/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/hw.h" #include "hw/boards.h" #include "hw/usb.h" #include "hw/pcmcia.h" #include "hw/pc.h" #include "hw/audiodev.h" #include "hw/isa.h" #include "hw/baum.h" #include "net.h" #include "console.h" #include "sysemu.h" #include "gdbstub.h" #include "qemu-timer.h" #include "qemu-char.h" #include "block.h" #include "audio/audio.h" #include #include #include #include #include #include #include #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _BSD #include #ifndef __APPLE__ #include #endif #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__) #include #else #ifndef __sun__ #include #include #include #include #include /* For the benefit of older linux systems which don't supply it, we use a local copy of hpet.h. */ /* #include */ #include "hpet.h" #include #include #else #include #include #include #include #include #include #include #include // must come after ip.h #include #include #include #include #include #endif #endif #else #include int inet_aton(const char *cp, struct in_addr *ia); #endif #if defined(CONFIG_SLIRP) #include "libslirp.h" #endif #ifdef _WIN32 #include #include #include #define getopt_long_only getopt_long #define memalign(align, size) malloc(size) #endif #include "qemu_socket.h" #ifdef CONFIG_SDL #ifdef __APPLE__ #include #endif #endif /* CONFIG_SDL */ #ifdef CONFIG_COCOA #undef main #define main qemu_main #endif /* CONFIG_COCOA */ #include "disas.h" #include "exec-all.h" #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup" #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown" #ifdef __sun__ #define SMBD_COMMAND "/usr/sfw/sbin/smbd" #else #define SMBD_COMMAND "/usr/sbin/smbd" #endif //#define DEBUG_UNUSED_IOPORT //#define DEBUG_IOPORT #ifdef TARGET_PPC #define DEFAULT_RAM_SIZE 144 #else #define DEFAULT_RAM_SIZE 128 #endif /* in ms */ #define GUI_REFRESH_INTERVAL 30 /* Max number of USB devices that can be specified on the commandline. */ #define MAX_USB_CMDLINE 8 /* XXX: use a two level table to limit memory usage */ #define MAX_IOPORTS 65536 const char *bios_dir = CONFIG_QEMU_SHAREDIR; const char *bios_name = NULL; void *ioport_opaque[MAX_IOPORTS]; IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS]; IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS]; /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available to store the VM snapshots */ DriveInfo drives_table[MAX_DRIVES+1]; int nb_drives; /* point to the block driver where the snapshots are managed */ BlockDriverState *bs_snapshots; int vga_ram_size; static DisplayState display_state; int nographic; int curses; const char* keyboard_layout = NULL; int64_t ticks_per_sec; ram_addr_t ram_size; int pit_min_timer_count = 0; int nb_nics; NICInfo nd_table[MAX_NICS]; int vm_running; static int rtc_utc = 1; static int rtc_date_offset = -1; /* -1 means no change */ int cirrus_vga_enabled = 1; int vmsvga_enabled = 0; #ifdef TARGET_SPARC int graphic_width = 1024; int graphic_height = 768; int graphic_depth = 8; #else int graphic_width = 800; int graphic_height = 600; int graphic_depth = 15; #endif int full_screen = 0; int no_frame = 0; int no_quit = 0; CharDriverState *serial_hds[MAX_SERIAL_PORTS]; CharDriverState *parallel_hds[MAX_PARALLEL_PORTS]; #ifdef TARGET_I386 int win2k_install_hack = 0; #endif int usb_enabled = 0; static VLANState *first_vlan; int smp_cpus = 1; const char *vnc_display; #if defined(TARGET_SPARC) #define MAX_CPUS 16 #elif defined(TARGET_I386) #define MAX_CPUS 255 #else #define MAX_CPUS 1 #endif int acpi_enabled = 1; int fd_bootchk = 1; int no_reboot = 0; int no_shutdown = 0; int cursor_hide = 1; int graphic_rotate = 0; int daemonize = 0; const char *option_rom[MAX_OPTION_ROMS]; int nb_option_roms; int semihosting_enabled = 0; int autostart = 1; #ifdef TARGET_ARM int old_param = 0; #endif const char *qemu_name; int alt_grab = 0; #ifdef TARGET_SPARC unsigned int nb_prom_envs = 0; const char *prom_envs[MAX_PROM_ENVS]; #endif int nb_drives_opt; struct drive_opt { const char *file; char opt[1024]; } drives_opt[MAX_DRIVES]; static CPUState *cur_cpu; static CPUState *next_cpu; static int event_pending = 1; #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR) /***********************************************************/ /* x86 ISA bus support */ target_phys_addr_t isa_mem_base = 0; PicState2 *isa_pic; static uint32_t default_ioport_readb(void *opaque, uint32_t address) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused inb: port=0x%04x\n", address); #endif return 0xff; } static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data); #endif } /* default is to make two byte accesses */ static uint32_t default_ioport_readw(void *opaque, uint32_t address) { uint32_t data; data = ioport_read_table[0][address](ioport_opaque[address], address); address = (address + 1) & (MAX_IOPORTS - 1); data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8; return data; } static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data) { ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff); address = (address + 1) & (MAX_IOPORTS - 1); ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff); } static uint32_t default_ioport_readl(void *opaque, uint32_t address) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused inl: port=0x%04x\n", address); #endif return 0xffffffff; } static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data); #endif } static void init_ioports(void) { int i; for(i = 0; i < MAX_IOPORTS; i++) { ioport_read_table[0][i] = default_ioport_readb; ioport_write_table[0][i] = default_ioport_writeb; ioport_read_table[1][i] = default_ioport_readw; ioport_write_table[1][i] = default_ioport_writew; ioport_read_table[2][i] = default_ioport_readl; ioport_write_table[2][i] = default_ioport_writel; } } /* size is the word size in byte */ int register_ioport_read(int start, int length, int size, IOPortReadFunc *func, void *opaque) { int i, bsize; if (size == 1) { bsize = 0; } else if (size == 2) { bsize = 1; } else if (size == 4) { bsize = 2; } else { hw_error("register_ioport_read: invalid size"); return -1; } for(i = start; i < start + length; i += size) { ioport_read_table[bsize][i] = func; if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque) hw_error("register_ioport_read: invalid opaque"); ioport_opaque[i] = opaque; } return 0; } /* size is the word size in byte */ int register_ioport_write(int start, int length, int size, IOPortWriteFunc *func, void *opaque) { int i, bsize; if (size == 1) { bsize = 0; } else if (size == 2) { bsize = 1; } else if (size == 4) { bsize = 2; } else { hw_error("register_ioport_write: invalid size"); return -1; } for(i = start; i < start + length; i += size) { ioport_write_table[bsize][i] = func; if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque) hw_error("register_ioport_write: invalid opaque"); ioport_opaque[i] = opaque; } return 0; } void isa_unassign_ioport(int start, int length) { int i; for(i = start; i < start + length; i++) { ioport_read_table[0][i] = default_ioport_readb; ioport_read_table[1][i] = default_ioport_readw; ioport_read_table[2][i] = default_ioport_readl; ioport_write_table[0][i] = default_ioport_writeb; ioport_write_table[1][i] = default_ioport_writew; ioport_write_table[2][i] = default_ioport_writel; } } /***********************************************************/ void cpu_outb(CPUState *env, int addr, int val) { #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "outb: %04x %02x\n", addr, val); #endif ioport_write_table[0][addr](ioport_opaque[addr], addr, val); #ifdef USE_KQEMU if (env) env->last_io_time = cpu_get_time_fast(); #endif } void cpu_outw(CPUState *env, int addr, int val) { #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "outw: %04x %04x\n", addr, val); #endif ioport_write_table[1][addr](ioport_opaque[addr], addr, val); #ifdef USE_KQEMU if (env) env->last_io_time = cpu_get_time_fast(); #endif } void cpu_outl(CPUState *env, int addr, int val) { #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "outl: %04x %08x\n", addr, val); #endif ioport_write_table[2][addr](ioport_opaque[addr], addr, val); #ifdef USE_KQEMU if (env) env->last_io_time = cpu_get_time_fast(); #endif } int cpu_inb(CPUState *env, int addr) { int val; val = ioport_read_table[0][addr](ioport_opaque[addr], addr); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "inb : %04x %02x\n", addr, val); #endif #ifdef USE_KQEMU if (env) env->last_io_time = cpu_get_time_fast(); #endif return val; } int cpu_inw(CPUState *env, int addr) { int val; val = ioport_read_table[1][addr](ioport_opaque[addr], addr); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "inw : %04x %04x\n", addr, val); #endif #ifdef USE_KQEMU if (env) env->last_io_time = cpu_get_time_fast(); #endif return val; } int cpu_inl(CPUState *env, int addr) { int val; val = ioport_read_table[2][addr](ioport_opaque[addr], addr); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "inl : %04x %08x\n", addr, val); #endif #ifdef USE_KQEMU if (env) env->last_io_time = cpu_get_time_fast(); #endif return val; } /***********************************************************/ void hw_error(const char *fmt, ...) { va_list ap; CPUState *env; va_start(ap, fmt); fprintf(stderr, "qemu: hardware error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); for(env = first_cpu; env != NULL; env = env->next_cpu) { fprintf(stderr, "CPU #%d:\n", env->cpu_index); #ifdef TARGET_I386 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU); #else cpu_dump_state(env, stderr, fprintf, 0); #endif } va_end(ap); abort(); } /***********************************************************/ /* keyboard/mouse */ static QEMUPutKBDEvent *qemu_put_kbd_event; static void *qemu_put_kbd_event_opaque; static QEMUPutMouseEntry *qemu_put_mouse_event_head; static QEMUPutMouseEntry *qemu_put_mouse_event_current; void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque) { qemu_put_kbd_event_opaque = opaque; qemu_put_kbd_event = func; } QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque, int absolute, const char *name) { QEMUPutMouseEntry *s, *cursor; s = qemu_mallocz(sizeof(QEMUPutMouseEntry)); if (!s) return NULL; s->qemu_put_mouse_event = func; s->qemu_put_mouse_event_opaque = opaque; s->qemu_put_mouse_event_absolute = absolute; s->qemu_put_mouse_event_name = qemu_strdup(name); s->next = NULL; if (!qemu_put_mouse_event_head) { qemu_put_mouse_event_head = qemu_put_mouse_event_current = s; return s; } cursor = qemu_put_mouse_event_head; while (cursor->next != NULL) cursor = cursor->next; cursor->next = s; qemu_put_mouse_event_current = s; return s; } void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry) { QEMUPutMouseEntry *prev = NULL, *cursor; if (!qemu_put_mouse_event_head || entry == NULL) return; cursor = qemu_put_mouse_event_head; while (cursor != NULL && cursor != entry) { prev = cursor; cursor = cursor->next; } if (cursor == NULL) // does not exist or list empty return; else if (prev == NULL) { // entry is head qemu_put_mouse_event_head = cursor->next; if (qemu_put_mouse_event_current == entry) qemu_put_mouse_event_current = cursor->next; qemu_free(entry->qemu_put_mouse_event_name); qemu_free(entry); return; } prev->next = entry->next; if (qemu_put_mouse_event_current == entry) qemu_put_mouse_event_current = prev; qemu_free(entry->qemu_put_mouse_event_name); qemu_free(entry); } void kbd_put_keycode(int keycode) { if (qemu_put_kbd_event) { qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode); } } void kbd_mouse_event(int dx, int dy, int dz, int buttons_state) { QEMUPutMouseEvent *mouse_event; void *mouse_event_opaque; int width; if (!qemu_put_mouse_event_current) { return; } mouse_event = qemu_put_mouse_event_current->qemu_put_mouse_event; mouse_event_opaque = qemu_put_mouse_event_current->qemu_put_mouse_event_opaque; if (mouse_event) { if (graphic_rotate) { if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute) width = 0x7fff; else width = graphic_width - 1; mouse_event(mouse_event_opaque, width - dy, dx, dz, buttons_state); } else mouse_event(mouse_event_opaque, dx, dy, dz, buttons_state); } } int kbd_mouse_is_absolute(void) { if (!qemu_put_mouse_event_current) return 0; return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute; } void do_info_mice(void) { QEMUPutMouseEntry *cursor; int index = 0; if (!qemu_put_mouse_event_head) { term_printf("No mouse devices connected\n"); return; } term_printf("Mouse devices available:\n"); cursor = qemu_put_mouse_event_head; while (cursor != NULL) { term_printf("%c Mouse #%d: %s\n", (cursor == qemu_put_mouse_event_current ? '*' : ' '), index, cursor->qemu_put_mouse_event_name); index++; cursor = cursor->next; } } void do_mouse_set(int index) { QEMUPutMouseEntry *cursor; int i = 0; if (!qemu_put_mouse_event_head) { term_printf("No mouse devices connected\n"); return; } cursor = qemu_put_mouse_event_head; while (cursor != NULL && index != i) { i++; cursor = cursor->next; } if (cursor != NULL) qemu_put_mouse_event_current = cursor; else term_printf("Mouse at given index not found\n"); } /* compute with 96 bit intermediate result: (a*b)/c */ uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } /***********************************************************/ /* real time host monotonic timer */ #define QEMU_TIMER_BASE 1000000000LL #ifdef WIN32 static int64_t clock_freq; static void init_get_clock(void) { LARGE_INTEGER freq; int ret; ret = QueryPerformanceFrequency(&freq); if (ret == 0) { fprintf(stderr, "Could not calibrate ticks\n"); exit(1); } clock_freq = freq.QuadPart; } static int64_t get_clock(void) { LARGE_INTEGER ti; QueryPerformanceCounter(&ti); return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq); } #else static int use_rt_clock; static void init_get_clock(void) { use_rt_clock = 0; #if defined(__linux__) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { use_rt_clock = 1; } } #endif } static int64_t get_clock(void) { #if defined(__linux__) if (use_rt_clock) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000LL + ts.tv_nsec; } else #endif { /* XXX: using gettimeofday leads to problems if the date changes, so it should be avoided. */ struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000); } } #endif /***********************************************************/ /* guest cycle counter */ static int64_t cpu_ticks_prev; static int64_t cpu_ticks_offset; static int64_t cpu_clock_offset; static int cpu_ticks_enabled; /* return the host CPU cycle counter and handle stop/restart */ int64_t cpu_get_ticks(void) { if (!cpu_ticks_enabled) { return cpu_ticks_offset; } else { int64_t ticks; ticks = cpu_get_real_ticks(); if (cpu_ticks_prev > ticks) { /* Note: non increasing ticks may happen if the host uses software suspend */ cpu_ticks_offset += cpu_ticks_prev - ticks; } cpu_ticks_prev = ticks; return ticks + cpu_ticks_offset; } } /* return the host CPU monotonic timer and handle stop/restart */ static int64_t cpu_get_clock(void) { int64_t ti; if (!cpu_ticks_enabled) { return cpu_clock_offset; } else { ti = get_clock(); return ti + cpu_clock_offset; } } /* enable cpu_get_ticks() */ void cpu_enable_ticks(void) { if (!cpu_ticks_enabled) { cpu_ticks_offset -= cpu_get_real_ticks(); cpu_clock_offset -= get_clock(); cpu_ticks_enabled = 1; } } /* disable cpu_get_ticks() : the clock is stopped. You must not call cpu_get_ticks() after that. */ void cpu_disable_ticks(void) { if (cpu_ticks_enabled) { cpu_ticks_offset = cpu_get_ticks(); cpu_clock_offset = cpu_get_clock(); cpu_ticks_enabled = 0; } } /***********************************************************/ /* timers */ #define QEMU_TIMER_REALTIME 0 #define QEMU_TIMER_VIRTUAL 1 struct QEMUClock { int type; /* XXX: add frequency */ }; struct QEMUTimer { QEMUClock *clock; int64_t expire_time; QEMUTimerCB *cb; void *opaque; struct QEMUTimer *next; }; struct qemu_alarm_timer { char const *name; unsigned int flags; int (*start)(struct qemu_alarm_timer *t); void (*stop)(struct qemu_alarm_timer *t); void (*rearm)(struct qemu_alarm_timer *t); void *priv; }; #define ALARM_FLAG_DYNTICKS 0x1 #define ALARM_FLAG_EXPIRED 0x2 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) { return t->flags & ALARM_FLAG_DYNTICKS; } static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) { if (!alarm_has_dynticks(t)) return; t->rearm(t); } /* TODO: MIN_TIMER_REARM_US should be optimized */ #define MIN_TIMER_REARM_US 250 static struct qemu_alarm_timer *alarm_timer; #ifdef _WIN32 struct qemu_alarm_win32 { MMRESULT timerId; HANDLE host_alarm; unsigned int period; } alarm_win32_data = {0, NULL, -1}; static int win32_start_timer(struct qemu_alarm_timer *t); static void win32_stop_timer(struct qemu_alarm_timer *t); static void win32_rearm_timer(struct qemu_alarm_timer *t); #else static int unix_start_timer(struct qemu_alarm_timer *t); static void unix_stop_timer(struct qemu_alarm_timer *t); #ifdef __linux__ static int dynticks_start_timer(struct qemu_alarm_timer *t); static void dynticks_stop_timer(struct qemu_alarm_timer *t); static void dynticks_rearm_timer(struct qemu_alarm_timer *t); static int hpet_start_timer(struct qemu_alarm_timer *t); static void hpet_stop_timer(struct qemu_alarm_timer *t); static int rtc_start_timer(struct qemu_alarm_timer *t); static void rtc_stop_timer(struct qemu_alarm_timer *t); #endif /* __linux__ */ #endif /* _WIN32 */ static struct qemu_alarm_timer alarm_timers[] = { #ifndef _WIN32 #ifdef __linux__ {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer, dynticks_stop_timer, dynticks_rearm_timer, NULL}, /* HPET - if available - is preferred */ {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL}, /* ...otherwise try RTC */ {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL}, #endif {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL}, #else {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer, win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, {"win32", 0, win32_start_timer, win32_stop_timer, NULL, &alarm_win32_data}, #endif {NULL, } }; static void show_available_alarms(void) { int i; printf("Available alarm timers, in order of precedence:\n"); for (i = 0; alarm_timers[i].name; i++) printf("%s\n", alarm_timers[i].name); } static void configure_alarms(char const *opt) { int i; int cur = 0; int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1; char *arg; char *name; if (!strcmp(opt, "?")) { show_available_alarms(); exit(0); } arg = strdup(opt); /* Reorder the array */ name = strtok(arg, ","); while (name) { struct qemu_alarm_timer tmp; for (i = 0; i < count && alarm_timers[i].name; i++) { if (!strcmp(alarm_timers[i].name, name)) break; } if (i == count) { fprintf(stderr, "Unknown clock %s\n", name); goto next; } if (i < cur) /* Ignore */ goto next; /* Swap */ tmp = alarm_timers[i]; alarm_timers[i] = alarm_timers[cur]; alarm_timers[cur] = tmp; cur++; next: name = strtok(NULL, ","); } free(arg); if (cur) { /* Disable remaining timers */ for (i = cur; i < count; i++) alarm_timers[i].name = NULL; } else { show_available_alarms(); exit(1); } } QEMUClock *rt_clock; QEMUClock *vm_clock; static QEMUTimer *active_timers[2]; static QEMUClock *qemu_new_clock(int type) { QEMUClock *clock; clock = qemu_mallocz(sizeof(QEMUClock)); if (!clock) return NULL; clock->type = type; return clock; } QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) { QEMUTimer *ts; ts = qemu_mallocz(sizeof(QEMUTimer)); ts->clock = clock; ts->cb = cb; ts->opaque = opaque; return ts; } void qemu_free_timer(QEMUTimer *ts) { qemu_free(ts); } /* stop a timer, but do not dealloc it */ void qemu_del_timer(QEMUTimer *ts) { QEMUTimer **pt, *t; /* NOTE: this code must be signal safe because qemu_timer_expired() can be called from a signal. */ pt = &active_timers[ts->clock->type]; for(;;) { t = *pt; if (!t) break; if (t == ts) { *pt = t->next; break; } pt = &t->next; } } /* modify the current timer so that it will be fired when current_time >= expire_time. The corresponding callback will be called. */ void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) { QEMUTimer **pt, *t; qemu_del_timer(ts); /* add the timer in the sorted list */ /* NOTE: this code must be signal safe because qemu_timer_expired() can be called from a signal. */ pt = &active_timers[ts->clock->type]; for(;;) { t = *pt; if (!t) break; if (t->expire_time > expire_time) break; pt = &t->next; } ts->expire_time = expire_time; ts->next = *pt; *pt = ts; /* Rearm if necessary */ if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 && pt == &active_timers[ts->clock->type]) qemu_rearm_alarm_timer(alarm_timer); } int qemu_timer_pending(QEMUTimer *ts) { QEMUTimer *t; for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { if (t == ts) return 1; } return 0; } static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) { if (!timer_head) return 0; return (timer_head->expire_time <= current_time); } static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time) { QEMUTimer *ts; for(;;) { ts = *ptimer_head; if (!ts || ts->expire_time > current_time) break; /* remove timer from the list before calling the callback */ *ptimer_head = ts->next; ts->next = NULL; /* run the callback (the timer list can be modified) */ ts->cb(ts->opaque); } } int64_t qemu_get_clock(QEMUClock *clock) { switch(clock->type) { case QEMU_TIMER_REALTIME: return get_clock() / 1000000; default: case QEMU_TIMER_VIRTUAL: return cpu_get_clock(); } } static void init_timers(void) { init_get_clock(); ticks_per_sec = QEMU_TIMER_BASE; rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME); vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL); } /* save a timer */ void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; if (qemu_timer_pending(ts)) { expire_time = ts->expire_time; } else { expire_time = -1; } qemu_put_be64(f, expire_time); } void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; expire_time = qemu_get_be64(f); if (expire_time != -1) { qemu_mod_timer(ts, expire_time); } else { qemu_del_timer(ts); } } static void timer_save(QEMUFile *f, void *opaque) { if (cpu_ticks_enabled) { hw_error("cannot save state if virtual timers are running"); } qemu_put_be64(f, cpu_ticks_offset); qemu_put_be64(f, ticks_per_sec); qemu_put_be64(f, cpu_clock_offset); } static int timer_load(QEMUFile *f, void *opaque, int version_id) { if (version_id != 1 && version_id != 2) return -EINVAL; if (cpu_ticks_enabled) { return -EINVAL; } cpu_ticks_offset=qemu_get_be64(f); ticks_per_sec=qemu_get_be64(f); if (version_id == 2) { cpu_clock_offset=qemu_get_be64(f); } return 0; } #ifdef _WIN32 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2) #else static void host_alarm_handler(int host_signum) #endif { #if 0 #define DISP_FREQ 1000 { static int64_t delta_min = INT64_MAX; static int64_t delta_max, delta_cum, last_clock, delta, ti; static int count; ti = qemu_get_clock(vm_clock); if (last_clock != 0) { delta = ti - last_clock; if (delta < delta_min) delta_min = delta; if (delta > delta_max) delta_max = delta; delta_cum += delta; if (++count == DISP_FREQ) { printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", muldiv64(delta_min, 1000000, ticks_per_sec), muldiv64(delta_max, 1000000, ticks_per_sec), muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec), (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ)); count = 0; delta_min = INT64_MAX; delta_max = 0; delta_cum = 0; } } last_clock = ti; } #endif if (alarm_has_dynticks(alarm_timer) || qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL], qemu_get_clock(vm_clock)) || qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME], qemu_get_clock(rt_clock))) { #ifdef _WIN32 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv; SetEvent(data->host_alarm); #endif CPUState *env = next_cpu; alarm_timer->flags |= ALARM_FLAG_EXPIRED; if (env) { /* stop the currently executing cpu because a timer occured */ cpu_interrupt(env, CPU_INTERRUPT_EXIT); #ifdef USE_KQEMU if (env->kqemu_enabled) { kqemu_cpu_interrupt(env); } #endif } event_pending = 1; } } static uint64_t qemu_next_deadline(void) { int64_t nearest_delta_us = INT64_MAX; int64_t vmdelta_us; if (active_timers[QEMU_TIMER_REALTIME]) nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time - qemu_get_clock(rt_clock))*1000; if (active_timers[QEMU_TIMER_VIRTUAL]) { /* round up */ vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time - qemu_get_clock(vm_clock)+999)/1000; if (vmdelta_us < nearest_delta_us) nearest_delta_us = vmdelta_us; } /* Avoid arming the timer to negative, zero, or too low values */ if (nearest_delta_us <= MIN_TIMER_REARM_US) nearest_delta_us = MIN_TIMER_REARM_US; return nearest_delta_us; } #ifndef _WIN32 #if defined(__linux__) #define RTC_FREQ 1024 static void enable_sigio_timer(int fd) { struct sigaction act; /* timer signal */ sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = host_alarm_handler; sigaction(SIGIO, &act, NULL); fcntl(fd, F_SETFL, O_ASYNC); fcntl(fd, F_SETOWN, getpid()); } static int hpet_start_timer(struct qemu_alarm_timer *t) { struct hpet_info info; int r, fd; fd = open("/dev/hpet", O_RDONLY); if (fd < 0) return -1; /* Set frequency */ r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); if (r < 0) { fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" "error, but for better emulation accuracy type:\n" "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); goto fail; } /* Check capabilities */ r = ioctl(fd, HPET_INFO, &info); if (r < 0) goto fail; /* Enable periodic mode */ r = ioctl(fd, HPET_EPI, 0); if (info.hi_flags && (r < 0)) goto fail; /* Enable interrupt */ r = ioctl(fd, HPET_IE_ON, 0); if (r < 0) goto fail; enable_sigio_timer(fd); t->priv = (void *)(long)fd; return 0; fail: close(fd); return -1; } static void hpet_stop_timer(struct qemu_alarm_timer *t) { int fd = (long)t->priv; close(fd); } static int rtc_start_timer(struct qemu_alarm_timer *t) { int rtc_fd; unsigned long current_rtc_freq = 0; TFR(rtc_fd = open("/dev/rtc", O_RDONLY)); if (rtc_fd < 0) return -1; ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); if (current_rtc_freq != RTC_FREQ && ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); goto fail; } if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { fail: close(rtc_fd); return -1; } enable_sigio_timer(rtc_fd); t->priv = (void *)(long)rtc_fd; return 0; } static void rtc_stop_timer(struct qemu_alarm_timer *t) { int rtc_fd = (long)t->priv; close(rtc_fd); } static int dynticks_start_timer(struct qemu_alarm_timer *t) { struct sigevent ev; timer_t host_timer; struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = host_alarm_handler; sigaction(SIGALRM, &act, NULL); ev.sigev_value.sival_int = 0; ev.sigev_notify = SIGEV_SIGNAL; ev.sigev_signo = SIGALRM; if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { perror("timer_create"); /* disable dynticks */ fprintf(stderr, "Dynamic Ticks disabled\n"); return -1; } t->priv = (void *)host_timer; return 0; } static void dynticks_stop_timer(struct qemu_alarm_timer *t) { timer_t host_timer = (timer_t)t->priv; timer_delete(host_timer); } static void dynticks_rearm_timer(struct qemu_alarm_timer *t) { timer_t host_timer = (timer_t)t->priv; struct itimerspec timeout; int64_t nearest_delta_us = INT64_MAX; int64_t current_us; if (!active_timers[QEMU_TIMER_REALTIME] && !active_timers[QEMU_TIMER_VIRTUAL]) return; nearest_delta_us = qemu_next_deadline(); /* check whether a timer is already running */ if (timer_gettime(host_timer, &timeout)) { perror("gettime"); fprintf(stderr, "Internal timer error: aborting\n"); exit(1); } current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000; if (current_us && current_us <= nearest_delta_us) return; timeout.it_interval.tv_sec = 0; timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ timeout.it_value.tv_sec = nearest_delta_us / 1000000; timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000; if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { perror("settime"); fprintf(stderr, "Internal timer error: aborting\n"); exit(1); } } #endif /* defined(__linux__) */ static int unix_start_timer(struct qemu_alarm_timer *t) { struct sigaction act; struct itimerval itv; int err; /* timer signal */ sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = host_alarm_handler; sigaction(SIGALRM, &act, NULL); itv.it_interval.tv_sec = 0; /* for i386 kernel 2.6 to get 1 ms */ itv.it_interval.tv_usec = 999; itv.it_value.tv_sec = 0; itv.it_value.tv_usec = 10 * 1000; err = setitimer(ITIMER_REAL, &itv, NULL); if (err) return -1; return 0; } static void unix_stop_timer(struct qemu_alarm_timer *t) { struct itimerval itv; memset(&itv, 0, sizeof(itv)); setitimer(ITIMER_REAL, &itv, NULL); } #endif /* !defined(_WIN32) */ #ifdef _WIN32 static int win32_start_timer(struct qemu_alarm_timer *t) { TIMECAPS tc; struct qemu_alarm_win32 *data = t->priv; UINT flags; data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL); if (!data->host_alarm) { perror("Failed CreateEvent"); return -1; } memset(&tc, 0, sizeof(tc)); timeGetDevCaps(&tc, sizeof(tc)); if (data->period < tc.wPeriodMin) data->period = tc.wPeriodMin; timeBeginPeriod(data->period); flags = TIME_CALLBACK_FUNCTION; if (alarm_has_dynticks(t)) flags |= TIME_ONESHOT; else flags |= TIME_PERIODIC; data->timerId = timeSetEvent(1, // interval (ms) data->period, // resolution host_alarm_handler, // function (DWORD)t, // parameter flags); if (!data->timerId) { perror("Failed to initialize win32 alarm timer"); timeEndPeriod(data->period); CloseHandle(data->host_alarm); return -1; } qemu_add_wait_object(data->host_alarm, NULL, NULL); return 0; } static void win32_stop_timer(struct qemu_alarm_timer *t) { struct qemu_alarm_win32 *data = t->priv; timeKillEvent(data->timerId); timeEndPeriod(data->period); CloseHandle(data->host_alarm); } static void win32_rearm_timer(struct qemu_alarm_timer *t) { struct qemu_alarm_win32 *data = t->priv; uint64_t nearest_delta_us; if (!active_timers[QEMU_TIMER_REALTIME] && !active_timers[QEMU_TIMER_VIRTUAL]) return; nearest_delta_us = qemu_next_deadline(); nearest_delta_us /= 1000; timeKillEvent(data->timerId); data->timerId = timeSetEvent(1, data->period, host_alarm_handler, (DWORD)t, TIME_ONESHOT | TIME_PERIODIC); if (!data->timerId) { perror("Failed to re-arm win32 alarm timer"); timeEndPeriod(data->period); CloseHandle(data->host_alarm); exit(1); } } #endif /* _WIN32 */ static void init_timer_alarm(void) { struct qemu_alarm_timer *t; int i, err = -1; for (i = 0; alarm_timers[i].name; i++) { t = &alarm_timers[i]; err = t->start(t); if (!err) break; } if (err) { fprintf(stderr, "Unable to find any suitable alarm timer.