH_VENCRYPT_PLAIN: return "vencrypt+plain"; case VNC_AUTH_VENCRYPT_TLSNONE: return "vencrypt+tls+none"; case VNC_AUTH_VENCRYPT_TLSVNC: return "vencrypt+tls+vnc"; case VNC_AUTH_VENCRYPT_TLSPLAIN: return "vencrypt+tls+plain"; case VNC_AUTH_VENCRYPT_X509NONE: return "vencrypt+x509+none"; case VNC_AUTH_VENCRYPT_X509VNC: return "vencrypt+x509+vnc"; case VNC_AUTH_VENCRYPT_X509PLAIN: return "vencrypt+x509+plain"; case VNC_AUTH_VENCRYPT_TLSSASL: return "vencrypt+tls+sasl"; case VNC_AUTH_VENCRYPT_X509SASL: return "vencrypt+x509+sasl"; default: return "vencrypt"; } #else return "vencrypt"; #endif case VNC_AUTH_SASL: return "sasl"; } return "unknown"; } #define VNC_SOCKET_FORMAT_PRETTY "local %s:%s" static void do_info_vnc_client(Monitor *mon, VncState *client) { char *clientAddr = vnc_socket_remote_addr(" address: %s:%s\n", client->csock); if (!clientAddr) return; monitor_printf(mon, "Client:\n"); monitor_printf(mon, "%s", clientAddr); free(clientAddr); #ifdef CONFIG_VNC_TLS if (client->tls.session && client->tls.dname) monitor_printf(mon, " x509 dname: %s\n", client->tls.dname); else monitor_printf(mon, " x509 dname: none\n"); #endif #ifdef CONFIG_VNC_SASL if (client->sasl.conn && client->sasl.username) monitor_printf(mon, " username: %s\n", client->sasl.username); else monitor_printf(mon, " username: none\n"); #endif } void do_info_vnc(Monitor *mon) { if (vnc_display == NULL || vnc_display->display == NULL) { monitor_printf(mon, "Server: disabled\n"); } else { char *serverAddr = vnc_socket_local_addr(" address: %s:%s\n", vnc_display->lsock); if (!serverAddr) return; monitor_printf(mon, "Server:\n"); monitor_printf(mon, "%s", serverAddr); free(serverAddr); monitor_printf(mon, " auth: %s\n", vnc_auth_name(vnc_display)); if (vnc_display->clients) { VncState *client = vnc_display->clients; while (client) { do_info_vnc_client(mon, client); client = client->next; } } else { monitor_printf(mon, "Client: none\n"); } } } static inline uint32_t vnc_has_feature(VncState *vs, int feature) { return (vs->features & (1 << feature)); } /* TODO 1) Get the queue working for IO. 2) there is some weirdness when using the -S option (the screen is grey and not totally invalidated 3) resolutions > 1024 */ static void vnc_update_client(void *opaque); static void vnc_colordepth(VncState *vs); static inline void vnc_set_bit(uint32_t *d, int k) { d[k >> 5] |= 1 << (k & 0x1f); } static inline void vnc_clear_bit(uint32_t *d, int k) { d[k >> 5] &= ~(1 << (k & 0x1f)); } static inline void vnc_set_bits(uint32_t *d, int n, int nb_words) { int j; j = 0; while (n >= 32) { d[j++] = -1; n -= 32; } if (n > 0) d[j++] = (1 << n) - 1; while (j < nb_words) d[j++] = 0; } static inline int vnc_get_bit(const uint32_t *d, int k) { return (d[k >> 5] >> (k & 0x1f)) & 1; } static inline int vnc_and_bits(const uint32_t *d1, const uint32_t *d2, int nb_words) { int i; for(i = 0; i < nb_words; i++) { if ((d1[i] & d2[i]) != 0) return 1; } return 0; } static void vnc_update(VncState *vs, int x, int y, int w, int h) { int i; h += y; /* round x down to ensure the loop only spans one 16-pixel block per, iteration. otherwise, if (x % 16) != 0, the last iteration may span two 16-pixel blocks but we only mark the first as dirty */ w += (x % 16); x -= (x % 16); x = MIN(x, vs->serverds.width); y = MIN(y, vs->serverds.height); w = MIN(x + w, vs->serverds.width) - x; h = MIN(h, vs->serverds.height); for (; y < h; y++) for (i = 0; i < w; i += 16) vnc_set_bit(vs->dirty_row[y], (x + i) / 16); } static void vnc_dpy_update(DisplayState *ds, int x, int y, int w, int h) { VncDisplay *vd = ds->opaque; VncState *vs = vd->clients; while (vs != NULL) { vnc_update(vs, x, y, w, h); vs = vs->next; } } static void vnc_framebuffer_update(VncState *vs, int x, int y, int w, int h, int32_t encoding) { vnc_write_u16(vs, x); vnc_write_u16(vs, y); vnc_write_u16(vs, w); vnc_write_u16(vs, h); vnc_write_s32(vs, encoding); } void buffer_reserve(Buffer *buffer, size_t len) { if ((buffer->capacity - buffer->offset) < len) { buffer->capacity += (len + 1024); buffer->buffer = qemu_realloc(buffer->buffer, buffer->capacity); if (buffer->buffer == NULL) { fprintf(stderr, "vnc: out of memory\n"); exit(1); } } } int buffer_empty(Buffer *buffer) { return buffer->offset == 0; } uint8_t *buffer_end(Buffer *buffer) { return buffer->buffer + buffer->offset; } void buffer_reset(Buffer *buffer) { buffer->offset = 0; } void buffer_append(Buffer *buffer, const void *data, size_t len) { memcpy(buffer->buffer + buffer->offset, data, len); buffer->offset += len; } static void vnc_resize(VncState *vs) { DisplayState *ds = vs->ds; int size_changed; vs->old_data = qemu_realloc(vs->old_data, ds_get_linesize(ds) * ds_get_height(ds)); if (vs->old_data == NULL) { fprintf(stderr, "vnc: memory allocation failed\n"); exit(1); } if (ds_get_bytes_per_pixel(ds) != vs->serverds.pf.bytes_per_pixel) console_color_init(ds); vnc_colordepth(vs); size_changed = ds_get_width(ds) != vs->serverds.width || ds_get_height(ds) != vs->serverds.height; vs->serverds = *(ds->surface); if (size_changed) { if (vs->csock != -1 && vnc_has_feature(vs, VNC_FEATURE_RESIZE)) { vnc_write_u8(vs, 0); /* msg id */ vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); /* number of rects */ vnc_framebuffer_update(vs, 0, 0, ds_get_width(ds), ds_get_height(ds), VNC_ENCODING_DESKTOPRESIZE); vnc_flush(vs); } } memset(vs->dirty_row, 0xFF, sizeof(vs->dirty_row)); memset(vs->old_data, 42, ds_get_linesize(vs->ds) * ds_get_height(vs->ds)); } static void vnc_dpy_resize(DisplayState *ds) { VncDisplay *vd = ds->opaque; VncState *vs = vd->clients; while (vs != NULL) { vnc_resize(vs); vs = vs->next; } } /* fastest code */ static void vnc_write_pixels_copy(VncState *vs, void *pixels, int size) { vnc_write(vs, pixels, size); } /* slowest but generic code. */ static void vnc_convert_pixel(VncState *vs, uint8_t *buf, uint32_t v) { uint8_t r, g, b; r = ((((v & vs->serverds.pf.rmask) >> vs->serverds.pf.rshift) << vs->clientds.pf.rbits) >> vs->serverds.pf.rbits); g = ((((v & vs->serverds.pf.gmask) >> vs->serverds.pf.gshift) << vs->clientds.pf.gbits) >> vs->serverds.pf.gbits); b = ((((v & vs->serverds.pf.bmask) >> vs->serverds.pf.bshift) << vs->clientds.pf.bbits) >> vs->serverds.pf.bbits); v = (r << vs->clientds.pf.rshift) | (g << vs->clientds.pf.gshift) | (b << vs->clientds.pf.bshift); switch(vs->clientds.pf.bytes_per_pixel) { case 1: buf[0] = v; break; case 2: if (vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) { buf[0] = v >> 8; buf[1] = v; } else { buf[1] = v >> 8; buf[0] = v; } break; default: case 4: if (vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) { buf[0] = v >> 24; buf[1] = v >> 16; buf[2] = v >> 8; buf[3] = v; } else { buf[3] = v >> 24; buf[2] = v >> 16; buf[1] = v >> 8; buf[0] = v; } break; } } static void vnc_write_pixels_generic(VncState *vs, void *pixels1, int size) { uint8_t buf[4]; if (vs->serverds.pf.bytes_per_pixel == 4) { uint32_t *pixels = pixels1; int n, i; n = size >> 2; for(i = 0; i < n; i++) { vnc_convert_pixel(vs, buf, pixels[i]); vnc_write(vs, buf, vs->clientds.pf.bytes_per_pixel); } } else if (vs->serverds.pf.bytes_per_pixel == 2) { uint16_t *pixels = pixels1; int n, i; n = size >> 1; for(i = 0; i < n; i++) { vnc_convert_pixel(vs, buf, pixels[i]); vnc_write(vs, buf, vs->clientds.pf.bytes_per_pixel); } } else if (vs->serverds.pf.bytes_per_pixel == 1) { uint8_t *pixels = pixels1; int n, i; n = size; for(i = 0; i < n; i++) { vnc_convert_pixel(vs, buf, pixels[i]); vnc_write(vs, buf, vs->clientds.pf.bytes_per_pixel); } } else { fprintf(stderr, "vnc_write_pixels_generic: VncState color depth not supported\n"); } } static void send_framebuffer_update_raw(VncState *vs, int x, int y, int w, int h) { int i; uint8_t *row; row = ds_get_data(vs->ds) + y * ds_get_linesize(vs->ds) + x * ds_get_bytes_per_pixel(vs->ds); for (i = 0; i < h; i++) { vs->write_pixels(vs, row, w * ds_get_bytes_per_pixel(vs->ds)); row += ds_get_linesize(vs->ds); } } static void hextile_enc_cord(uint8_t *ptr, int x, int y, int w, int h) { ptr[0] = ((x & 0x0F) << 4) | (y & 0x0F); ptr[1] = (((w - 1) & 0x0F) << 4) | ((h - 1) & 0x0F); } #define BPP 8 #include "vnchextile.h" #undef BPP #define BPP 16 #include "vnchextile.h" #undef BPP #define BPP 32 #include "vnchextile.h" #undef BPP #define GENERIC #define BPP 8 #include "vnchextile.h" #undef BPP #undef GENERIC #define GENERIC #define BPP 16 #include "vnchextile.h" #undef BPP #undef GENERIC #define GENERIC #define BPP 32 #include "vnchextile.h" #undef BPP #undef GENERIC static void send_framebuffer_update_hextile(VncState *vs, int x, int y, int w, int h) { int i, j; int has_fg, has_bg; uint8_t *last_fg, *last_bg; last_fg = (uint8_t *) qemu_malloc(vs->serverds.pf.bytes_per_pixel); last_bg = (uint8_t *) qemu_malloc(vs->serverds.pf.bytes_per_pixel); has_fg = has_bg = 0; for (j = y; j < (y + h); j += 16) { for (i = x; i < (x + w); i += 16) { vs->send_hextile_tile(vs, i, j, MIN(16, x + w - i), MIN(16, y + h - j), last_bg, last_fg, &has_bg, &has_fg); } } free(last_fg); free(last_bg); } static void vnc_zlib_init(VncState *vs) { int i; for (i=0; i<(sizeof(vs->zlib_stream) / sizeof(z_stream)); i++) vs->zlib_stream[i].opaque = NULL; } static void vnc_zlib_start(VncState *vs) { buffer_reset(&vs->zlib); // make the output buffer be the zlib buffer, so we can compress it later vs->zlib_tmp = vs->output; vs->output = vs->zlib; } static int vnc_zlib_stop(VncState *vs, int stream_id) { z_streamp zstream = &vs->zlib_stream[stream_id]; int previous_out; // switch back to normal output/zlib buffers vs->zlib = vs->output; vs->output = vs->zlib_tmp; // compress the zlib buffer // initialize the stream // XXX need one stream per session if (zstream->opaque != vs) { int err; VNC_DEBUG("VNC: initializing zlib stream %d\n", stream_id); VNC_DEBUG("VNC: opaque = %p | vs = %p\n", zstream->opaque, vs); zstream->zalloc = Z_NULL; zstream->zfree = Z_NULL; err = deflateInit2(zstream, vs->tight_compression, Z_DEFLATED, MAX_WBITS, MAX_MEM_LEVEL, Z_DEFAULT_STRATEGY); if (err != Z_OK) { fprintf(stderr, "VNC: error initializing zlib\n"); return -1; } zstream->opaque = vs; } // XXX what to do if tight_compression changed in between? // reserve memory in output buffer buffer_reserve(&vs->output, vs->zlib.offset + 64); // set pointers zstream->next_in = vs->zlib.buffer; zstream->avail_in = vs->zlib.offset; zstream->next_out = vs->output.buffer + vs->output.offset; zstream->avail_out = vs->output.capacity - vs->output.offset; zstream->data_type = Z_BINARY; previous_out = zstream->total_out; // start encoding if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) { fprintf(stderr, "VNC: error during zlib compression\n"); return -1; } vs->output.offset = vs->output.capacity - zstream->avail_out; return zstream->total_out - previous_out; } static void send_framebuffer_update_zlib(VncState *vs, int x, int y, int w, int h) { int old_offset, new_offset, bytes_written; vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_ZLIB); // remember where we put in the follow-up size old_offset = vs->output.offset; vnc_write_s32(vs, 0); // compress the stream vnc_zlib_start(vs); send_framebuffer_update_raw(vs, x, y, w, h); bytes_written = vnc_zlib_stop(vs, 0); if (bytes_written == -1) return; // hack in the size new_offset = vs->output.offset; vs->output.offset = old_offset; vnc_write_u32(vs, bytes_written); vs->output.offset = new_offset; } static void send_framebuffer_update(VncState *vs, int x, int y, int w, int h) { switch(vs->vnc_encoding) { case VNC_ENCODING_ZLIB: send_framebuffer_update_zlib(vs, x, y, w, h); break; case VNC_ENCODING_HEXTILE: vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_HEXTILE); send_framebuffer_update_hextile(vs, x, y, w, h); break; default: vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_RAW); send_framebuffer_update_raw(vs, x, y, w, h); break; } } static void vnc_copy(VncState *vs, int src_x, int src_y, int dst_x, int dst_y, int w, int h) { vnc_update_client(vs); vnc_write_u8(vs, 0); /* msg id */ vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); /* number of rects */ vnc_framebuffer_update(vs, dst_x, dst_y, w, h, VNC_ENCODING_COPYRECT); vnc_write_u16(vs, src_x); vnc_write_u16(vs, src_y); vnc_flush(vs); } static void vnc_dpy_copy(DisplayState *ds, int src_x, int src_y, int dst_x, int dst_y, int w, int h) { VncDisplay *vd = ds->opaque; VncState *vs = vd->clients; while (vs != NULL) { if (vnc_has_feature(vs, VNC_FEATURE_COPYRECT)) vnc_copy(vs, src_x, src_y, dst_x, dst_y, w, h); else /* TODO */ vnc_update(vs, dst_x, dst_y, w, h); vs = vs->next; } } static int find_dirty_height(VncState *vs, int y, int last_x, int x) { int h; for (h = 1; h < (vs->serverds.height - y); h++) { int tmp_x; if (!vnc_get_bit(vs->dirty_row[y + h], last_x)) break; for (tmp_x = last_x; tmp_x < x; tmp_x++) vnc_clear_bit(vs->dirty_row[y + h], tmp_x); } return h; } static void vnc_update_client(void *opaque) { VncState *vs = opaque; if (vs->need_update && vs->csock != -1) { int y; uint8_t *row; char *old_row; uint32_t width_mask[VNC_DIRTY_WORDS]; int n_rectangles; int saved_offset; int has_dirty = 0; vga_hw_update(); vnc_set_bits(width_mask, (ds_get_width(vs->ds) / 16), VNC_DIRTY_WORDS); /* Walk through the dirty map and eliminate tiles that really aren't dirty */ row = ds_get_data(vs->ds); old_row = vs->old_data; for (y = 0; y < ds_get_height(vs->ds); y++) { if (vnc_and_bits(vs->dirty_row[y], width_mask, VNC_DIRTY_WORDS)) { int x; uint8_t *ptr; char *old_ptr; ptr = row; old_ptr = (char*)old_row; for (x = 0; x < ds_get_width(vs->ds); x += 16) { if (memcmp(old_ptr, ptr, 16 * ds_get_bytes_per_pixel(vs->ds)) == 0) { vnc_clear_bit(vs->dirty_row[y], (x / 16)); } else { has_dirty = 1; memcpy(old_ptr, ptr, 16 * ds_get_bytes_per_pixel(vs->ds)); } ptr += 16 * ds_get_bytes_per_pixel(vs->ds); old_ptr += 16 * ds_get_bytes_per_pixel(vs->ds); } } row += ds_get_linesize(vs->ds); old_row += ds_get_linesize(vs->ds); } if (!has_dirty && !vs->audio_cap) { qemu_mod_timer(vs->timer, qemu_get_clock(rt_clock) + VNC_REFRESH_INTERVAL); return; } /* Count rectangles */ n_rectangles = 0; vnc_write_u8(vs, 0); /* msg id */ vnc_write_u8(vs, 0); saved_offset = vs->output.offset; vnc_write_u16(vs, 0); for (y = 0; y < vs->serverds.height; y++) { int x; int last_x = -1; for (x = 0; x < vs->serverds.width / 16; x++) { if (vnc_get_bit(vs->dirty_row[y], x)) { if (last_x == -1) { last_x = x; } vnc_clear_bit(vs->dirty_row[y], x); } else { if (last_x != -1) { int h = find_dirty_height(vs, y, last_x, x); send_framebuffer_update(vs, last_x * 16, y, (x - last_x) * 16, h); n_rectangles++; } last_x = -1; } } if (last_x != -1) { int h = find_dirty_height(vs, y, last_x, x); send_framebuffer_update(vs, last_x * 16, y, (x - last_x) * 16, h); n_rectangles++; } } vs->output.buffer[saved_offset] = (n_rectangles >> 8) & 0xFF; vs->output.buffer[saved_offset + 1] = n_rectangles & 0xFF; vnc_flush(vs); } if (vs->csock != -1) { qemu_mod_timer(vs->timer, qemu_get_clock(rt_clock) + VNC_REFRESH_INTERVAL); } } /* audio */ static void audio_capture_notify(void *opaque, audcnotification_e cmd) { VncState *vs = opaque; switch (cmd) { case AUD_CNOTIFY_DISABLE: vnc_write_u8(vs, 255); vnc_write_u8(vs, 1); vnc_write_u16(vs, 0); vnc_flush(vs); break; case AUD_CNOTIFY_ENABLE: vnc_write_u8(vs, 255); vnc_write_u8(vs, 1); vnc_write_u16(vs, 1); vnc_flush(vs); break; } } static void audio_capture_destroy(void *opaque) { } static void audio_capture(void *opaque, void *buf, int size) { VncState *vs = opaque; vnc_write_u8(vs, 255); vnc_write_u8(vs, 1); vnc_write_u16(vs, 2); vnc_write_u32(vs, size); vnc_write(vs, buf, size); vnc_flush(vs); } static void audio_add(VncState *vs) { Monitor *mon = cur_mon; struct audio_capture_ops ops; if (vs->audio_cap) { monitor_printf(mon, "audio already running\n"); return; } ops.notify = audio_capture_notify; ops.destroy = audio_capture_destroy; ops.capture = audio_capture; vs->audio_cap = AUD_add_capture(NULL, &vs->as, &ops, vs); if (!vs->audio_cap) { monitor_printf(mon, "Failed to add audio capture\n"); } } static void audio_del(VncState *vs) { if (vs->audio_cap) { AUD_del_capture(vs->audio_cap, vs); vs->audio_cap = NULL; } } int vnc_client_io_error(VncState *vs, int ret, int last_errno) { if (ret == 0 || ret == -1) { if (ret == -1) { switch (last_errno) { case EINTR: case EAGAIN: #ifdef _WIN32 case WSAEWOULDBLOCK: #endif return 0; default: break; } } VNC_DEBUG("Closing down client sock %d %d\n", ret, ret < 0 ? last_errno : 0); qemu_set_fd_handler2(vs->csock, NULL, NULL, NULL, NULL); closesocket(vs->csock); qemu_del_timer(vs->timer); qemu_free_timer(vs->timer); if (vs->input.buffer) qemu_free(vs->input.buffer); if (vs->output.buffer) qemu_free(vs->output.buffer); #ifdef CONFIG_VNC_TLS vnc_tls_client_cleanup(vs); #endif /* CONFIG_VNC_TLS */ #ifdef CONFIG_VNC_SASL vnc_sasl_client_cleanup(vs); #endif /* CONFIG_VNC_SASL */ audio_del(vs); VncState *p, *parent = NULL; for (p = vs->vd->clients; p != NULL; p = p->next) { if (p == vs) { if (parent) parent->next = p->next; else vs->vd->clients = p->next; break; } parent = p; } if (!vs->vd->clients) dcl->idle = 1; qemu_free(vs->old_data); qemu_free(vs); return 0; } return ret; } void vnc_client_error(VncState *vs) { vnc_client_io_error(vs, -1, EINVAL); } /* * Called to write a chunk of data to the client socket. The data may * be the raw data, or may have already been encoded by SASL. * The data will be written either straight onto the socket, or * written via the GNUTLS wrappers, if TLS/SSL encryption is enabled * * NB, it is theoretically possible to have 2 layers of encryption, * both SASL, and this TLS layer. It is highly unlikely in practice * though, since SASL encryption will typically be a no-op if TLS * is active * * Returns the number of bytes written, which may be less than * the requested 'datalen' if the socket would block. Returns * -1 on error, and disconnects the client socket. */ long vnc_client_write_buf(VncState *vs, const uint8_t *data, size_t datalen) { long ret; #ifdef CONFIG_VNC_TLS if (vs->tls.session) { ret = gnutls_write(vs->tls.session, data, datalen); if (ret < 0) { if (ret == GNUTLS_E_AGAIN) errno = EAGAIN; else errno = EIO; ret = -1; } } else #endif /* CONFIG_VNC_TLS */ ret = send(vs->csock, data, datalen, 0); VNC_DEBUG("Wrote wire %p %d -> %ld\n", data, datalen, ret); return vnc_client_io_error(vs, ret, socket_error()); } /* * Called to write buffered data to the client socket, when not * using any SASL SSF encryption layers. Will write as much data * as possible without blocking. If all buffered data is written, * will switch the FD poll() handler back to