\n"); fprintf(stderr, "Terminating\n"); exit(1); } alarm_timer = t; } static void quit_timers(void) { alarm_timer->stop(alarm_timer); alarm_timer = NULL; } /***********************************************************/ /* host time/date access */ void qemu_get_timedate(struct tm *tm, int offset) { time_t ti; struct tm *ret; time(&ti); ti += offset; if (rtc_date_offset == -1) { if (rtc_utc) ret = gmtime(&ti); else ret = localtime(&ti); } else { ti -= rtc_date_offset; ret = gmtime(&ti); } memcpy(tm, ret, sizeof(struct tm)); } int qemu_timedate_diff(struct tm *tm) { time_t seconds; if (rtc_date_offset == -1) if (rtc_utc) seconds = mktimegm(tm); else seconds = mktime(tm); else seconds = mktimegm(tm) + rtc_date_offset; return seconds - time(NULL); } /***********************************************************/ /* character device */ static void qemu_chr_event(CharDriverState *s, int event) { if (!s->chr_event) return; s->chr_event(s->handler_opaque, event); } static void qemu_chr_reset_bh(void *opaque) { CharDriverState *s = opaque; qemu_chr_event(s, CHR_EVENT_RESET); qemu_bh_delete(s->bh); s->bh = NULL; } void qemu_chr_reset(CharDriverState *s) { if (s->bh == NULL) { s->bh = qemu_bh_new(qemu_chr_reset_bh, s); qemu_bh_schedule(s->bh); } } int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len) { return s->chr_write(s, buf, len); } int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg) { if (!s->chr_ioctl) return -ENOTSUP; return s->chr_ioctl(s, cmd, arg); } int qemu_chr_can_read(CharDriverState *s) { if (!s->chr_can_read) return 0; return s->chr_can_read(s->handler_opaque); } void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len) { s->chr_read(s->handler_opaque, buf, len); } void qemu_chr_accept_input(CharDriverState *s) { if (s->chr_accept_input) s->chr_accept_input(s); } void qemu_chr_printf(CharDriverState *s, const char *fmt, ...) { char buf[4096]; va_list ap; va_start(ap, fmt); vsnprintf(buf, sizeof(buf), fmt, ap); qemu_chr_write(s, (uint8_t *)buf, strlen(buf)); va_end(ap); } void qemu_chr_send_event(CharDriverState *s, int event) { if (s->chr_send_event) s->chr_send_event(s, event); } void qemu_chr_add_handlers(CharDriverState *s, IOCanRWHandler *fd_can_read, IOReadHandler *fd_read, IOEventHandler *fd_event, void *opaque) { s->chr_can_read = fd_can_read; s->chr_read = fd_read; s->chr_event = fd_event; s->handler_opaque = opaque; if (s->chr_update_read_handler) s->chr_update_read_handler(s); } static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len) { return len; } static CharDriverState *qemu_chr_open_null(void) { CharDriverState *chr; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) return NULL; chr->chr_write = null_chr_write; return chr; } /* MUX driver for serial I/O splitting */ static int term_timestamps; static int64_t term_timestamps_start; #define MAX_MUX 4 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */ #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1) typedef struct { IOCanRWHandler *chr_can_read[MAX_MUX]; IOReadHandler *chr_read[MAX_MUX]; IOEventHandler *chr_event[MAX_MUX]; void *ext_opaque[MAX_MUX]; CharDriverState *drv; unsigned char buffer[MUX_BUFFER_SIZE]; int prod; int cons; int mux_cnt; int term_got_escape; int max_size; } MuxDriver; static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len) { MuxDriver *d = chr->opaque; int ret; if (!term_timestamps) { ret = d->drv->chr_write(d->drv, buf, len); } else { int i; ret = 0; for(i = 0; i < len; i++) { ret += d->drv->chr_write(d->drv, buf+i, 1); if (buf[i] == '\n') { char buf1[64]; int64_t ti; int secs; ti = get_clock(); if (term_timestamps_start == -1) term_timestamps_start = ti; ti -= term_timestamps_start; secs = ti / 1000000000; snprintf(buf1, sizeof(buf1), "[%02d:%02d:%02d.%03d] ", secs / 3600, (secs / 60) % 60, secs % 60, (int)((ti / 1000000) % 1000)); d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1)); } } } return ret; } static char *mux_help[] = { "% h print this help\n\r", "% x exit emulator\n\r", "% s save disk data back to file (if -snapshot)\n\r", "% t toggle console timestamps\n\r" "% b send break (magic sysrq)\n\r", "% c switch between console and monitor\n\r", "% % sends %\n\r", NULL }; static int term_escape_char = 0x01; /* ctrl-a is used for escape */ static void mux_print_help(CharDriverState *chr) { int i, j; char ebuf[15] = "Escape-Char"; char cbuf[50] = "\n\r"; if (term_escape_char > 0 && term_escape_char < 26) { sprintf(cbuf,"\n\r"); sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a'); } else { sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char); } chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf)); for (i = 0; mux_help[i] != NULL; i++) { for (j=0; mux_help[i][j] != '\0'; j++) { if (mux_help[i][j] == '%') chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf)); else chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1); } } } static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch) { if (d->term_got_escape) { d->term_got_escape = 0; if (ch == term_escape_char) goto send_char; switch(ch) { case '?': case 'h': mux_print_help(chr); break; case 'x': { char *term = "QEMU: Terminated\n\r"; chr->chr_write(chr,(uint8_t *)term,strlen(term)); exit(0); break; } case 's': { int i; for (i = 0; i < nb_drives; i++) { bdrv_commit(drives_table[i].bdrv); } } break; case 'b': qemu_chr_event(chr, CHR_EVENT_BREAK); break; case 'c': /* Switch to the next registered device */ chr->focus++; if (chr->focus >= d->mux_cnt) chr->focus = 0; break; case 't': term_timestamps = !term_timestamps; term_timestamps_start = -1; break; } } else if (ch == term_escape_char) { d->term_got_escape = 1; } else { send_char: return 1; } return 0; } static void mux_chr_accept_input(CharDriverState *chr) { int m = chr->focus; MuxDriver *d = chr->opaque; while (d->prod != d->cons && d->chr_can_read[m] && d->chr_can_read[m](d->ext_opaque[m])) { d->chr_read[m](d->ext_opaque[m], &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1); } } static int mux_chr_can_read(void *opaque) { CharDriverState *chr = opaque; MuxDriver *d = chr->opaque; if ((d->prod - d->cons) < MUX_BUFFER_SIZE) return 1; if (d->chr_can_read[chr->focus]) return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]); return 0; } static void mux_chr_read(void *opaque, const uint8_t *buf, int size) { CharDriverState *chr = opaque; MuxDriver *d = chr->opaque; int m = chr->focus; int i; mux_chr_accept_input (opaque); for(i = 0; i < size; i++) if (mux_proc_byte(chr, d, buf[i])) { if (d->prod == d->cons && d->chr_can_read[m] && d->chr_can_read[m](d->ext_opaque[m])) d->chr_read[m](d->ext_opaque[m], &buf[i], 1); else d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i]; } } static void mux_chr_event(void *opaque, int event) { CharDriverState *chr = opaque; MuxDriver *d = chr->opaque; int i; /* Send the event to all registered listeners */ for (i = 0; i < d->mux_cnt; i++) if (d->chr_event[i]) d->chr_event[i](d->ext_opaque[i], event); } static void mux_chr_update_read_handler(CharDriverState *chr) { MuxDriver *d = chr->opaque; if (d->mux_cnt >= MAX_MUX) { fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n"); return; } d->ext_opaque[d->mux_cnt] = chr->handler_opaque; d->chr_can_read[d->mux_cnt] = chr->chr_can_read; d->chr_read[d->mux_cnt] = chr->chr_read; d->chr_event[d->mux_cnt] = chr->chr_event; /* Fix up the real driver with mux routines */ if (d->mux_cnt == 0) { qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read, mux_chr_event, chr); } chr->focus = d->mux_cnt; d->mux_cnt++; } static CharDriverState *qemu_chr_open_mux(CharDriverState *drv) { CharDriverState *chr; MuxDriver *d; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) return NULL; d = qemu_mallocz(sizeof(MuxDriver)); if (!d) { free(chr); return NULL; } chr->opaque = d; d->drv = drv; chr->focus = -1; chr->chr_write = mux_chr_write; chr->chr_update_read_handler = mux_chr_update_read_handler; chr->chr_accept_input = mux_chr_accept_input; return chr; } #ifdef _WIN32 static void socket_cleanup(void) { WSACleanup(); } static int socket_init(void) { WSADATA Data; int ret, err; ret = WSAStartup(MAKEWORD(2,2), &Data); if (ret != 0) { err = WSAGetLastError(); fprintf(stderr, "WSAStartup: %d\n", err); return -1; } atexit(socket_cleanup); return 0; } static int send_all(int fd, const uint8_t *buf, int len1) { int ret, len; len = len1; while (len > 0) { ret = send(fd, buf, len, 0); if (ret < 0) { int errno; errno = WSAGetLastError(); if (errno != WSAEWOULDBLOCK) { return -1; } } else if (ret == 0) { break; } else { buf += ret; len -= ret; } } return len1 - len; } void socket_set_nonblock(int fd) { unsigned long opt = 1; ioctlsocket(fd, FIONBIO, &opt); } #else static int unix_write(int fd, const uint8_t *buf, int len1) { int ret, len; len = len1; while (len > 0) { ret = write(fd, buf, len); if (ret < 0) { if (errno != EINTR && errno != EAGAIN) return -1; } else if (ret == 0) { break; } else { buf += ret; len -= ret; } } return len1 - len; } static inline int send_all(int fd, const uint8_t *buf, int len1) { return unix_write(fd, buf, len1); } void socket_set_nonblock(int fd) { fcntl(fd, F_SETFL, O_NONBLOCK); } #endif /* !_WIN32 */ #ifndef _WIN32 typedef struct { int fd_in, fd_out; int max_size; } FDCharDriver; #define STDIO_MAX_CLIENTS 1 static int stdio_nb_clients = 0; static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len) { FDCharDriver *s = chr->opaque; return unix_write(s->fd_out, buf, len); } static int fd_chr_read_poll(void *opaque) { CharDriverState *chr = opaque; FDCharDriver *s = chr->opaque; s->max_size = qemu_chr_can_read(chr); return s->max_size; } static void fd_chr_read(void *opaque) { CharDriverState *chr = opaque; FDCharDriver *s = chr->opaque; int size, len; uint8_t buf[1024]; len = sizeof(buf); if (len > s->max_size) len = s->max_size; if (len == 0) return; size = read(s->fd_in, buf, len); if (size == 0) { /* FD has been closed. Remove it from the active list. */ qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL); return; } if (size > 0) { qemu_chr_read(chr, buf, size); } } static void fd_chr_update_read_handler(CharDriverState *chr) { FDCharDriver *s = chr->opaque; if (s->fd_in >= 0) { if (nographic && s->fd_in == 0) { } else { qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll, fd_chr_read, NULL, chr); } } } static void fd_chr_close(struct CharDriverState *chr) { FDCharDriver *s = chr->opaque; if (s->fd_in >= 0) { if (nographic && s->fd_in == 0) { } else { qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL); } } qemu_free(s); } /* open a character device to a unix fd */ static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out) { CharDriverState *chr; FDCharDriver *s; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) return NULL; s = qemu_mallocz(sizeof(FDCharDriver)); if (!s) { free(chr); return NULL; } s->fd_in = fd_in; s->fd_out = fd_out; chr->opaque = s; chr->chr_write = fd_chr_write; chr->chr_update_read_handler = fd_chr_update_read_handler; chr->chr_close = fd_chr_close; qemu_chr_reset(chr); return chr; } static CharDriverState *qemu_chr_open_file_out(const char *file_out) { int fd_out; TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666)); if (fd_out < 0) return NULL; return qemu_chr_open_fd(-1, fd_out); } static CharDriverState *qemu_chr_open_pipe(const char *filename) { int fd_in, fd_out; char filename_in[256], filename_out[256]; snprintf(filename_in, 256, "%s.in", filename); snprintf(filename_out, 256, "%s.out", filename); TFR(fd_in = open(filename_in, O_RDWR | O_BINARY)); TFR(fd_out = open(filename_out, O_RDWR | O_BINARY)); if (fd_in < 0 || fd_out < 0) { if (fd_in >= 0) close(fd_in); if (fd_out >= 0) close(fd_out); TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY)); if (fd_in < 0) return NULL; } return qemu_chr_open_fd(fd_in, fd_out); } /* for STDIO, we handle the case where several clients use it (nographic mode) */ #define TERM_FIFO_MAX_SIZE 1 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE]; static int term_fifo_size; static int stdio_read_poll(void *opaque) { CharDriverState *chr = opaque; /* try to flush the queue if needed */ if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) { qemu_chr_read(chr, term_fifo, 1); term_fifo_size = 0; } /* see if we can absorb more chars */ if (term_fifo_size == 0) return 1; else return 0; } static void stdio_read(void *opaque) { int size; uint8_t buf[1]; CharDriverState *chr = opaque; size = read(0, buf, 1); if (size == 0) { /* stdin has been closed. Remove it from the active list. */ qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL); return; } if (size > 0) { if (qemu_chr_can_read(chr) > 0) { qemu_chr_read(chr, buf, 1); } else if (term_fifo_size == 0) { term_fifo[term_fifo_size++] = buf[0]; } } } /* init terminal so that we can grab keys */ static struct termios oldtty; static int old_fd0_flags; static int term_atexit_done; static void term_exit(void) { tcsetattr (0, TCSANOW, &oldtty); fcntl(0, F_SETFL, old_fd0_flags); } static void term_init(void) { struct termios tty; tcgetattr (0, &tty); oldtty = tty; old_fd0_flags = fcntl(0, F_GETFL); tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP |INLCR|IGNCR|ICRNL|IXON); tty.c_oflag |= OPOST; tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN); /* if graphical mode, we allow Ctrl-C handling */ if (nographic) tty.c_lflag &= ~ISIG; tty.c_cflag &= ~(CSIZE|PARENB); tty.c_cflag |= CS8; tty.c_cc[VMIN] = 1; tty.c_cc[VTIME] = 0; tcsetattr (0, TCSANOW, &tty); if (!term_atexit_done++) atexit(term_exit); fcntl(0, F_SETFL, O_NONBLOCK); } static void qemu_chr_close_stdio(struct CharDriverState *chr) { term_exit(); stdio_nb_clients--; qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL); fd_chr_close(chr); } static CharDriverState *qemu_chr_open_stdio(void) { CharDriverState *chr; if (stdio_nb_clients >= STDIO_MAX_CLIENTS) return NULL; chr = qemu_chr_open_fd(0, 1); chr->chr_close = qemu_chr_close_stdio; qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr); stdio_nb_clients++; term_init(); return chr; } #ifdef __sun__ /* Once Solaris has openpty(), this is going to be removed. */ int openpty(int *amaster, int *aslave, char *name, struct termios *termp, struct winsize *winp) { const char *slave; int mfd = -1, sfd = -1; *amaster = *aslave = -1; mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY); if (mfd < 0) goto err; if (grantpt(mfd) == -1 || unlockpt(mfd) == -1) goto err; if ((slave = ptsname(mfd)) == NULL) goto err; if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1) goto err; if (ioctl(sfd, I_PUSH, "ptem") == -1 || (termp != NULL && tcgetattr(sfd, termp) < 0)) goto err; if (amaster) *amaster = mfd; if (aslave) *aslave = sfd; if (winp) ioctl(sfd, TIOCSWINSZ, winp); return 0; err: if (sfd != -1) close(sfd); close(mfd); return -1; } void cfmakeraw (struct termios *termios_p) { termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON); termios_p->c_oflag &= ~OPOST; termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN); termios_p->c_cflag &= ~(CSIZE|PARENB); termios_p->c_cflag |= CS8; termios_p->c_cc[VMIN] = 0; termios_p->c_cc[VTIME] = 0; } #endif #if defined(__linux__) || defined(__sun__) static CharDriverState *qemu_chr_open_pty(void) { struct termios tty; int master_fd, slave_fd; if (openpty(&master_fd, &slave_fd, NULL, NULL, NULL) < 0) { return NULL; } /* Set raw attributes on the pty. */ cfmakeraw(&tty); tcsetattr(slave_fd, TCSAFLUSH, &tty); fprintf(stderr, "char device redirected to %s\n", ptsname(master_fd)); return qemu_chr_open_fd(master_fd, master_fd); } static void tty_serial_init(int fd, int speed, int parity, int data_bits, int stop_bits) { struct termios tty; speed_t spd; #if 0 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n", speed, parity, data_bits, stop_bits); #endif tcgetattr (fd, &tty); #define MARGIN 1.1 if (speed <= 50 * MARGIN) spd = B50; else if (speed <= 75 * MARGIN) spd = B75; else if (speed <= 300 * MARGIN) spd = B300; else if (speed <= 600 * MARGIN) spd = B600; else if (speed <= 1200 * MARGIN) spd = B1200; else if (speed <= 2400 * MARGIN) spd = B2400; else if (speed <= 4800 * MARGIN) spd = B4800; else if (speed <= 9600 * MARGIN) spd = B9600; else if (speed <= 19200 * MARGIN) spd = B19200; else if (speed <= 38400 * MARGIN) spd = B38400; else if (speed <= 57600 * MARGIN) spd = B57600; else if (speed <= 115200 * MARGIN) spd = B115200; else spd = B115200; cfsetispeed(&tty, spd); cfsetospeed(&tty, spd); tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP |INLCR|IGNCR|ICRNL|IXON); tty.c_oflag |= OPOST; tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG); tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB); switch(data_bits) { default: case 8: tty.c_cflag |= CS8; break; case 7: tty.c_cflag |= CS7; break; case 6: tty.c_cflag |= CS6; break; case 5: tty.c_cflag |= CS5; break; } switch(parity) { default: case 'N': break; case 'E': tty.c_cflag |= PARENB; break; case 'O': tty.c_cflag |= PARENB | PARODD; break; } if (stop_bits == 2) tty.c_cflag |= CSTOPB; tcsetattr (fd, TCSANOW, &tty); } static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg) { FDCharDriver *s = chr->opaque; switch(cmd) { case CHR_IOCTL_SERIAL_SET_PARAMS: { QEMUSerialSetParams *ssp = arg; tty_serial_init(s->fd_in, ssp->speed, ssp->parity, ssp->data_bits, ssp->stop_bits); } break; case CHR_IOCTL_SERIAL_SET_BREAK: { int enable = *(int *)arg; if (enable) tcsendbreak(s->fd_in, 1); } break; default: return -ENOTSUP; } return 0; } static CharDriverState *qemu_chr_open_tty(const char *filename) { CharDriverState *chr; int fd; TFR(fd = open(filename, O_RDWR | O_NONBLOCK)); fcntl(fd, F_SETFL, O_NONBLOCK); tty_serial_init(fd, 115200, 'N', 8, 1); chr = qemu_chr_open_fd(fd, fd); if (!chr) { close(fd); return NULL; } chr->chr_ioctl = tty_serial_ioctl; qemu_chr_reset(chr); return chr; } #else /* ! __linux__ && ! __sun__ */ static CharDriverState *qemu_chr_open_pty(void) { return NULL; } #endif /* __linux__ || __sun__ */ #if defined(__linux__) typedef struct { int fd; int mode; } ParallelCharDriver; static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode) { if (s->mode != mode) { int m = mode; if (ioctl(s->fd, PPSETMODE, &m) < 0) return 0; s->mode = mode; } return 1; } static int pp_ioctl(CharDriverState *chr, int cmd, void *arg) { ParallelCharDriver *drv = chr->opaque; int fd = drv->fd; uint8_t b; switch(cmd) { case CHR_IOCTL_PP_READ_DATA: if (ioctl(fd, PPRDATA, &b) < 0) return -ENOTSUP; *(uint8_t *)arg = b; break; case CHR_IOCTL_PP_WRITE_DATA: b = *(uint8_t *)arg; if (ioctl(fd, PPWDATA, &b) < 0) return -ENOTSUP; break; case CHR_IOCTL_PP_READ_CONTROL: if (ioctl(fd, PPRCONTROL, &b) < 0) return -ENOTSUP; /* Linux gives only the lowest bits, and no way to know data direction! For better compatibility set the fixed upper bits. */ *(uint8_t *)arg = b | 0xc0; break; case CHR_IOCTL_PP_WRITE_CONTROL: b = *(uint8_t *)arg; if (ioctl(fd, PPWCONTROL, &b) < 0) return -ENOTSUP; break; case CHR_IOCTL_PP_READ_STATUS: if (ioctl(fd, PPRSTATUS, &b) < 0) return -ENOTSUP; *(uint8_t *)arg = b; break; case CHR_IOCTL_PP_EPP_READ_ADDR: if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) { struct ParallelIOArg *parg = arg; int n = read(fd, parg->buffer, parg->count); if (n != parg->count) { return -EIO; } } break; case CHR_IOCTL_PP_EPP_READ: if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) { struct ParallelIOArg *parg = arg; int n = read(fd, parg->buffer, parg->count); if (n != parg->count) { return -EIO; } } break; case CHR_IOCTL_PP_EPP_WRITE_ADDR: if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) { struct ParallelIOArg *parg = arg; int n = write(fd, parg->buffer, parg->count); if (n != parg->count) { return -EIO; } } break; case CHR_IOCTL_PP_EPP_WRITE: if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) { struct ParallelIOArg *parg = arg; int n = write(fd, parg->buffer, parg->count); if (n != parg->count) { return -EIO; } } break; default: return -ENOTSUP; } return 0; } static void pp_close(CharDriverState *chr) { ParallelCharDriver *drv = chr->opaque; int fd = drv->fd; pp_hw_mode(drv, IEEE1284_MODE_COMPAT); ioctl(fd, PPRELEASE); close(fd); qemu_free(drv); } static CharDriverState *qemu_chr_open_pp(const char *filename) { CharDriverState *chr; ParallelCharDriver *drv; int fd; TFR(fd = open(filename, O_RDWR)); if (fd < 0) return NULL; if (ioctl(fd, PPCLAIM) < 0) { close(fd); return NULL; } drv = qemu_mallocz(sizeof(ParallelCharDriver)); if (!drv) { close(fd); return NULL; } drv->fd = fd; drv->mode = IEEE1284_MODE_COMPAT; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) { qemu_free(drv); close(fd); return NULL; } chr->chr_write = null_chr_write; chr->chr_ioctl = pp_ioctl; chr->chr_close = pp_close; chr->opaque = drv; qemu_chr_reset(chr); return chr; } #endif /* __linux__ */ #else /* _WIN32 */ typedef struct { int max_size; HANDLE hcom, hrecv, hsend; OVERLAPPED orecv, osend; BOOL fpipe; DWORD len; } WinCharState; #define NSENDBUF 2048 #define NRECVBUF 2048 #define MAXCONNECT 1 #define NTIMEOUT 5000 static int win_chr_poll(void *opaque); static int win_chr_pipe_poll(void *opaque); static void win_chr_close(CharDriverState *chr) { WinCharState *s = chr->opaque; if (s->hsend) { CloseHandle(s->hsend); s->hsend = NULL; } if (s->hrecv) { CloseHandle(s->hrecv); s->hrecv = NULL; } if (s->hcom) { CloseHandle(s->hcom); s->hcom = NULL; } if (s->fpipe) qemu_del_polling_cb(win_chr_pipe_poll, chr); else qemu_del_polling_cb(win_chr_poll, chr); } static int win_chr_init(CharDriverState *chr, const char *filename) { WinCharState *s = chr->opaque; COMMCONFIG comcfg; COMMTIMEOUTS cto = { 0, 0, 0, 0, 0}; COMSTAT comstat; DWORD size; DWORD err; s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL); if (!s->hsend) { fprintf(stderr, "Failed CreateEvent\n"); goto fail; } s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL); if (!s->hrecv) { fprintf(stderr, "Failed CreateEvent\n"); goto fail; } s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0); if (s->hcom == INVALID_HANDLE_VALUE) { fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError()); s->hcom = NULL; goto fail; } if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) { fprintf(stderr, "Failed SetupComm\n"); goto fail; } ZeroMemory(&comcfg, sizeof(COMMCONFIG)); size = sizeof(COMMCONFIG); GetDefaultCommConfig(filename, &comcfg, &size); comcfg.dcb.DCBlength = sizeof(DCB); CommConfigDialog(filename, NULL, &comcfg); if (!SetCommState(s->hcom, &comcfg.dcb)) { fprintf(stderr, "Failed SetCommState\n"); goto fail; } if (!SetCommMask(s->hcom, EV_ERR)) { fprintf(stderr, "Failed SetCommMask\n"); goto fail; } cto.ReadIntervalTimeout = MAXDWORD; if (!SetCommTimeouts(s->hcom, &cto)) { fprintf(stderr, "Failed SetCommTimeouts\n"); goto fail; } if (!ClearCommError(s->hcom, &err, &comstat)) { fprintf(stderr, "Failed ClearCommError\n"); goto fail; } qemu_add_polling_cb(win_chr_poll, chr); return 0; fail: win_chr_close(chr); return -1; } static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1) { WinCharState *s = chr->opaque; DWORD len, ret, size, err; len = len1; ZeroMemory(&s->osend, sizeof(s->osend)); s->osend.hEvent = s->hsend; while (len > 0) { if (s->hsend) ret = WriteFile(s->hcom, buf, len, &size, &s->osend); else ret = WriteFile(s->hcom, buf, len, &size, NULL); if (!ret) { err = GetLastError(); if (err == ERROR_IO_PENDING) { ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE); if (ret) { buf += size; len -= size; } else { break; } } else { break; } } else { buf += size; len -= size; } } return len1 - len; } static int win_chr_read_poll(CharDriverState *chr) { WinCharState *s = chr->opaque; s->max_size = qemu_chr_can_read(chr); return s->max_size; } static void win_chr_readfile(CharDriverState *chr) { WinCharState *s = chr->opaque; int ret, err; uint8_t buf[1024]; DWORD size; ZeroMemory(&s->orecv, sizeof(s->orecv)); s->orecv.hEvent = s->hrecv; ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv); if (!ret) { err = GetLastError(); if (err == ERROR_IO_PENDING) { ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE); } } if (size > 0) { qemu_chr_read(chr, buf, size); } } static void win_chr_read(CharDriverState *chr) { WinCharState *s = chr->opaque; if (s->len > s->max_size) s->len = s->max_size; if (s->len == 0) return; win_chr_readfile(chr); } static int win_chr_poll(void *opaque) { CharDriverState *chr = opaque; WinCharState *s = chr->opaque; COMSTAT status; DWORD comerr; ClearCommError(s->hcom, &comerr, &status); if (status.cbInQue > 0) { s->len = status.cbInQue; win_chr_read_poll(chr); win_chr_read(chr); return 1; } return 0; } static CharDriverState *qemu_chr_open_win(const char *filename) { CharDriverState *chr; WinCharState *s; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) return NULL; s = qemu_mallocz(sizeof(WinCharState)); if (!s) { free(chr); return NULL; } chr->opaque = s; chr->chr_write = win_chr_write; chr->chr_close = win_chr_close; if (win_chr_init(chr, filename) < 0) { free(s); free(chr); return NULL; } qemu_chr_reset(chr); return chr; } static int win_chr_pipe_poll(void *opaque) { CharDriverState *chr = opaque; WinCharState *s = chr->opaque; DWORD size; PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL); if (size > 0) { s->len = size; win_chr_read_poll(chr); win_chr_read(chr); return 1; } return 0; } static int win_chr_pipe_init(CharDriverState *chr, const char *filename) { WinCharState *s = chr->opaque; OVERLAPPED ov; int ret; DWORD size; char openname[256]; s->fpipe = TRUE; s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL); if (!s->hsend) { fprintf(stderr, "Failed CreateEvent\n"); goto fail; } s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL); if (!s->hrecv) { fprintf(stderr, "Failed CreateEvent\n"); goto fail; } snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename); s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED, PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_WAIT, MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL); if (s->hcom == INVALID_HANDLE_VALUE) { fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError()); s->hcom = NULL; goto fail; } ZeroMemory(&ov, sizeof(ov)); ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); ret = ConnectNamedPipe(s->hcom, &ov); if (ret) { fprintf(stderr, "Failed ConnectNamedPipe\n"); goto fail; } ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE); if (!ret) { fprintf(stderr, "Failed GetOverlappedResult\n"); if (ov.hEvent) { CloseHandle(ov.hEvent); ov.hEvent = NULL; } goto fail; } if (ov.hEvent) { CloseHandle(ov.hEvent); ov.hEvent = NULL; } qemu_add_polling_cb(win_chr_pipe_poll, chr); return 0; fail: win_chr_close(chr); return -1; } static CharDriverState *qemu_chr_open_win_pipe(const char *filename) { CharDriverState *chr; WinCharState *s; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) return NULL; s = qemu_mallocz(sizeof(WinCharState)); if (!s) { free(chr); return NULL; } chr->opaque = s; chr->chr_write = win_chr_write; chr->chr_close = win_chr_close; if (win_chr_pipe_init(chr, filename) < 0) { free(s); free(chr); return NULL; } qemu_chr_reset(chr); return chr; } static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out) { CharDriverState *chr; WinCharState *s; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) return NULL; s = qemu_mallocz(sizeof(WinCharState)); if (!s) { free(chr); return NULL; } s->hcom = fd_out; chr->opaque = s; chr->chr_write = win_chr_write; qemu_chr_reset(chr); return chr; } static CharDriverState *qemu_chr_open_win_con(const char *filename) { return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE)); } static CharDriverState *qemu_chr_open_win_file_out(const char *file_out) { HANDLE fd_out; fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (fd_out == INVALID_HANDLE_VALUE) return NULL; return qemu_chr_open_win_file(fd_out); } #endif /* !_WIN32 */ /***********************************************************/ /* UDP Net console */ typedef struct { int fd; struct sockaddr_in daddr; uint8_t buf[1024]; int bufcnt; int bufptr; int max_size; } NetCharDriver; static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len) { NetCharDriver *s = chr->opaque; return sendto(s->fd, buf, len, 0, (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in)); } static int udp_chr_read_poll(void *opaque) { CharDriverState *chr = opaque; NetCharDriver *s = chr->opaque; s->max_size = qemu_chr_can_read(chr); /* If there were any stray characters in the queue process them * first */ while (s->max_size > 0 && s->bufptr < s->bufcnt) { qemu_chr_read(chr, &s->buf[s->bufptr], 1); s->bufptr++; s->max_size = qemu_chr_can_read(chr); } return s->max_size; } static void udp_chr_read(void *opaque) { CharDriverState *chr = opaque; NetCharDriver *s = chr->opaque; if (s->max_size == 0) return; s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0); s->bufptr = s->bufcnt; if (s->bufcnt <= 0) return; s->bufptr = 0; while (s->max_size > 0 && s->bufptr < s->bufcnt) { qemu_chr_read(chr, &s->buf[s->bufptr], 1); s->bufptr++; s->max_size = qemu_chr_can_read(chr); } } static void udp_chr_update_read_handler(CharDriverState *chr) { NetCharDriver *s = chr->opaque; if (s->fd >= 0) { qemu_set_fd_handler2(s->fd, udp_chr_read_poll, udp_chr_read, NULL, chr); } } int parse_host_port(struct sockaddr_in *saddr, const char *str); #ifndef _WIN32 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str); #endif int parse_host_src_port(struct sockaddr_in *haddr, struct sockaddr_in *saddr, const char *str); static CharDriverState *qemu_chr_open_udp(const char *def) { CharDriverState *chr = NULL; NetCharDriver *s = NULL; int fd = -1; struct sockaddr_in saddr; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) goto return_err; s = qemu_mallocz(sizeof(NetCharDriver)); if (!s) goto return_err; fd = socket(PF_INET, SOCK_DGRAM, 0); if (fd < 0) { perror("socket(PF_INET, SOCK_DGRAM)"); goto return_err; } if (parse_host_src_port(&s->daddr, &saddr, def) < 0) { printf("Could not parse: %s\n", def); goto return_err; } if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) { perror("bind"); goto return_err; } s->fd = fd; s->bufcnt = 0; s->bufptr = 0; chr->opaque = s; chr->chr_write = udp_chr_write; chr->chr_update_read_handler = udp_chr_update_read_handler; return chr; return_err: if (chr) free(chr); if (s) free(s); if (fd >= 0) closesocket(fd); return NULL; } /***********************************************************/ /* TCP Net console */ typedef struct { int fd, listen_fd; int connected; int max_size; int do_telnetopt; int do_nodelay; int is_unix; } TCPCharDriver; static void tcp_chr_accept(void *opaque); static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len) { TCPCharDriver *s = chr->opaque; if (s->connected) { return send_all(s->fd, buf, len); } else { /* XXX: indicate an error ? */ return len; } } static int tcp_chr_read_poll(void *opaque) { CharDriverState *chr = opaque; TCPCharDriver *s = chr->opaque; if (!s->connected) return 0; s->max_size = qemu_chr_can_read(chr); return s->max_size; } #define IAC 255 #define IAC_BREAK 243 static void tcp_chr_process_IAC_bytes(CharDriverState *chr, TCPCharDriver *s, uint8_t *buf, int *size) { /* Handle any telnet client's basic IAC options to satisfy char by * char mode with no echo. All IAC options will be removed from * the buf and the do_telnetopt variable will be used to track the * state of the width of the IAC information. * * IAC commands come in sets of 3 bytes with the exception of the * "IAC BREAK" command and the double IAC. */ int i; int j = 0; for (i = 0; i < *size; i++) { if (s->do_telnetopt > 1) { if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) { /* Double IAC means send an IAC */ if (j != i) buf[j] = buf[i]; j++; s->do_telnetopt = 1; } else { if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) { /* Handle IAC break commands by sending a serial break */ qemu_chr_event(chr, CHR_EVENT_BREAK); s->do_telnetopt++; } s->do_telnetopt++; } if (s->do_telnetopt >= 4) { s->do_telnetopt = 1; } } else { if ((unsigned char)buf[i] == IAC) { s->do_telnetopt = 2; } else { if (j != i) buf[j] = buf[i]; j++; } } } *size = j; } static void tcp_chr_read(void *opaque) { CharDriverState *chr = opaque; TCPCharDriver *s = chr->opaque; uint8_t buf[1024]; int len, size; if (!s->connected || s->max_size <= 0) return; len = sizeof(buf); if (len > s->max_size) len = s->max_size; size = recv(s->fd, buf, len, 0); if (size == 0) { /* connection closed */ s->connected = 0; if (s->listen_fd >= 0) { qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr); } qemu_set_fd_handler(s->fd, NULL, NULL, NULL); closesocket(s->fd); s->fd = -1; } else if (size > 0) { if (s->do_telnetopt) tcp_chr_process_IAC_bytes(chr, s, buf, &size); if (size > 0) qemu_chr_read(chr, buf, size); } } static void tcp_chr_connect(void *opaque) { CharDriverState *chr = opaque; TCPCharDriver *s = chr->opaque; s->connected = 1; qemu_set_fd_handler2(s->fd, tcp_chr_read_poll, tcp_chr_read, NULL, chr); qemu_chr_reset(chr); } #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c; static void tcp_chr_telnet_init(int fd) { char buf[3]; /* Send the telnet negotion to put telnet in binary, no echo, single char mode */ IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */ send(fd, (char *)buf, 3, 0); IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */ send(fd, (char *)buf, 3, 0); IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */ send(fd, (char *)buf, 3, 0); IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */ send(fd, (char *)buf, 3, 0); } static void socket_set_nodelay(int fd) { int val = 1; setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); } static void tcp_chr_accept(void *opaque) { CharDriverState *chr = opaque; TCPCharDriver *s = chr->opaque; struct sockaddr_in saddr; #ifndef _WIN32 struct sockaddr_un uaddr; #endif struct sockaddr *addr; socklen_t len; int fd; for(;;) { #ifndef _WIN32 if (s->is_unix) { len = sizeof(uaddr); addr = (struct sockaddr *)&uaddr; } else #endif { len = sizeof(saddr); addr = (struct sockaddr *)&saddr; } fd = accept(s->listen_fd, addr, &len); if (fd < 0 && errno != EINTR) { return; } else if (fd >= 0) { if (s->do_telnetopt) tcp_chr_telnet_init(fd); break; } } socket_set_nonblock(fd); if (s->do_nodelay) socket_set_nodelay(fd); s->fd = fd; qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL); tcp_chr_connect(chr); } static void tcp_chr_close(CharDriverState *chr) { TCPCharDriver *s = chr->opaque; if (s->fd >= 0) closesocket(s->fd); if (s->listen_fd >= 0) closesocket(s->listen_fd); qemu_free(s); } static CharDriverState *qemu_chr_open_tcp(const char *host_str, int is_telnet, int is_unix) { CharDriverState *chr = NULL; TCPCharDriver *s = NULL; int fd = -1, ret, err, val; int is_listen = 0; int is_waitconnect = 1; int do_nodelay = 0; const char *ptr; struct sockaddr_in saddr; #ifndef _WIN32 struct sockaddr_un uaddr; #endif struct sockaddr *addr; socklen_t addrlen; #ifndef _WIN32 if (is_unix) { addr = (struct sockaddr *)&uaddr; addrlen = sizeof(uaddr); if (parse_unix_path(&uaddr, host_str) < 0) goto fail; } else #endif { addr = (struct sockaddr *)&saddr; addrlen = sizeof(saddr); if (parse_host_port(&saddr, host_str) < 0) goto fail; } ptr = host_str; while((ptr = strchr(ptr,','))) { ptr++; if (!strncmp(ptr,"server",6)) { is_listen = 1; } else if (!strncmp(ptr,"nowait",6)) { is_waitconnect = 0; } else if (!strncmp(ptr,"nodelay",6)) { do_nodelay = 1; } else { printf("Unknown option: %s\n", ptr); goto fail; } } if (!is_listen) is_waitconnect = 0; chr = qemu_mallocz(sizeof(CharDriverState)); if (!chr) goto fail; s = qemu_mallocz(sizeof(TCPCharDriver)); if (!s) goto fail; #ifndef _WIN32 if (is_unix) fd = socket(PF_UNIX, SOCK_STREAM, 0); else #endif fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) goto fail; if (!is_waitconnect) socket_set_nonblock(fd); s->connected = 0; s->fd = -1; s->listen_fd = -1; s->is_unix = is_unix; s->do_nodelay = do_nodelay && !is_unix; chr->opaque = s; chr->chr_write = tcp_chr_write; chr->chr_close = tcp_chr_close; if (is_listen) { /* allow fast reuse */ #ifndef _WIN32 if (is_unix) { char path[109]; pstrcpy(path, sizeof(path), uaddr.sun_path); unlink(path); } else #endif { val = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); } ret = bind(fd, addr, addrlen); if (ret < 0) goto fail; ret = listen(fd, 0); if (ret < 0) goto fail; s->listen_fd = fd; qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr); if (is_telnet) s->do_telnetopt = 1; } else { for(;;) { ret = connect(fd, addr, addrlen); if (ret < 0) { err = socket_error(); if (err == EINTR || err == EWOULDBLOCK) { } else if (err == EINPROGRESS) { break; #ifdef _WIN32 } else if (err == WSAEALREADY) { break; #endif } else { goto fail; } } else { s->connected = 1; break; } } s->fd = fd; socket_set_nodelay(fd); if (s->connected) tcp_chr_connect(chr); else qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr); } if (is_listen && is_waitconnect) { printf("QEMU waiting for connection on: %s\n", host_str); tcp_chr_accept(chr); socket_set_nonblock(s->listen_fd); } return chr; fail: if (fd >= 0) closesocket(fd); qemu_free(s); qemu_free(chr); return NULL; } CharDriverState *qemu_chr_open(const char *filename) { const char *p; if (!strcmp(filename, "vc")) { return text_console_init(&display_state, 0); } else if (strstart(filename, "vc:", &p)) { return text_console_init(&display_state, p); } else if (!strcmp(filename, "null")) { return qemu_chr_open_null(); } else if (strstart(filename, "tcp:", &p)) { return qemu_chr_open_tcp(p, 0, 0); } else if (strstart(filename, "telnet:", &p)) { return qemu_chr_open_tcp(p, 1, 0); } else if (strstart(filename, "udp:", &p)) { return qemu_chr_open_udp(p); } else if (strstart(filename, "mon:", &p)) { CharDriverState *drv = qemu_chr_open(p); if (drv) { drv = qemu_chr_open_mux(drv); monitor_init(drv, !nographic); return drv; } printf("Unable to open driver: %s\n", p); return 0; } else #ifndef _WIN32 if (strstart(filename, "unix:", &p)) { return qemu_chr_open_tcp(p, 0, 1); } else if (strstart(filename, "file:", &p)) { return qemu_chr_open_file_out(p); } else if (strstart(filename, "pipe:", &p)) { return qemu_chr_open_pipe(p); } else if (!strcmp(filename, "pty")) { return qemu_chr_open_pty(); } else if (!strcmp(filename, "stdio")) { return qemu_chr_open_stdio(); } else #if defined(__linux__) if (strstart(filename, "/dev/parport", NULL)) { return qemu_chr_open_pp(filename); } else #endif #if defined(__linux__) || defined(__sun__) if (strstart(filename, "/dev/", NULL)) { return qemu_chr_open_tty(filename); } else #endif #else /* !