read monitoring. * * Returns the number of bytes written, which may be less than * the buffered output data if the socket would block. Returns * -1 on error, and disconnects the client socket. */ static long vnc_client_write_plain(VncState *vs) { long ret; #ifdef CONFIG_VNC_SASL VNC_DEBUG("Write Plain: Pending output %p size %d offset %d. Wait SSF %d\n", vs->output.buffer, vs->output.capacity, vs->output.offset, vs->sasl.waitWriteSSF); if (vs->sasl.conn && vs->sasl.runSSF && vs->sasl.waitWriteSSF) { ret = vnc_client_write_buf(vs, vs->output.buffer, vs->sasl.waitWriteSSF); if (ret) vs->sasl.waitWriteSSF -= ret; } else #endif /* CONFIG_VNC_SASL */ ret = vnc_client_write_buf(vs, vs->output.buffer, vs->output.offset); if (!ret) return 0; memmove(vs->output.buffer, vs->output.buffer + ret, (vs->output.offset - ret)); vs->output.offset -= ret; if (vs->output.offset == 0) { qemu_set_fd_handler2(vs->csock, NULL, vnc_client_read, NULL, vs); } return ret; } /* * First function called whenever there is data to be written to * the client socket. Will delegate actual work according to whether * SASL SSF layers are enabled (thus requiring encryption calls) */ void vnc_client_write(void *opaque) { long ret; VncState *vs = opaque; #ifdef CONFIG_VNC_SASL if (vs->sasl.conn && vs->sasl.runSSF && !vs->sasl.waitWriteSSF) ret = vnc_client_write_sasl(vs); else #endif /* CONFIG_VNC_SASL */ ret = vnc_client_write_plain(vs); } void vnc_read_when(VncState *vs, VncReadEvent *func, size_t expecting) { vs->read_handler = func; vs->read_handler_expect = expecting; } /* * Called to read a chunk of data from the client socket. The data may * be the raw data, or may need to be further decoded by SASL. * The data will be read either straight from to the socket, or * read via the GNUTLS wrappers, if TLS/SSL encryption is enabled * * NB, it is theoretically possible to have 2 layers of encryption, * both SASL, and this TLS layer. It is highly unlikely in practice * though, since SASL encryption will typically be a no-op if TLS * is active * * Returns the number of bytes read, which may be less than * the requested 'datalen' if the socket would block. Returns * -1 on error, and disconnects the client socket. */ long vnc_client_read_buf(VncState *vs, uint8_t *data, size_t datalen) { long ret; #ifdef CONFIG_VNC_TLS if (vs->tls.session) { ret = gnutls_read(vs->tls.session, data, datalen); if (ret < 0) { if (ret == GNUTLS_E_AGAIN) errno = EAGAIN; else errno = EIO; ret = -1; } } else #endif /* CONFIG_VNC_TLS */ ret = recv(vs->csock, data, datalen, 0); VNC_DEBUG("Read wire %p %d -> %ld\n", data, datalen, ret); return vnc_client_io_error(vs, ret, socket_error()); } /* * Called to read data from the client socket to the input buffer, * when not using any SASL SSF encryption layers. Will read as much * data as possible without blocking. * * Returns the number of bytes read. Returns -1 on error, and * disconnects the client socket. */ static long vnc_client_read_plain(VncState *vs) { int ret; VNC_DEBUG("Read plain %p size %d offset %d\n", vs->input.buffer, vs->input.capacity, vs->input.offset); buffer_reserve(&vs->input, 4096); ret = vnc_client_read_buf(vs, buffer_end(&vs->input), 4096); if (!ret) return 0; vs->input.offset += ret; return ret; } /* * First function called whenever there is more data to be read from * the client socket. Will delegate actual work according to whether * SASL SSF layers are enabled (thus requiring decryption calls) */ void vnc_client_read(void *opaque) { VncState *vs = opaque; long ret; #ifdef CONFIG_VNC_SASL if (vs->sasl.conn && vs->sasl.runSSF) ret = vnc_client_read_sasl(vs); else #endif /* CONFIG_VNC_SASL */ ret = vnc_client_read_plain(vs); if (!ret) return; while (vs->read_handler && vs->input.offset >= vs->read_handler_expect) { size_t len = vs->read_handler_expect; int ret; ret = vs->read_handler(vs, vs->input.buffer, len); if (vs->csock == -1) return; if (!ret) { memmove(vs->input.buffer, vs->input.buffer + len, (vs->input.offset - len)); vs->input.offset -= len; } else { vs->read_handler_expect = ret; } } } void vnc_write(VncState *vs, const void *data, size_t len) { buffer_reserve(&vs->output, len); if (buffer_empty(&vs->output)) { qemu_set_fd_handler2(vs->csock, NULL, vnc_client_read, vnc_client_write, vs); } buffer_append(&vs->output, data, len); } void vnc_write_s32(VncState *vs, int32_t value) { vnc_write_u32(vs, *(uint32_t *)&value); } void vnc_write_u32(VncState *vs, uint32_t value) { uint8_t buf[4]; buf[0] = (value >> 24) & 0xFF; buf[1] = (value >> 16) & 0xFF; buf[2] = (value >> 8) & 0xFF; buf[3] = value & 0xFF; vnc_write(vs, buf, 4); } void vnc_write_u16(VncState *vs, uint16_t value) { uint8_t buf[2]; buf[0] = (value >> 8) & 0xFF; buf[1] = value & 0xFF; vnc_write(vs, buf, 2); } void vnc_write_u8(VncState *vs, uint8_t value) { vnc_write(vs, (char *)&value, 1); } void vnc_flush(VncState *vs) { if (vs->output.offset) vnc_client_write(vs); } uint8_t read_u8(uint8_t *data, size_t offset) { return data[offset]; } uint16_t read_u16(uint8_t *data, size_t offset) { return ((data[offset] & 0xFF) << 8) | (data[offset + 1] & 0xFF); } int32_t read_s32(uint8_t *data, size_t offset) { return (int32_t)((data[offset] << 24) | (data[offset + 1] << 16) | (data[offset + 2] << 8) | data[offset + 3]); } uint32_t read_u32(uint8_t *data, size_t offset) { return ((data[offset] << 24) | (data[offset + 1] << 16) | (data[offset + 2] << 8) | data[offset + 3]); } static void client_cut_text(VncState *vs, size_t len, uint8_t *text) { } static void check_pointer_type_change(VncState *vs, int absolute) { if (vnc_has_feature(vs, VNC_FEATURE_POINTER_TYPE_CHANGE) && vs->absolute != absolute) { vnc_write_u8(vs, 0); vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); vnc_framebuffer_update(vs, absolute, 0, ds_get_width(vs->ds), ds_get_height(vs->ds), VNC_ENCODING_POINTER_TYPE_CHANGE); vnc_flush(vs); } vs->absolute = absolute; } static void pointer_event(VncState *vs, int button_mask, int x, int y) { int buttons = 0; int dz = 0; if (button_mask & 0x01) buttons |= MOUSE_EVENT_LBUTTON; if (button_mask & 0x02) buttons |= MOUSE_EVENT_MBUTTON; if (button_mask & 0x04) buttons |= MOUSE_EVENT_RBUTTON; if (button_mask & 