_WIN32 */ if (strstart(filename, "COM", NULL)) { return qemu_chr_open_win(filename); } else if (strstart(filename, "pipe:", &p)) { return qemu_chr_open_win_pipe(p); } else if (strstart(filename, "con:", NULL)) { return qemu_chr_open_win_con(filename); } else if (strstart(filename, "file:", &p)) { return qemu_chr_open_win_file_out(p); } else #endif #ifdef CONFIG_BRLAPI if (!strcmp(filename, "braille")) { return chr_baum_init(); } else #endif { return NULL; } } void qemu_chr_close(CharDriverState *chr) { if (chr->chr_close) chr->chr_close(chr); qemu_free(chr); } /***********************************************************/ /* network device redirectors */ __attribute__ (( unused )) static void hex_dump(FILE *f, const uint8_t *buf, int size) { int len, i, j, c; for(i=0;i 16) len = 16; fprintf(f, "%08x ", i); for(j=0;j<16;j++) { if (j < len) fprintf(f, " %02x", buf[i+j]); else fprintf(f, " "); } fprintf(f, " "); for(j=0;j '~') c = '.'; fprintf(f, "%c", c); } fprintf(f, "\n"); } } static int parse_macaddr(uint8_t *macaddr, const char *p) { int i; char *last_char; long int offset; errno = 0; offset = strtol(p, &last_char, 0); if (0 == errno && '\0' == *last_char && offset >= 0 && offset <= 0xFFFFFF) { macaddr[3] = (offset & 0xFF0000) >> 16; macaddr[4] = (offset & 0xFF00) >> 8; macaddr[5] = offset & 0xFF; return 0; } else { for(i = 0; i < 6; i++) { macaddr[i] = strtol(p, (char **)&p, 16); if (i == 5) { if (*p != '\0') return -1; } else { if (*p != ':' && *p != '-') return -1; p++; } } return 0; } return -1; } static int get_str_sep(char *buf, int buf_size, const char **pp, int sep) { const char *p, *p1; int len; p = *pp; p1 = strchr(p, sep); if (!p1) return -1; len = p1 - p; p1++; if (buf_size > 0) { if (len > buf_size - 1) len = buf_size - 1; memcpy(buf, p, len); buf[len] = '\0'; } *pp = p1; return 0; } int parse_host_src_port(struct sockaddr_in *haddr, struct sockaddr_in *saddr, const char *input_str) { char *str = strdup(input_str); char *host_str = str; char *src_str; char *ptr; /* * Chop off any extra arguments at the end of the string which * would start with a comma, then fill in the src port information * if it was provided else use the "any address" and "any port". */ if ((ptr = strchr(str,','))) *ptr = '\0'; if ((src_str = strchr(input_str,'@'))) { *src_str = '\0'; src_str++; } if (parse_host_port(haddr, host_str) < 0) goto fail; if (!src_str || *src_str == '\0') src_str = ":0"; if (parse_host_port(saddr, src_str) < 0) goto fail; free(str); return(0); fail: free(str); return -1; } int parse_host_port(struct sockaddr_in *saddr, const char *str) { char buf[512]; struct hostent *he; const char *p, *r; int port; p = str; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) return -1; saddr->sin_family = AF_INET; if (buf[0] == '\0') { saddr->sin_addr.s_addr = 0; } else { if (isdigit(buf[0])) { if (!inet_aton(buf, &saddr->sin_addr)) return -1; } else { if ((he = gethostbyname(buf)) == NULL) return - 1; saddr->sin_addr = *(struct in_addr *)he->h_addr; } } port = strtol(p, (char **)&r, 0); if (r == p) return -1; saddr->sin_port = htons(port); return 0; } #ifndef _WIN32 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str) { const char *p; int len; len = MIN(108, strlen(str)); p = strchr(str, ','); if (p) len = MIN(len, p - str); memset(uaddr, 0, sizeof(*uaddr)); uaddr->sun_family = AF_UNIX; memcpy(uaddr->sun_path, str, len); return 0; } #endif /* find or alloc a new VLAN */ VLANState *qemu_find_vlan(int id) { VLANState **pvlan, *vlan; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->id == id) return vlan; } vlan = qemu_mallocz(sizeof(VLANState)); if (!vlan) return NULL; vlan->id = id; vlan->next = NULL; pvlan = &first_vlan; while (*pvlan != NULL) pvlan = &(*pvlan)->next; *pvlan = vlan; return vlan; } VLANClientState *qemu_new_vlan_client(VLANState *vlan, IOReadHandler *fd_read, IOCanRWHandler *fd_can_read, void *opaque) { VLANClientState *vc, **pvc; vc = qemu_mallocz(sizeof(VLANClientState)); if (!vc) return NULL; vc->fd_read = fd_read; vc->fd_can_read = fd_can_read; vc->opaque = opaque; vc->vlan = vlan; vc->next = NULL; pvc = &vlan->first_client; while (*pvc != NULL) pvc = &(*pvc)->next; *pvc = vc; return vc; } int qemu_can_send_packet(VLANClientState *vc1) { VLANState *vlan = vc1->vlan; VLANClientState *vc; for(vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc != vc1) { if (vc->fd_can_read && vc->fd_can_read(vc->opaque)) return 1; } } return 0; } void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size) { VLANState *vlan = vc1->vlan; VLANClientState *vc; #if 0 printf("vlan %d send:\n", vlan->id); hex_dump(stdout, buf, size); #endif for(vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc != vc1) { vc->fd_read(vc->opaque, buf, size); } } } #if defined(CONFIG_SLIRP) /* slirp network adapter */ static int slirp_inited; static VLANClientState *slirp_vc; int slirp_can_output(void) { return !slirp_vc || qemu_can_send_packet(slirp_vc); } void slirp_output(const uint8_t *pkt, int pkt_len) { #if 0 printf("slirp output:\n"); hex_dump(stdout, pkt, pkt_len); #endif if (!slirp_vc) return; qemu_send_packet(slirp_vc, pkt, pkt_len); } static void slirp_receive(void *opaque, const uint8_t *buf, int size) { #if 0 printf("slirp input:\n"); hex_dump(stdout, buf, size); #endif slirp_input(buf, size); } static int net_slirp_init(VLANState *vlan) { if (!slirp_inited) { slirp_inited = 1; slirp_init(); } slirp_vc = qemu_new_vlan_client(vlan, slirp_receive, NULL, NULL); snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector"); return 0; } static void net_slirp_redir(const char *redir_str) { int is_udp; char buf[256], *r; const char *p; struct in_addr guest_addr; int host_port, guest_port; if (!slirp_inited) { slirp_inited = 1; slirp_init(); } p = redir_str; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) goto fail; if (!strcmp(buf, "tcp")) { is_udp = 0; } else if (!strcmp(buf, "udp")) { is_udp = 1; } else { goto fail; } if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) goto fail; host_port = strtol(buf, &r, 0); if (r == buf) goto fail; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) goto fail; if (buf[0] == '\0') { pstrcpy(buf, sizeof(buf), "10.0.2.15"); } if (!inet_aton(buf, &guest_addr)) goto fail; guest_port = strtol(p, &r, 0); if (r == p) goto fail; if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) { fprintf(stderr, "qemu: could not set up redirection\n"); exit(1); } return; fail: fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n"); exit(1); } #ifndef _WIN32 char smb_dir[1024]; static void erase_dir(char *dir_name) { DIR *d; struct dirent *de; char filename[1024]; /* erase all the files in the directory */ if ((d = opendir(dir_name)) != 0) { for(;;) { de = readdir(d); if (!de) break; if (strcmp(de->d_name, ".") != 0 && strcmp(de->d_name, "..") != 0) { snprintf(filename, sizeof(filename), "%s/%s", smb_dir, de->d_name); if (unlink(filename) != 0) /* is it a directory? */ erase_dir(filename); } } closedir(d); rmdir(dir_name); } } /* automatic user mode samba server configuration */ static void smb_exit(void) { erase_dir(smb_dir); } /* automatic user mode samba server configuration */ static void net_slirp_smb(const char *exported_dir) { char smb_conf[1024]; char smb_cmdline[1024]; FILE *f; if (!slirp_inited) { slirp_inited = 1; slirp_init(); } /* XXX: better tmp dir construction */ snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid()); if (mkdir(smb_dir, 0700) < 0) { fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir); exit(1); } snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf"); f = fopen(smb_conf, "w"); if (!f) { fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf); exit(1); } fprintf(f, "[global]\n" "private dir=%s\n" "smb ports=0\n" "socket address=127.0.0.1\n" "pid directory=%s\n" "lock directory=%s\n" "log file=%s/log.smbd\n" "smb passwd file=%s/smbpasswd\n" "security = share\n" "[qemu]\n" "path=%s\n" "read only=no\n" "guest ok=yes\n", smb_dir, smb_dir, smb_dir, smb_dir, smb_dir, exported_dir ); fclose(f); atexit(smb_exit); snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s", SMBD_COMMAND, smb_conf); slirp_add_exec(0, smb_cmdline, 4, 139); } #endif /* !defined(_WIN32) */ void do_info_slirp(void) { slirp_stats(); } #endif /* CONFIG_SLIRP */ #if !defined(_WIN32) typedef struct TAPState { VLANClientState *vc; int fd; char down_script[1024]; } TAPState; static void tap_receive(void *opaque, const uint8_t *buf, int size) { TAPState *s = opaque; int ret; for(;;) { ret = write(s->fd, buf, size); if (ret < 0 && (errno == EINTR || errno == EAGAIN)) { } else { break; } } } static void tap_send(void *opaque) { TAPState *s = opaque; uint8_t buf[4096]; int size; #ifdef __sun__ struct strbuf sbuf; int f = 0; sbuf.maxlen = sizeof(buf); sbuf.buf = buf; size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1; #else size = read(s->fd, buf, sizeof(buf)); #endif if (size > 0) { qemu_send_packet(s->vc, buf, size); } } /* fd support */ static TAPState *net_tap_fd_init(VLANState *vlan, int fd) { TAPState *s; s = qemu_mallocz(sizeof(TAPState)); if (!s) return NULL; s->fd = fd; s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s); qemu_set_fd_handler(s->fd, tap_send, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd); return s; } #if defined (_BSD) || defined (__FreeBSD_kernel__) static int tap_open(char *ifname, int ifname_size) { int fd; char *dev; struct stat s; TFR(fd = open("/dev/tap", O_RDWR)); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n"); return -1; } fstat(fd, &s); dev = devname(s.st_rdev, S_IFCHR); pstrcpy(ifname, ifname_size, dev); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #elif defined(__sun__) #define TUNNEWPPA (('T'<<16) | 0x0001) /* * Allocate TAP device, returns opened fd. * Stores dev name in the first arg(must be large enough). */ int tap_alloc(char *dev) { int tap_fd, if_fd, ppa = -1; static int ip_fd = 0; char *ptr; static int arp_fd = 0; int ip_muxid, arp_muxid; struct strioctl strioc_if, strioc_ppa; int link_type = I_PLINK;; struct lifreq ifr; char actual_name[32] = ""; memset(&ifr, 0x0, sizeof(ifr)); if( *dev ){ ptr = dev; while( *ptr && !isdigit((int)*ptr) ) ptr++; ppa = atoi(ptr); } /* Check if IP device was opened */ if( ip_fd ) close(ip_fd); TFR(ip_fd = open("/dev/udp", O_RDWR, 0)); if (ip_fd < 0) { syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)"); return -1; } TFR(tap_fd = open("/dev/tap", O_RDWR, 0)); if (tap_fd < 0) { syslog(LOG_ERR, "Can't open /dev/tap"); return -1; } /* Assign a new PPA and get its unit number. */ strioc_ppa.ic_cmd = TUNNEWPPA; strioc_ppa.ic_timout = 0; strioc_ppa.ic_len = sizeof(ppa); strioc_ppa.ic_dp = (char *)&ppa; if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0) syslog (LOG_ERR, "Can't assign new interface"); TFR(if_fd = open("/dev/tap", O_RDWR, 0)); if (if_fd < 0) { syslog(LOG_ERR, "Can't open /dev/tap (2)"); return -1; } if(ioctl(if_fd, I_PUSH, "ip") < 0){ syslog(LOG_ERR, "Can't push IP module"); return -1; } if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0) syslog(LOG_ERR, "Can't get flags\n"); snprintf (actual_name, 32, "tap%d", ppa); strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name)); ifr.lifr_ppa = ppa; /* Assign ppa according to the unit number returned by tun device */ if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0) syslog (LOG_ERR, "Can't set PPA %d", ppa); if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0) syslog (LOG_ERR, "Can't get flags\n"); /* Push arp module to if_fd */ if (ioctl (if_fd, I_PUSH, "arp") < 0) syslog (LOG_ERR, "Can't push ARP module (2)"); /* Push arp module to ip_fd */ if (ioctl (ip_fd, I_POP, NULL) < 0) syslog (LOG_ERR, "I_POP failed\n"); if (ioctl (ip_fd, I_PUSH, "arp") < 0) syslog (LOG_ERR, "Can't push ARP module (3)\n"); /* Open arp_fd */ TFR(arp_fd = open ("/dev/tap", O_RDWR, 0)); if (arp_fd < 0) syslog (LOG_ERR, "Can't open %s\n", "/dev/tap"); /* Set ifname to arp */ strioc_if.ic_cmd = SIOCSLIFNAME; strioc_if.ic_timout = 0; strioc_if.ic_len = sizeof(ifr); strioc_if.ic_dp = (char *)𝔦 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){ syslog (LOG_ERR, "Can't set ifname to arp\n"); } if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){ syslog(LOG_ERR, "Can't link TAP device to IP"); return -1; } if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0) syslog (LOG_ERR, "Can't link TAP device to ARP"); close (if_fd); memset(&ifr, 0x0, sizeof(ifr)); strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name)); ifr.lifr_ip_muxid = ip_muxid; ifr.lifr_arp_muxid = arp_muxid; if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0) { ioctl (ip_fd, I_PUNLINK , arp_muxid); ioctl (ip_fd, I_PUNLINK, ip_muxid); syslog (LOG_ERR, "Can't set multiplexor id"); } sprintf(dev, "tap%d", ppa); return tap_fd; } static int tap_open(char *ifname, int ifname_size) { char dev[10]=""; int fd; if( (fd = tap_alloc(dev)) < 0 ){ fprintf(stderr, "Cannot allocate TAP device\n"); return -1; } pstrcpy(ifname, ifname_size, dev); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #else static int tap_open(char *ifname, int ifname_size) { struct ifreq ifr; int fd, ret; TFR(fd = open("/dev/net/tun", O_RDWR)); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n"); return -1; } memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ifname[0] != '\0') pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname); else pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d"); ret = ioctl(fd, TUNSETIFF, (void *) &ifr); if (ret != 0) { fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n"); close(fd); return -1; } pstrcpy(ifname, ifname_size, ifr.ifr_name); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #endif static int launch_script(const char *setup_script, const char *ifname, int fd) { int pid, status; char *args[3]; char **parg; /* try to launch network script */ pid = fork(); if (pid >= 0) { if (pid == 0) { int open_max = sysconf (_SC_OPEN_MAX), i; for (i = 0; i < open_max; i++) if (i != STDIN_FILENO && i != STDOUT_FILENO && i != STDERR_FILENO && i != fd) close(i); parg = args; *parg++ = (char *)setup_script; *parg++ = (char *)ifname; *parg++ = NULL; execv(setup_script, args); _exit(1); } while (waitpid(pid, &status, 0) != pid); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { fprintf(stderr, "%s: could not launch network script\n", setup_script); return -1; } } return 0; } static int net_tap_init(VLANState *vlan, const char *ifname1, const char *setup_script, const char *down_script) { TAPState *s; int fd; char ifname[128]; if (ifname1 != NULL) pstrcpy(ifname, sizeof(ifname), ifname1); else ifname[0] = '\0'; TFR(fd = tap_open(ifname, sizeof(ifname))); if (fd < 0) return -1; if (!setup_script || !strcmp(setup_script, "no")) setup_script = ""; if (setup_script[0] != '\0') { if (launch_script(setup_script, ifname, fd)) return -1; } s = net_tap_fd_init(vlan, fd); if (!s) return -1; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: ifname=%s setup_script=%s", ifname, setup_script); if (down_script && strcmp(down_script, "no")) snprintf(s->down_script, sizeof(s->down_script), "%s", down_script); return 0; } #endif /* !