0x08) dz = -1; if (button_mask & 0x10) dz = 1; if (vs->absolute) { kbd_mouse_event(x * 0x7FFF / (ds_get_width(vs->ds) - 1), y * 0x7FFF / (ds_get_height(vs->ds) - 1), dz, buttons); } else if (vnc_has_feature(vs, VNC_FEATURE_POINTER_TYPE_CHANGE)) { x -= 0x7FFF; y -= 0x7FFF; kbd_mouse_event(x, y, dz, buttons); } else { if (vs->last_x != -1) kbd_mouse_event(x - vs->last_x, y - vs->last_y, dz, buttons); vs->last_x = x; vs->last_y = y; } check_pointer_type_change(vs, kbd_mouse_is_absolute()); } static void reset_keys(VncState *vs) { int i; for(i = 0; i < 256; i++) { if (vs->modifiers_state[i]) { if (i & 0x80) kbd_put_keycode(0xe0); kbd_put_keycode(i | 0x80); vs->modifiers_state[i] = 0; } } } static void press_key(VncState *vs, int keysym) { kbd_put_keycode(keysym2scancode(vs->vd->kbd_layout, keysym) & 0x7f); kbd_put_keycode(keysym2scancode(vs->vd->kbd_layout, keysym) | 0x80); } static void do_key_event(VncState *vs, int down, int keycode, int sym) { /* QEMU console switch */ switch(keycode) { case 0x2a: /* Left Shift */ case 0x36: /* Right Shift */ case 0x1d: /* Left CTRL */ case 0x9d: /* Right CTRL */ case 0x38: /* Left ALT */ case 0xb8: /* Right ALT */ if (down) vs->modifiers_state[keycode] = 1; else vs->modifiers_state[keycode] = 0; break; case 0x02 ... 0x0a: /* '1' to '9' keys */ if (down && vs->modifiers_state[0x1d] && vs->modifiers_state[0x38]) { /* Reset the modifiers sent to the current console */ reset_keys(vs); console_select(keycode - 0x02); return; } break; case 0x3a: /* CapsLock */ case 0x45: /* NumLock */ if (!down) vs->modifiers_state[keycode] ^= 1; break; } if (keycode_is_keypad(vs->vd->kbd_layout, keycode)) { /* If the numlock state needs to change then simulate an additional keypress before sending this one. This will happen if the user toggles numlock away from the VNC window. */ if (keysym_is_numlock(vs->vd->kbd_layout, sym & 0xFFFF)) { if (!vs->modifiers_state[0x45]) { vs->modifiers_state[0x45] = 1; press_key(vs, 0xff7f); } } else { if (vs->modifiers_state[0x45]) { vs->modifiers_state[0x45] = 0; press_key(vs, 0xff7f); } } } if (is_graphic_console()) { if (keycode & 0x80) kbd_put_keycode(0xe0); if (down) kbd_put_keycode(keycode & 0x7f); else kbd_put_keycode(keycode | 0x80); } else { /* QEMU console emulation */ if (down) { switch (keycode) { case 0x2a: /* Left Shift */ case 0x36: /* Right Shift */ case 0x1d: /* Left CTRL */ case 0x9d: /* Right CTRL */ case 0x38: /* Left ALT */ case 0xb8: /* Right ALT */ break; case 0xc8: kbd_put_keysym(QEMU_KEY_UP); break; case 0xd0: kbd_put_keysym(QEMU_KEY_DOWN); break; case 0xcb: kbd_put_keysym(QEMU_KEY_LEFT); break; case 0xcd: kbd_put_keysym(QEMU_KEY_RIGHT); break; case 0xd3: kbd_put_keysym(QEMU_KEY_DELETE); break; case 0xc7: kbd_put_keysym(QEMU_KEY_HOME); break; case 0xcf: kbd_put_keysym(QEMU_KEY_END); break; case 0xc9: kbd_put_keysym(QEMU_KEY_PAGEUP); break; case 0xd1: kbd_put_keysym(QEMU_KEY_PAGEDOWN); break; default: kbd_put_keysym(sym); break; } } } } static void key_event(VncState *vs, int down, uint32_t sym) { int keycode; if (sym >= 'A' && sym <= 'Z' && is_graphic_console()) sym = sym - 'A' + 'a'; keycode = keysym2scancode(vs->vd->kbd_layout, sym & 0xFFFF); do_key_event(vs, down, keycode, sym); } static void ext_key_event(VncState *vs, int down, uint32_t sym, uint16_t keycode) { /* if the user specifies a keyboard layout, always use it */ if (keyboard_layout) key_event(vs, down, sym); else do_key_event(vs, down, keycode, sym); } static void framebuffer_update_request(VncState *vs, int incremental, int x_position, int y_position, int w, int h) { if (x_position > ds_get_width(vs->ds)) x_position = ds_get_width(vs->ds); if (y_position > ds_get_height(vs->ds)) y_position = ds_get_height(vs->ds); if (x_position + w >= ds_get_width(vs->ds)) w = ds_get_width(vs->ds) - x_position; if (y_position + h >= ds_get_height(vs->ds)) h = ds_get_height(vs->ds) - y_position; int i; vs->need_update = 1; if (!incremental) { char *old_row = vs->old_data + y_position * ds_get_linesize(vs->ds); for (i = 0; i < h; i++) { vnc_set_bits(vs->dirty_row[y_position + i], (ds_get_width(vs->ds) / 16), VNC_DIRTY_WORDS); memset(old_row, 42, ds_get_width(vs->ds) * ds_get_bytes_per_pixel(vs->ds)); old_row += ds_get_linesize(vs->ds); } } } static void send_ext_key_event_ack(VncState *vs) { vnc_write_u8(vs, 0); vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); vnc_framebuffer_update(vs, 0, 0, ds_get_width(vs->ds), ds_get_height(vs->ds), VNC_ENCODING_EXT_KEY_EVENT); vnc_flush(vs); } static void send_ext_audio_ack(VncState *vs) { vnc_write_u8(vs, 0); vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); vnc_framebuffer_update(vs, 0, 0, ds_get_width(vs->ds), ds_get_height(vs->ds), VNC_ENCODING_AUDIO); vnc_flush(vs); } static void set_encodings(VncState *vs, int32_t *encodings, size_t n_encodings) { int i; unsigned int enc = 0; vnc_zlib_init(vs); vs->features = 0; vs->vnc_encoding = 0; vs->tight_compression = 9; vs->tight_quality = 9; vs->absolute = -1; for (i = n_encodings - 1; i >= 0; i--) { enc = encodings[i]; switch (enc) { case VNC_ENCODING_RAW: vs->vnc_encoding = enc; break; case VNC_ENCODING_COPYRECT: vs->features |= VNC_FEATURE_COPYRECT_MASK; break; case VNC_ENCODING_HEXTILE: vs->features |= VNC_FEATURE_HEXTILE_MASK; vs->vnc_encoding = enc; break; case VNC_ENCODING_ZLIB: vs->features |= VNC_FEATURE_ZLIB_MASK; vs->vnc_encoding = enc; break; case VNC_ENCODING_DESKTOPRESIZE: vs->features |= VNC_FEATURE_RESIZE_MASK; break; case VNC_ENCODING_POINTER_TYPE_CHANGE: vs->features |= VNC_FEATURE_POINTER_TYPE_CHANGE_MASK; break; case VNC_ENCODING_EXT_KEY_EVENT: send_ext_key_event_ack(vs); break; case VNC_ENCODING_AUDIO: send_ext_audio_ack(vs); break; case VNC_ENCODING_WMVi: vs->features |= VNC_FEATURE_WMVI_MASK; break; case VNC_ENCODING_COMPRESSLEVEL0 ... VNC_ENCODING_COMPRESSLEVEL0 + 9: vs->tight_compression = (enc & 0x0F); break; case VNC_ENCODING_QUALITYLEVEL0 ... VNC_ENCODING_QUALITYLEVEL0 + 9: vs->tight_quality = (enc & 0x0F); break; default: VNC_DEBUG("Unknown encoding: %d (0x%.8x): %d\n", i, enc, enc); break; } } check_pointer_type_change(vs, kbd_mouse_is_absolute()); } static void set_pixel_conversion(VncState *vs) { if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) == (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG) && !memcmp(&(vs->clientds.pf), &(vs->ds->surface->pf), sizeof(PixelFormat))) { vs->write_pixels = vnc_write_pixels_copy; switch (vs->ds->surface->pf.bits_per_pixel) { case 8: vs->send_hextile_tile = send_hextile_tile_8; break; case 16: vs->send_hextile_tile = send_hextile_tile_16; break; case 32: vs->send_hextile_tile = send_hextile_tile_32; break; } } else { vs->write_pixels = vnc_write_pixels_generic; switch (vs->ds->surface->pf.bits_per_pixel) { case 8: vs->send_hextile_tile = send_hextile_tile_generic_8; break; case 16: vs->send_hextile_tile = send_hextile_tile_generic_16; break; case 32: vs->send_hextile_tile = send_hextile_tile_generic_32; break; } } } static void set_pixel_format(VncState *vs, int bits_per_pixel, int depth, int big_endian_flag, int true_color_flag, int red_max, int green_max, int blue_max, int red_shift, int green_shift, int blue_shift) { if (!true_color_flag) { vnc_client_error(vs); return; } vs->clientds = vs->serverds; vs->clientds.pf.rmax = red_max; count_bits(vs->clientds.pf.rbits, red_max); vs->clientds.pf.rshift = red_shift; vs->clientds.pf.rmask = red_max << red_shift; vs->clientds.pf.gmax = green_max; count_bits(vs->clientds.pf.gbits, green_max); vs->clientds.pf.gshift = green_shift; vs->clientds.pf.gmask = green_max << green_shift; vs->clientds.pf.bmax = blue_max; count_bits(vs->clientds.pf.bbits, blue_max); vs->clientds.pf.bshift = blue_shift; vs->clientds.pf.bmask = blue_max << blue_shift; vs->clientds.pf.bits_per_pixel = bits_per_pixel; vs->clientds.pf.bytes_per_pixel = bits_per_pixel / 8; vs->clientds.pf.depth = bits_per_pixel == 32 ? 24 : bits_per_pixel; vs->clientds.flags = big_endian_flag ? QEMU_BIG_ENDIAN_FLAG : 0x00; set_pixel_conversion(vs); vga_hw_invalidate(); vga_hw_update(); } static void pixel_format_message (VncState *vs) { char pad[3] = { 0, 0, 0 }; vnc_write_u8(vs, vs->ds->surface->pf.bits_per_pixel); /* bits-per-pixel */ vnc_write_u8(vs, vs->ds->surface->pf.depth); /* depth */ #ifdef WORDS_BIGENDIAN vnc_write_u8(vs, 1); /* big-endian-flag */ #else vnc_write_u8(vs, 0); /* big-endian-flag */ #endif vnc_write_u8(vs, 1); /* true-color-flag */ vnc_write_u16(vs, vs->ds->surface->pf.rmax); /* red-max */ vnc_write_u16(vs, vs->ds->surface->pf.gmax); /* green-max */ vnc_write_u16(vs, vs->ds->surface->pf.bmax); /* blue-max */ vnc_write_u8(vs, vs->ds->surface->pf.rshift); /* red-shift */ vnc_write_u8(vs, vs->ds->surface->pf.gshift); /* green-shift */ vnc_write_u8(vs, vs->ds->surface->pf.bshift); /* blue-shift */ if (vs->ds->surface->pf.bits_per_pixel == 32) vs->send_hextile_tile = send_hextile_tile_32; else if (vs->ds->surface->pf.bits_per_pixel == 16) vs->send_hextile_tile = send_hextile_tile_16; else if (vs->ds->surface->pf.bits_per_pixel == 8) vs->send_hextile_tile = send_hextile_tile_8; vs->clientds = *(vs->ds->surface); vs->clientds.flags |= ~QEMU_ALLOCATED_FLAG; vs->write_pixels = vnc_write_pixels_copy; vnc_write(vs, pad, 3); /* padding */ } static void vnc_dpy_setdata(DisplayState *ds) { /* We don't have to do anything */ } static void vnc_colordepth(VncState *vs) { if (vnc_has_feature(vs, VNC_FEATURE_WMVI)) { /* Sending a WMVi message to notify the client*/ vnc_write_u8(vs, 0); /* msg id */ vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); /* number of rects */ vnc_framebuffer_update(vs, 0, 0, ds_get_width(vs->ds), ds_get_height(vs->ds), VNC_ENCODING_WMVi); pixel_format_message(vs); vnc_flush(vs); } else { set_pixel_conversion(vs); } } static int protocol_client_msg(VncState *vs, uint8_t *data, size_t len) { int i; uint16_t limit; switch (data[0]) { case 0: if (len == 1) return 20; set_pixel_format(vs, read_u8(data, 4), read_u8(data, 5), read_u8(data, 6), read_u8(data, 7), read_u16(data, 8), read_u16(data, 10), read_u16(data, 12), read_u8(data, 14), read_u8(data, 15), read_u8(data, 16)); break; case 2: if (len == 1) return 4; if (len == 4) { limit = read_u16(data, 2); if (limit > 0) return 4 + (limit * 4); } else limit = read_u16(data, 2); for (i = 0; i < limit; i++) { int32_t val = read_s32(data, 4 + (i * 4)); memcpy(data + 4 + (i * 4), &val, sizeof(val)); } set_encodings(vs, (int32_t *)(data + 4), limit); break; case 3: if (len == 1) return 10; framebuffer_update_request(vs, read_u8(data, 1), read_u16(data, 2), read_u16(data, 4), read_u16(data, 6), read_u16(data, 8)); break; case 4: if (len == 1) return 8; key_event(vs, read_u8(data, 1), read_u32(data, 4)); break; case 5: if (len == 1) return 6; pointer_event(vs, read_u8(data, 1), read_u16(data, 2), read_u16(data, 4)); break; case 6: if (len == 1) return 8; if (len == 8) { uint32_t dlen = read_u32(data, 4); if (dlen > 0) return 8 + dlen; } client_cut_text(vs, read_u32(data, 4), data + 8); break; case 255: if (len == 1) return 2; switch (read_u8(data, 1)) { case 0: if (len == 2) return 12; ext_key_event(vs, read_u16(data, 2), read_u32(data, 4), read_u32(data, 8)); break; case 1: if (len == 2) return 4; switch (read_u16 (data, 2)) { case 0: audio_add(vs); break; case 1: audio_del(vs); break; case 2: if (len == 4) return 10; switch (read_u8(data, 4)) { case 0: vs->as.fmt = AUD_FMT_U8; break; case 1: vs->as.fmt = AUD_FMT_S8; break; case 2: vs->as.fmt = AUD_FMT_U16; break; case 3: vs->as.fmt = AUD_FMT_S16; break; case 4: vs->as.fmt = AUD_FMT_U32; break; case 5: vs->as.fmt = AUD_FMT_S32; break; default: printf("Invalid audio format %d\n", read_u8(data, 4)); vnc_client_error(vs); break; } vs->as.nchannels = read_u8(data, 5); if (vs->as.nchannels != 1 && vs->as.nchannels != 2) { printf("Invalid audio channel coount %d\n", read_u8(data, 5)); vnc_client_error(vs); break; } vs->as.freq = read_u32(data, 6); break; default: printf ("Invalid audio message %d\n", read_u8(data, 4)); vnc_client_error(vs); break; } break; default: printf("Msg: %d\n", read_u16(data, 0)); vnc_client_error(vs); break; } break; default: printf("Msg: %d\n", data[0]); vnc_client_error(vs); break; } vnc_read_when(vs, protocol_client_msg, 1); return 0; } static int protocol_client_init(VncState *vs, uint8_t *data, size_t len) { char buf[1024]; int size; vnc_write_u16(vs, ds_get_width(vs->ds)); vnc_write_u16(vs, ds_get_height(vs->ds)); pixel_format_message(vs); if (qemu_name) size = snprintf(buf, sizeof(buf), "QEMU (%s)", qemu_name); else size = snprintf(buf, sizeof(buf), "QEMU"); vnc_write_u32(vs, size); vnc_write(vs, buf, size); vnc_flush(vs); vnc_read_when(vs, protocol_client_msg, 1); return 0; } void start_client_init(VncState *vs) { vnc_read_when(vs, protocol_client_init, 1); } static void make_challenge(VncState *vs) { int i; srand(time(NULL)+getpid()+getpid()*987654+rand()); for (i = 0 ; i < sizeof(vs->challenge) ; i++) vs->challenge[i] = (int) (256.0*rand()/(RAND_MAX+1.0)); } static int protocol_client_auth_vnc(VncState *vs, uint8_t *data, size_t len) { unsigned char response[VNC_AUTH_CHALLENGE_SIZE]; int i, j, pwlen; unsigned char key[8]; if (!vs->vd->password || !vs->vd->password[0]) { VNC_DEBUG("No password configured on server"); vnc_write_u32(vs, 1); /* Reject auth */ if (vs->minor >= 8) { static const char err[] = "Authentication failed"; vnc_write_u32(vs, sizeof(err)); vnc_write(vs, err, sizeof(err)); } vnc_flush(vs); vnc_client_error(vs); return 0; } memcpy(response, vs->challenge, VNC_AUTH_CHALLENGE_SIZE); /* Calculate the expected challenge response */ pwlen = strlen(vs->vd->password); for (i=0; ivd->password[i] : 0; deskey(key, EN0); for (j = 0; j < VNC_AUTH_CHALLENGE_SIZE; j += 8) des(response+j, response+j); /* Compare expected vs actual challenge response */ if (memcmp(response, data, VNC_AUTH_CHALLENGE_SIZE) != 0) { VNC_DEBUG("Client challenge reponse did not match\n"); vnc_write_u32(vs, 1); /* Reject auth */ if (vs->minor >= 8) { static const char err[] = "Authentication failed"; vnc_write_u32(vs, sizeof(err)); vnc_write(vs, err, sizeof(err)); } vnc_flush(vs); vnc_client_error(vs); } else { VNC_DEBUG("Accepting VNC challenge response\n"); vnc_write_u32(vs, 0); /* Accept auth */ vnc_flush(vs); start_client_init(vs); } return 0; } void start_auth_vnc(VncState *vs) { make_challenge(vs); /* Send client a 'random' challenge */ vnc_write(vs, vs->challenge, sizeof(vs->challenge)); vnc_flush(vs); vnc_read_when(vs, protocol_client_auth_vnc, sizeof(vs->challenge)); } static int protocol_client_auth(VncState *vs, uint8_t *data, size_t len) { /* We only advertise 1 auth scheme at a time, so client * must pick the one we sent. Verify this */ if (data[0] != vs->vd->auth) { /* Reject auth */ VNC_DEBUG("Reject auth %d because it didn't match advertized\n", (int)data[0]); vnc_write_u32(vs, 1); if (vs->minor >= 8) { static const char err[] = "Authentication failed"; vnc_write_u32(vs, sizeof(err)); vnc_write(vs, err, sizeof(err)); } vnc_client_error(vs); } else { /* Accept requested auth */ VNC_DEBUG("Client requested auth %d\n", (int)data[0]); switch (vs->vd->auth) { case VNC_AUTH_NONE: VNC_DEBUG("Accept auth none\n"); if (vs->minor >= 8) { vnc_write_u32(vs, 0); /* Accept auth completion */ vnc_flush(vs); } start_client_init(vs); break; case VNC_AUTH_VNC: VNC_DEBUG("Start VNC auth\n"); start_auth_vnc(vs); break; #ifdef CONFIG_VNC_TLS case VNC_AUTH_VENCRYPT: VNC_DEBUG("Accept VeNCrypt auth\n");; start_auth_vencrypt(vs); break; #endif /* CONFIG_VNC_TLS */ #ifdef CONFIG_VNC_SASL case VNC_AUTH_SASL: VNC_DEBUG("Accept SASL auth\n"); start_auth_sasl(vs); break; #endif /* CONFIG_VNC_SASL */ default: /* Should not be possible, but just in case */ VNC_DEBUG("Reject auth %d server code bug\n", vs->vd->auth); vnc_write_u8(vs, 1); if (vs->minor >= 8) { static const char err[] = "Authentication failed"; vnc_write_u32(vs, sizeof(err)); vnc_write(vs, err, sizeof(err)); } vnc_client_error(vs); } } return 0; } static int protocol_version(VncState *vs, uint8_t *version, size_t len) { char local[13]; memcpy(local, version, 12); local[12] = 0; if (sscanf(local, "RFB %03d.%03d\n", &vs->major, &vs->minor) != 2) { VNC_DEBUG("Malformed protocol version %s\n", local); vnc_client_error(vs); return 0; } VNC_DEBUG("Client request protocol version %d.%d\n", vs->major, vs->minor); if (vs->major != 3 || (vs->minor != 3 && vs->minor != 4 && vs->minor != 5 && vs->minor != 7 && vs->minor != 8)) { VNC_DEBUG("Unsupported client version\n"); vnc_write_u32(vs, VNC_AUTH_INVALID); vnc_flush(vs); vnc_client_error(vs); return 0; } /* Some broken clients report v3.4 or v3.5, which spec requires to be treated * as equivalent to v3.3 by servers */ if (vs->minor == 4 || vs->minor == 5) vs->minor = 3; if (vs->minor == 3) { if (vs->vd->auth == VNC_AUTH_NONE) { VNC_DEBUG("Tell client auth none\n"); vnc_write_u32(vs, vs->vd->auth); vnc_flush(vs); start_client_init(vs); } else if (vs->vd->auth == VNC_AUTH_VNC) { VNC_DEBUG("Tell client VNC auth\n"); vnc_write_u32(vs, vs->vd->auth); vnc_flush(vs); start_auth_vnc(vs); } else { VNC_DEBUG("Unsupported auth %d for protocol 3.3\n", vs->vd->auth); vnc_write_u32(vs, VNC_AUTH_INVALID); vnc_flush(vs); vnc_client_error(vs); } } else { VNC_DEBUG("Telling client we support auth %d\n", vs->vd->auth); vnc_write_u8(vs, 1); /* num auth */ vnc_write_u8(vs, vs->vd->auth); vnc_read_when(vs, protocol_client_auth, 1); vnc_flush(vs); } return 0; } static void vnc_connect(VncDisplay *vd, int csock) { VncState *vs = qemu_mallocz(sizeof(VncState)); vs->csock = csock; VNC_DEBUG("New client on socket %d\n", csock); dcl->idle = 0; socket_set_nonblock(vs->csock); qemu_set_fd_handler2(vs->csock, NULL, vnc_client_read, NULL, vs); vs->vd = vd; vs->ds = vd->ds; vs->timer = qemu_new_timer(rt_clock, vnc_update_client, vs); vs->last_x = -1; vs->last_y = -1; vs->as.freq = 44100; vs->as.nchannels = 2; vs->as.fmt = AUD_FMT_S16; vs->as.endianness = 0; vnc_resize(vs); vnc_write(vs, "RFB 003.008\n", 12); vnc_flush(vs); vnc_read_when(vs, protocol_version, 12); memset(vs->old_data, 0, ds_get_linesize(vs->ds) * ds_get_height(vs->ds)); memset(vs->dirty_row, 0xFF, sizeof(vs->dirty_row)); vnc_update_client(vs); reset_keys(vs); vs->next = vd->clients; vd->clients = vs; } static void vnc_listen_read(void *opaque) { VncDisplay *vs = opaque; struct sockaddr_in addr; socklen_t addrlen = sizeof(addr); /* Catch-up */ vga_hw_update(); int csock = accept(vs->lsock, (struct sockaddr *)&addr, &addrlen); if (csock != -1) { vnc_connect(vs, csock); } } void vnc_display_init(DisplayState *ds) { VncDisplay *vs; vs = qemu_mallocz(sizeof(VncState)); dcl = qemu_mallocz(sizeof(DisplayChangeListener)); ds->opaque = vs; dcl->idle = 1; vnc_display = vs; vs->lsock = -1; vs->ds = ds; if (keyboard_layout) vs->kbd_layout = init_keyboard_layout(name2keysym, keyboard_layout); else vs->kbd_layout = init_keyboard_layout(name2keysym, "en-us"); if (!vs->kbd_layout) exit(1); dcl->dpy_copy = vnc_dpy_copy; dcl->dpy_update = vnc_dpy_update; dcl->dpy_resize = vnc_dpy_resize; dcl->dpy_setdata = vnc_dpy_setdata; register_displaychangelistener(ds, dcl); } void vnc_display_close(DisplayState *ds) { VncDisplay *vs = ds ? (VncDisplay *)ds->opaque : vnc_display; if (!vs) return; if (vs->display) { qemu_free(vs->display); vs->display = NULL; } if (vs->lsock != -1) { qemu_set_fd_handler2(vs->lsock, NULL, NULL, NULL, NULL); close(vs->lsock); vs->lsock = -1; } vs->auth = VNC_AUTH_INVALID; #ifdef CONFIG_VNC_TLS vs->subauth = VNC_AUTH_INVALID; vs->tls.x509verify = 0; #endif } int vnc_display_password(DisplayState *ds, const char *password) { VncDisplay *vs = ds ? (VncDisplay *)ds->opaque : vnc_display; if (vs->password) { qemu_free(vs->password); vs->password = NULL; } if (password && password[0]) { if (!(vs->password = qemu_strdup(password))) return -1; } return 0; } int vnc_display_open(DisplayState *ds, const char *display) { VncDisplay *vs = ds ? (VncDisplay *)ds->opaque : vnc_display; const char *options; int password = 0; int reverse = 0; int to_port = 0; #ifdef CONFIG_VNC_TLS int tls = 0, x509 = 0; #endif #ifdef CONFIG_VNC_SASL int sasl = 0; int saslErr; #endif if (!vnc_display) return -1; vnc_display_close(ds); if (strcmp(display, "none") == 0) return 0; if (!(vs->display = strdup(display))) return -1; options = display; while ((options = strchr(options, ','))) { options++; if (strncmp(options, "password", 8) == 0) { password = 1; /* Require password auth */ } else if (strncmp(options, "reverse", 7) == 0) { reverse = 1; } else if (strncmp(options, "to=", 3) == 0) { to_port = atoi(options+3) + 5900; #ifdef CONFIG_VNC_SASL } else if (strncmp(options, "sasl", 4) == 0) { sasl = 1; /* Require SASL auth */ #endif #ifdef CONFIG_VNC_TLS } else if (strncmp(options, "tls", 3) == 0) { tls = 1; /* Require TLS */ } else if (strncmp(options, "x509", 4) == 0) { char *start, *end; x509 = 1; /* Require x509 certificates */ if (strncmp(options, "x509verify", 10) == 0) vs->tls.x509verify = 1; /* ...and verify client certs */ /* Now check for 'x509=/some/path' postfix * and use that to setup x509 certificate/key paths */ start = strchr(options, '='); end = strchr(options, ','); if (start && (!end || (start < end))) { int len = end ? end-(start+1) : strlen(start+1); char *path = qemu_strndup(start + 1, len); VNC_DEBUG("Trying certificate path '%s'\n", path); if (vnc_tls_set_x509_creds_dir(vs, path) < 0) { fprintf(stderr, "Failed to find x509 certificates/keys in %s\n", path); qemu_free(path); qemu_free(vs->display); vs->display = NULL; return -1; } qemu_free(path); } else { fprintf(stderr, "No certificate path provided\n"); qemu_free(vs->display); vs->display = NULL; return -1; } #endif } } /* * Combinations we support here: * * - no-auth (clear text, no auth) * - password (clear text, weak auth) * - sasl (encrypt, good auth *IF* using Kerberos via GSSAPI) * - tls (encrypt, weak anonymous creds, no auth) * - tls + password (encrypt, weak anonymous creds, weak auth) * - tls + sasl (encrypt, weak anonymous creds, good auth) * - tls + x509 (encrypt, good x509 creds, no auth) * - tls + x509 + password (encrypt, good x509 creds, weak auth) * - tls + x509 + sasl (encrypt, good x509 creds, good auth) * * NB1. TLS is a stackable auth scheme. * NB2. the x509 schemes have option to validate a client cert dname */ if (password) { #ifdef CONFIG_VNC_TLS if (tls) { vs->auth = VNC_AUTH_VENCRYPT; if (x509) { VNC_DEBUG("Initializing VNC server with x509 password auth\n"); vs->subauth = VNC_AUTH_VENCRYPT_X509VNC; } else { VNC_DEBUG("Initializing VNC server with TLS password auth\n"); vs->subauth = VNC_AUTH_VENCRYPT_TLSVNC; } } else { #endif /* CONFIG_VNC_TLS */ VNC_DEBUG("Initializing VNC server with password auth\n"); vs->auth = VNC_AUTH_VNC; #ifdef CONFIG_VNC_TLS vs->subauth = VNC_AUTH_INVALID; } #endif /* CONFIG_VNC_TLS */ #ifdef CONFIG_VNC_SASL } else if (sasl) { #ifdef CONFIG_VNC_TLS if (tls) { vs->auth = VNC_AUTH_VENCRYPT; if (x509) { VNC_DEBUG("Initializing VNC server with x509 SASL auth\n"); vs->subauth = VNC_AUTH_VENCRYPT_X509SASL; } else { VNC_DEBUG("Initializing VNC server with TLS SASL auth\n"); vs->subauth = VNC_AUTH_VENCRYPT_TLSSASL; } } else { #endif /* CONFIG_VNC_TLS */ VNC_DEBUG("Initializing VNC server with SASL auth\n"); vs->auth = VNC_AUTH_SASL; #ifdef CONFIG_VNC_TLS vs->subauth = VNC_AUTH_INVALID; } #endif /* CONFIG_VNC_TLS */ #endif /* CONFIG_VNC_SASL */ } else { #ifdef CONFIG_VNC_TLS if (tls) { vs->auth = VNC_AUTH_VENCRYPT; if (x509) { VNC_DEBUG("Initializing VNC server with x509 no auth\n"); vs->subauth = VNC_AUTH_VENCRYPT_X509NONE; } else { VNC_DEBUG("Initializing VNC server with TLS no auth\n"); vs->subauth = VNC_AUTH_VENCRYPT_TLSNONE; } } else { #endif VNC_DEBUG("Initializing VNC server with no auth\n"); vs->auth = VNC_AUTH_NONE; #ifdef CONFIG_VNC_TLS vs->subauth = VNC_AUTH_INVALID; } #endif } #ifdef CONFIG_VNC_SASL if ((saslErr = sasl_server_init(NULL, "qemu")) != SASL_OK) { fprintf(stderr, "Failed to initialize SASL auth %s", sasl_errstring(saslErr, NULL, NULL)); free(vs->display); vs->display = NULL; return -1; } #endif if (reverse) { /* connect to viewer */ if (strncmp(display, "unix:", 5) == 0) vs->lsock = unix_connect(display+5); else vs->lsock = inet_connect(display, SOCK_STREAM); if (-1 == vs->lsock) { free(vs->display); vs->display = NULL; return -1; } else { int csock = vs->lsock; vs->lsock = -1; vnc_connect(vs, csock); } return 0; } else { /* listen for connects */ char *dpy; dpy = qemu_malloc(256); if (strncmp(display, "unix:", 5) == 0) { pstrcpy(dpy, 256, "unix:"); vs->lsock = unix_listen(display+5, dpy+5, 256-5); } else { vs->lsock = inet_listen(display, dpy, 256, SOCK_STREAM, 5900); } if (-1 == vs->lsock) { free(dpy); return -1; } else { free(vs->display); vs->display = dpy; } } return qemu_set_fd_handler2(vs->lsock, NULL, vnc_listen_read, NULL, vs); }