_WIN32 */ /* network connection */ typedef struct NetSocketState { VLANClientState *vc; int fd; int state; /* 0 = getting length, 1 = getting data */ int index; int packet_len; uint8_t buf[4096]; struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */ } NetSocketState; typedef struct NetSocketListenState { VLANState *vlan; int fd; } NetSocketListenState; /* XXX: we consider we can send the whole packet without blocking */ static void net_socket_receive(void *opaque, const uint8_t *buf, int size) { NetSocketState *s = opaque; uint32_t len; len = htonl(size); send_all(s->fd, (const uint8_t *)&len, sizeof(len)); send_all(s->fd, buf, size); } static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size) { NetSocketState *s = opaque; sendto(s->fd, buf, size, 0, (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst)); } static void net_socket_send(void *opaque) { NetSocketState *s = opaque; int l, size, err; uint8_t buf1[4096]; const uint8_t *buf; size = recv(s->fd, buf1, sizeof(buf1), 0); if (size < 0) { err = socket_error(); if (err != EWOULDBLOCK) goto eoc; } else if (size == 0) { /* end of connection */ eoc: qemu_set_fd_handler(s->fd, NULL, NULL, NULL); closesocket(s->fd); return; } buf = buf1; while (size > 0) { /* reassemble a packet from the network */ switch(s->state) { case 0: l = 4 - s->index; if (l > size) l = size; memcpy(s->buf + s->index, buf, l); buf += l; size -= l; s->index += l; if (s->index == 4) { /* got length */ s->packet_len = ntohl(*(uint32_t *)s->buf); s->index = 0; s->state = 1; } break; case 1: l = s->packet_len - s->index; if (l > size) l = size; memcpy(s->buf + s->index, buf, l); s->index += l; buf += l; size -= l; if (s->index >= s->packet_len) { qemu_send_packet(s->vc, s->buf, s->packet_len); s->index = 0; s->state = 0; } break; } } } static void net_socket_send_dgram(void *opaque) { NetSocketState *s = opaque; int size; size = recv(s->fd, s->buf, sizeof(s->buf), 0); if (size < 0) return; if (size == 0) { /* end of connection */ qemu_set_fd_handler(s->fd, NULL, NULL, NULL); return; } qemu_send_packet(s->vc, s->buf, size); } static int net_socket_mcast_create(struct sockaddr_in *mcastaddr) { struct ip_mreq imr; int fd; int val, ret; if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) { fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n", inet_ntoa(mcastaddr->sin_addr), (int)ntohl(mcastaddr->sin_addr.s_addr)); return -1; } fd = socket(PF_INET, SOCK_DGRAM, 0); if (fd < 0) { perror("socket(PF_INET, SOCK_DGRAM)"); return -1; } val = 1; ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); if (ret < 0) { perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)"); goto fail; } ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr)); if (ret < 0) { perror("bind"); goto fail; } /* Add host to multicast group */ imr.imr_multiaddr = mcastaddr->sin_addr; imr.imr_interface.s_addr = htonl(INADDR_ANY); ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const char *)&imr, sizeof(struct ip_mreq)); if (ret < 0) { perror("setsockopt(IP_ADD_MEMBERSHIP)"); goto fail; } /* Force mcast msgs to loopback (eg. several QEMUs in same host */ val = 1; ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, (const char *)&val, sizeof(val)); if (ret < 0) { perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)"); goto fail; } socket_set_nonblock(fd); return fd; fail: if (fd >= 0) closesocket(fd); return -1; } static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, int is_connected) { struct sockaddr_in saddr; int newfd; socklen_t saddr_len; NetSocketState *s; /* fd passed: multicast: "learn" dgram_dst address from bound address and save it * Because this may be "shared" socket from a "master" process, datagrams would be recv() * by ONLY ONE process: we must "clone" this dgram socket --jjo */ if (is_connected) { if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) { /* must be bound */ if (saddr.sin_addr.s_addr==0) { fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n", fd); return NULL; } /* clone dgram socket */ newfd = net_socket_mcast_create(&saddr); if (newfd < 0) { /* error already reported by net_socket_mcast_create() */ close(fd); return NULL; } /* clone newfd to fd, close newfd */ dup2(newfd, fd); close(newfd); } else { fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n", fd, strerror(errno)); return NULL; } } s = qemu_mallocz(sizeof(NetSocketState)); if (!s) return NULL; s->fd = fd; s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s); qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s); /* mcast: save bound address as dst */ if (is_connected) s->dgram_dst=saddr; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: fd=%d (%s mcast=%s:%d)", fd, is_connected? "cloned" : "", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return s; } static void net_socket_connect(void *opaque) { NetSocketState *s = opaque; qemu_set_fd_handler(s->fd, net_socket_send, NULL, s); } static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, int is_connected) { NetSocketState *s; s = qemu_mallocz(sizeof(NetSocketState)); if (!s) return NULL; s->fd = fd; s->vc = qemu_new_vlan_client(vlan, net_socket_receive, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: fd=%d", fd); if (is_connected) { net_socket_connect(s); } else { qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s); } return s; } static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, int is_connected) { int so_type=-1, optlen=sizeof(so_type); if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, (socklen_t *)&optlen)< 0) { fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd); return NULL; } switch(so_type) { case SOCK_DGRAM: return net_socket_fd_init_dgram(vlan, fd, is_connected); case SOCK_STREAM: return net_socket_fd_init_stream(vlan, fd, is_connected); default: /* who knows ... this could be a eg. a pty, do warn and continue as stream */ fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd); return net_socket_fd_init_stream(vlan, fd, is_connected); } return NULL; } static void net_socket_accept(void *opaque) { NetSocketListenState *s = opaque; NetSocketState *s1; struct sockaddr_in saddr; socklen_t len; int fd; for(;;) { len = sizeof(saddr); fd = accept(s->fd, (struct sockaddr *)&saddr, &len); if (fd < 0 && errno != EINTR) { return; } else if (fd >= 0) { break; } } s1 = net_socket_fd_init(s->vlan, fd, 1); if (!s1) { closesocket(fd); } else { snprintf(s1->vc->info_str, sizeof(s1->vc->info_str), "socket: connection from %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); } } static int net_socket_listen_init(VLANState *vlan, const char *host_str) { NetSocketListenState *s; int fd, val, ret; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; s = qemu_mallocz(sizeof(NetSocketListenState)); if (!s) return -1; fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); return -1; } socket_set_nonblock(fd); /* allow fast reuse */ val = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { perror("bind"); return -1; } ret = listen(fd, 0); if (ret < 0) { perror("listen"); return -1; } s->vlan = vlan; s->fd = fd; qemu_set_fd_handler(fd, net_socket_accept, NULL, s); return 0; } static int net_socket_connect_init(VLANState *vlan, const char *host_str) { NetSocketState *s; int fd, connected, ret, err; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); return -1; } socket_set_nonblock(fd); connected = 0; for(;;) { ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { err = socket_error(); if (err == EINTR || err == EWOULDBLOCK) { } else if (err == EINPROGRESS) { break; #ifdef _WIN32 } else if (err == WSAEALREADY) { break; #endif } else { perror("connect"); closesocket(fd); return -1; } } else { connected = 1; break; } } s = net_socket_fd_init(vlan, fd, connected); if (!s) return -1; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: connect to %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return 0; } static int net_socket_mcast_init(VLANState *vlan, const char *host_str) { NetSocketState *s; int fd; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; fd = net_socket_mcast_create(&saddr); if (fd < 0) return -1; s = net_socket_fd_init(vlan, fd, 0); if (!s) return -1; s->dgram_dst = saddr; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: mcast=%s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return 0; } static const char *get_opt_name(char *buf, int buf_size, const char *p) { char *q; q = buf; while (*p != '\0' && *p != '=') { if (q && (q - buf) < buf_size - 1) *q++ = *p; p++; } if (q) *q = '\0'; return p; } static const char *get_opt_value(char *buf, int buf_size, const char *p) { char *q; q = buf; while (*p != '\0') { if (*p == ',') { if (*(p + 1) != ',') break; p++; } if (q && (q - buf) < buf_size - 1) *q++ = *p; p++; } if (q) *q = '\0'; return p; } static int get_param_value(char *buf, int buf_size, const char *tag, const char *str) { const char *p; char option[128]; p = str; for(;;) { p = get_opt_name(option, sizeof(option), p); if (*p != '=') break; p++; if (!strcmp(tag, option)) { (void)get_opt_value(buf, buf_size, p); return strlen(buf); } else { p = get_opt_value(NULL, 0, p); } if (*p != ',') break; p++; } return 0; } static int check_params(char *buf, int buf_size, char **params, const char *str) { const char *p; int i; p = str; for(;;) { p = get_opt_name(buf, buf_size, p); if (*p != '=') return -1; p++; for(i = 0; params[i] != NULL; i++) if (!strcmp(params[i], buf)) break; if (params[i] == NULL) return -1; p = get_opt_value(NULL, 0, p); if (*p != ',') break; p++; } return 0; } static int net_client_init(const char *str) { const char *p; char *q; char device[64]; char buf[1024]; int vlan_id, ret; VLANState *vlan; p = str; q = device; while (*p != '\0' && *p != ',') { if ((q - device) < sizeof(device) - 1) *q++ = *p; p++; } *q = '\0'; if (*p == ',') p++; vlan_id = 0; if (get_param_value(buf, sizeof(buf), "vlan", p)) { vlan_id = strtol(buf, NULL, 0); } vlan = qemu_find_vlan(vlan_id); if (!vlan) { fprintf(stderr, "Could not create vlan %d\n", vlan_id); return -1; } if (!strcmp(device, "nic")) { NICInfo *nd; uint8_t *macaddr; if (nb_nics >= MAX_NICS) { fprintf(stderr, "Too Many NICs\n"); return -1; } nd = &nd_table[nb_nics]; macaddr = nd->macaddr; macaddr[0] = 0x52; macaddr[1] = 0x54; macaddr[2] = 0x00; macaddr[3] = 0x12; macaddr[4] = 0x34; macaddr[5] = 0x56 + nb_nics; if (get_param_value(buf, sizeof(buf), "macaddr", p)) { if (parse_macaddr(macaddr, buf) < 0) { fprintf(stderr, "invalid syntax for ethernet address\n"); return -1; } } if (get_param_value(buf, sizeof(buf), "model", p)) { nd->model = strdup(buf); } nd->vlan = vlan; nb_nics++; vlan->nb_guest_devs++; ret = 0; } else if (!strcmp(device, "none")) { /* does nothing. It is needed to signal that no network cards are wanted */ ret = 0; } else #ifdef CONFIG_SLIRP if (!strcmp(device, "user")) { if (get_param_value(buf, sizeof(buf), "hostname", p)) { pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf); } vlan->nb_host_devs++; ret = net_slirp_init(vlan); } else #endif #ifdef _WIN32 if (!strcmp(device, "tap")) { char ifname[64]; if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) { fprintf(stderr, "tap: no interface name\n"); return -1; } vlan->nb_host_devs++; ret = tap_win32_init(vlan, ifname); } else #else if (!strcmp(device, "tap")) { char ifname[64]; char setup_script[1024], down_script[1024]; int fd; vlan->nb_host_devs++; if (get_param_value(buf, sizeof(buf), "fd", p) > 0) { fd = strtol(buf, NULL, 0); fcntl(fd, F_SETFL, O_NONBLOCK); ret = -1; if (net_tap_fd_init(vlan, fd)) ret = 0; } else { if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) { ifname[0] = '\0'; } if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) { pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT); } if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) { pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT); } ret = net_tap_init(vlan, ifname, setup_script, down_script); } } else #endif if (!strcmp(device, "socket")) { if (get_param_value(buf, sizeof(buf), "fd", p) > 0) { int fd; fd = strtol(buf, NULL, 0); ret = -1; if (net_socket_fd_init(vlan, fd, 1)) ret = 0; } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) { ret = net_socket_listen_init(vlan, buf); } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) { ret = net_socket_connect_init(vlan, buf); } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) { ret = net_socket_mcast_init(vlan, buf); } else { fprintf(stderr, "Unknown socket options: %s\n", p); return -1; } vlan->nb_host_devs++; } else { fprintf(stderr, "Unknown network device: %s\n", device); return -1; } if (ret < 0) { fprintf(stderr, "Could not initialize device '%s'\n", device); } return ret; } void do_info_network(void) { VLANState *vlan; VLANClientState *vc; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { term_printf("VLAN %d devices:\n", vlan->id); for(vc = vlan->first_client; vc != NULL; vc = vc->next) term_printf(" %s\n", vc->info_str); } } #define HD_ALIAS "index=%d,media=disk" #ifdef TARGET_PPC #define CDROM_ALIAS "index=1,media=cdrom" #else #define CDROM_ALIAS "index=2,media=cdrom" #endif #define FD_ALIAS "index=%d,if=floppy" #define PFLASH_ALIAS "if=pflash" #define MTD_ALIAS "if=mtd" #define SD_ALIAS "index=0,if=sd" static int drive_add(const char *file, const char *fmt, ...) { va_list ap; if (nb_drives_opt >= MAX_DRIVES) { fprintf(stderr, "qemu: too many drives\n"); exit(1); } drives_opt[nb_drives_opt].file = file; va_start(ap, fmt); vsnprintf(drives_opt[nb_drives_opt].opt, sizeof(drives_opt[0].opt), fmt, ap); va_end(ap); return nb_drives_opt++; } int drive_get_index(BlockInterfaceType type, int bus, int unit) { int index; /* seek interface, bus and unit */ for (index = 0; index < nb_drives; index++) if (drives_table[index].type == type && drives_table[index].bus == bus && drives_table[index].unit == unit) return index; return -1; } int drive_get_max_bus(BlockInterfaceType type) { int max_bus; int index; max_bus = -1; for (index = 0; index < nb_drives; index++) { if(drives_table[index].type == type && drives_table[index].bus > max_bus) max_bus = drives_table[index].bus; } return max_bus; } static void bdrv_format_print(void *opaque, const char *name) { fprintf(stderr, " %s", name); } static int drive_init(struct drive_opt *arg, int snapshot, QEMUMachine *machine) { char buf[128]; char file[1024]; char devname[128]; const char *mediastr = ""; BlockInterfaceType type; enum { MEDIA_DISK, MEDIA_CDROM } media; int bus_id, unit_id; int cyls, heads, secs, translation; BlockDriverState *bdrv; BlockDriver *drv = NULL; int max_devs; int index; int cache; int bdrv_flags; char *str = arg->opt; char *params[] = { "bus", "unit", "if", "index", "cyls", "heads", "secs", "trans", "media", "snapshot", "file", "cache", "format", NULL }; if (check_params(buf, sizeof(buf), params, str) < 0) { fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n", buf, str); return -1; } file[0] = 0; cyls = heads = secs = 0; bus_id = 0; unit_id = -1; translation = BIOS_ATA_TRANSLATION_AUTO; index = -1; cache = 1; if (!strcmp(machine->name, "realview") || !strcmp(machine->name, "SS-5") || !strcmp(machine->name, "SS-10") || !strcmp(machine->name, "SS-600MP") || !strcmp(machine->name, "versatilepb") || !strcmp(machine->name, "versatileab")) { type = IF_SCSI; max_devs = MAX_SCSI_DEVS; strcpy(devname, "scsi"); } else { type = IF_IDE; max_devs = MAX_IDE_DEVS; strcpy(devname, "ide"); } media = MEDIA_DISK; /* extract parameters */ if (get_param_value(buf, sizeof(buf), "bus", str)) { bus_id = strtol(buf, NULL, 0); if (bus_id < 0) { fprintf(stderr, "qemu: '%s' invalid bus id\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "unit", str)) { unit_id = strtol(buf, NULL, 0); if (unit_id < 0) { fprintf(stderr, "qemu: '%s' invalid unit id\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "if", str)) { pstrcpy(devname, sizeof(devname), buf); if (!strcmp(buf, "ide")) { type = IF_IDE; max_devs = MAX_IDE_DEVS; } else if (!strcmp(buf, "scsi")) { type = IF_SCSI; max_devs = MAX_SCSI_DEVS; } else if (!strcmp(buf, "floppy")) { type = IF_FLOPPY; max_devs = 0; } else if (!strcmp(buf, "pflash")) { type = IF_PFLASH; max_devs = 0; } else if (!strcmp(buf, "mtd")) { type = IF_MTD; max_devs = 0; } else if (!strcmp(buf, "sd")) { type = IF_SD; max_devs = 0; } else { fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf); return -1; } } if (get_param_value(buf, sizeof(buf), "index", str)) { index = strtol(buf, NULL, 0); if (index < 0) { fprintf(stderr, "qemu: '%s' invalid index\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "cyls", str)) { cyls = strtol(buf, NULL, 0); } if (get_param_value(buf, sizeof(buf), "heads", str)) { heads = strtol(buf, NULL, 0); } if (get_param_value(buf, sizeof(buf), "secs", str)) { secs = strtol(buf, NULL, 0); } if (cyls || heads || secs) { if (cyls < 1 || cyls > 16383) { fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str); return -1; } if (heads < 1 || heads > 16) { fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str); return -1; } if (secs < 1 || secs > 63) { fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "trans", str)) { if (!cyls) { fprintf(stderr, "qemu: '%s' trans must be used with cyls,heads and secs\n", str); return -1; } if (!strcmp(buf, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(buf, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(buf, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else { fprintf(stderr, "qemu: '%s' invalid translation type\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "media", str)) { if (!strcmp(buf, "disk")) { media = MEDIA_DISK; } else if (!strcmp(buf, "cdrom")) { if (cyls || secs || heads) { fprintf(stderr, "qemu: '%s' invalid physical CHS format\n", str); return -1; } media = MEDIA_CDROM; } else { fprintf(stderr, "qemu: '%s' invalid media\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "snapshot", str)) { if (!strcmp(buf, "on")) snapshot = 1; else if (!strcmp(buf, "off")) snapshot = 0; else { fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "cache", str)) { if (!strcmp(buf, "off")) cache = 0; else if (!strcmp(buf, "on")) cache = 1; else { fprintf(stderr, "qemu: invalid cache option\n"); return -1; } } if (get_param_value(buf, sizeof(buf), "format", str)) { if (strcmp(buf, "?") == 0) { fprintf(stderr, "qemu: Supported formats:"); bdrv_iterate_format(bdrv_format_print, NULL); fprintf(stderr, "\n"); return -1; } drv = bdrv_find_format(buf); if (!drv) { fprintf(stderr, "qemu: '%s' invalid format\n", buf); return -1; } } if (arg->file == NULL) get_param_value(file, sizeof(file), "file", str); else pstrcpy(file, sizeof(file), arg->file); /* compute bus and unit according index */ if (index != -1) { if (bus_id != 0 || unit_id != -1) { fprintf(stderr, "qemu: '%s' index cannot be used with bus and unit\n", str); return -1; } if (max_devs == 0) { unit_id = index; bus_id = 0; } else { unit_id = index % max_devs; bus_id = index / max_devs; } } /* if user doesn't specify a unit_id, * try to find the first free */ if (unit_id == -1) { unit_id = 0; while (drive_get_index(type, bus_id, unit_id) != -1) { unit_id++; if (max_devs && unit_id >= max_devs) { unit_id -= max_devs; bus_id++; } } } /* check unit id */ if (max_devs && unit_id >= max_devs) { fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n", str, unit_id, max_devs - 1); return -1; } /* * ignore multiple definitions */ if (drive_get_index(type, bus_id, unit_id) != -1) return 0; /* init */ if (type == IF_IDE || type == IF_SCSI) mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd"; if (max_devs) snprintf(buf, sizeof(buf), "%s%i%s%i", devname, bus_id, mediastr, unit_id); else snprintf(buf, sizeof(buf), "%s%s%i", devname, mediastr, unit_id); bdrv = bdrv_new(buf); drives_table[nb_drives].bdrv = bdrv; drives_table[nb_drives].type = type; drives_table[nb_drives].bus = bus_id; drives_table[nb_drives].unit = unit_id; nb_drives++; switch(type) { case IF_IDE: case IF_SCSI: switch(media) { case MEDIA_DISK: if (cyls != 0) { bdrv_set_geometry_hint(bdrv, cyls, heads, secs); bdrv_set_translation_hint(bdrv, translation); } break; case MEDIA_CDROM: bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM); break; } break; case IF_SD: /* FIXME: This isn't really a floppy, but it's a reasonable approximation. */ case IF_FLOPPY: bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY); break; case IF_PFLASH: case IF_MTD: break; } if (!file[0]) return 0; bdrv_flags = 0; if (snapshot) bdrv_flags |= BDRV_O_SNAPSHOT; if (!cache) bdrv_flags |= BDRV_O_DIRECT; if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) { fprintf(stderr, "qemu: could not open disk image %s\n", file); return -1; } return 0; } /***********************************************************/ /* USB devices */ static USBPort *used_usb_ports; static USBPort *free_usb_ports; /* ??? Maybe change this to register a hub to keep track of the topology. */ void qemu_register_usb_port(USBPort *port, void *opaque, int index, usb_attachfn attach) { port->opaque = opaque; port->index = index; port->attach = attach; port->next = free_usb_ports; free_usb_ports = port; } static int usb_device_add(const char *devname) { const char *p; USBDevice *dev; USBPort *port; if (!free_usb_ports) return -1; if (strstart(devname, "host:", &p)) { dev = usb_host_device_open(p); } else if (!strcmp(devname, "mouse")) { dev = usb_mouse_init(); } else if (!strcmp(devname, "tablet")) { dev = usb_tablet_init(); } else if (!strcmp(devname, "keyboard")) { dev = usb_keyboard_init(); } else if (strstart(devname, "disk:", &p)) { dev = usb_msd_init(p); } else if (!strcmp(devname, "wacom-tablet")) { dev = usb_wacom_init(); } else if (strstart(devname, "serial:", &p)) { dev = usb_serial_init(p); #ifdef CONFIG_BRLAPI } else if (!strcmp(devname, "braille")) { dev = usb_baum_init(); #endif } else { return -1; } if (!dev) return -1; /* Find a USB port to add the device to. */ port = free_usb_ports; if (!port->next) { USBDevice *hub; /* Create a new hub and chain it on. */ free_usb_ports = NULL; port->next = used_usb_ports; used_usb_ports = port; hub = usb_hub_init(VM_USB_HUB_SIZE); usb_attach(port, hub); port = free_usb_ports; } free_usb_ports = port->next; port->next = used_usb_ports; used_usb_ports = port; usb_attach(port, dev); return 0; } static int usb_device_del(const char *devname) { USBPort *port; USBPort **lastp; USBDevice *dev; int bus_num, addr; const char *p; if (!used_usb_ports) return -1; p = strchr(devname, '.'); if (!p) return -1; bus_num = strtoul(devname, NULL, 0); addr = strtoul(p + 1, NULL, 0); if (bus_num != 0) return -1; lastp = &used_usb_ports; port = used_usb_ports; while (port && port->dev->addr != addr) { lastp = &port->next; port = port->next; } if (!port) return -1; dev = port->dev; *lastp = port->next; usb_attach(port, NULL); dev->handle_destroy(dev); port->next = free_usb_ports; free_usb_ports = port; return 0; } void do_usb_add(const char *devname) { int ret; ret = usb_device_add(devname); if (ret < 0) term_printf("Could not add USB device '%s'\n", devname); } void do_usb_del(const char *devname) { int ret; ret = usb_device_del(devname); if (ret < 0) term_printf("Could not remove USB device '%s'\n", devname); } void usb_info(void) { USBDevice *dev; USBPort *port; const char *speed_str; if (!usb_enabled) { term_printf("USB support not enabled\n"); return; } for (port = used_usb_ports; port; port = port->next) { dev = port->dev; if (!dev) continue; switch(dev->speed) { case USB_SPEED_LOW: speed_str = "1.5"; break; case USB_SPEED_FULL: speed_str = "12"; break; case USB_SPEED_HIGH: speed_str = "480"; break; default: speed_str = "?"; break; } term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n", 0, dev->addr, speed_str, dev->devname); } } /***********************************************************/ /* PCMCIA/Cardbus */ static struct pcmcia_socket_entry_s { struct pcmcia_socket_s *socket; struct pcmcia_socket_entry_s *next; } *pcmcia_sockets = 0; void pcmcia_socket_register(struct pcmcia_socket_s *socket) { struct pcmcia_socket_entry_s *entry; entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s)); entry->socket = socket; entry->next = pcmcia_sockets; pcmcia_sockets = entry; } void pcmcia_socket_unregister(struct pcmcia_socket_s *socket) { struct pcmcia_socket_entry_s *entry, **ptr; ptr = &pcmcia_sockets; for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr) if (entry->socket == socket) { *ptr = entry->next; qemu_free(entry); } } void pcmcia_info(void) { struct pcmcia_socket_entry_s *iter; if (!pcmcia_sockets) term_printf("No PCMCIA sockets\n"); for (iter = pcmcia_sockets; iter; iter = iter->next) term_printf("%s: %s\n", iter->socket->slot_string, iter->socket->attached ? iter->socket->card_string : "Empty"); } /***********************************************************/ /* dumb display */ static void dumb_update(DisplayState *ds, int x, int y, int w, int h) { } static void dumb_resize(DisplayState *ds, int w, int h) { } static void dumb_refresh(DisplayState *ds) { #if defined(CONFIG_SDL) vga_hw_update(); #endif } static void dumb_display_init(DisplayState *ds) { ds->data = NULL; ds->linesize = 0; ds->depth = 0; ds->dpy_update = dumb_update; ds->dpy_resize = dumb_resize; ds->dpy_refresh = dumb_refresh; } /***********************************************************/ /* I/O handling */ #define MAX_IO_HANDLERS 64 typedef struct IOHandlerRecord { int fd; IOCanRWHandler *fd_read_poll; IOHandler *fd_read; IOHandler *fd_write; int deleted; void *opaque; /* temporary data */ struct pollfd *ufd; struct IOHandlerRecord *next; } IOHandlerRecord; static IOHandlerRecord *first_io_handler; /* XXX: fd_read_poll should be suppressed, but an API change is necessary in the character devices to suppress fd_can_read(). */ int qemu_set_fd_handler2(int fd, IOCanRWHandler *fd_read_poll, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { IOHandlerRecord **pioh, *ioh; if (!fd_read && !fd_write) { pioh = &first_io_handler; for(;;) { ioh = *pioh; if (ioh == NULL) break; if (ioh->fd == fd) { ioh->deleted = 1; break; } pioh = &ioh->next; } } else { for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (ioh->fd == fd) goto found; } ioh = qemu_mallocz(sizeof(IOHandlerRecord)); if (!ioh) return -1; ioh->next = first_io_handler; first_io_handler = ioh; found: ioh->fd = fd; ioh->fd_read_poll = fd_read_poll; ioh->fd_read = fd_read; ioh->fd_write = fd_write; ioh->opaque = opaque; ioh->deleted = 0; } return 0; } int qemu_set_fd_handler(int fd, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque); } /***********************************************************/ /* Polling handling */ typedef struct PollingEntry { PollingFunc *func; void *opaque; struct PollingEntry *next; } PollingEntry; static PollingEntry *first_polling_entry; int qemu_add_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; pe = qemu_mallocz(sizeof(PollingEntry)); if (!pe) return -1; pe->func = func; pe->opaque = opaque; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); *ppe = pe; return 0; } void qemu_del_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { pe = *ppe; if (pe->func == func && pe->opaque == opaque) { *ppe = pe->next; qemu_free(pe); break; } } } #ifdef _WIN32 /***********************************************************/ /* Wait objects support */ typedef struct WaitObjects { int num; HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; } WaitObjects; static WaitObjects wait_objects = {0}; int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { WaitObjects *w = &wait_objects; if (w->num >= MAXIMUM_WAIT_OBJECTS) return -1; w->events[w->num] = handle; w->func[w->num] = func; w->opaque[w->num] = opaque; w->num++; return 0; } void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { int i, found; WaitObjects *w = &wait_objects; found = 0; for (i = 0; i < w->num; i++) { if (w->events[i] == handle) found = 1; if (found) { w->events[i] = w->events[i + 1]; w->func[i] = w->func[i + 1]; w->opaque[i] = w->opaque[i + 1]; } } if (found) w->num--; } #endif /***********************************************************/ /* savevm/loadvm support */ #define IO_BUF_SIZE 32768 struct QEMUFile { FILE *outfile; BlockDriverState *bs; int is_file; int is_writable; int64_t base_offset; int64_t buf_offset; /* start of buffer when writing, end of buffer when reading */ int buf_index; int buf_size; /* 0 when writing */ uint8_t buf[IO_BUF_SIZE]; }; QEMUFile *qemu_fopen(const char *filename, const char *mode) { QEMUFile *f; f = qemu_mallocz(sizeof(QEMUFile)); if (!f) return NULL; if (!strcmp(mode, "wb")) { f->is_writable = 1; } else if (!strcmp(mode, "rb")) { f->is_writable = 0; } else { goto fail; } f->outfile = fopen(filename, mode); if (!f->outfile) goto fail; f->is_file = 1; return f; fail: if (f->outfile) fclose(f->outfile); qemu_free(f); return NULL; } static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable) { QEMUFile *f; f = qemu_mallocz(sizeof(QEMUFile)); if (!f) return NULL; f->is_file = 0; f->bs = bs; f->is_writable = is_writable; f->base_offset = offset; return f; } void qemu_fflush(QEMUFile *f) { if (!f->is_writable) return; if (f->buf_index > 0) { if (f->is_file) { fseek(f->outfile, f->buf_offset, SEEK_SET); fwrite(f->buf, 1, f->buf_index, f->outfile); } else { bdrv_pwrite(f->bs, f->base_offset + f->buf_offset, f->buf, f->buf_index); } f->buf_offset += f->buf_index; f->buf_index = 0; } } static void qemu_fill_buffer(QEMUFile *f) { int len; if (f->is_writable) return; if (f->is_file) { fseek(f->outfile, f->buf_offset, SEEK_SET); len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile); if (len < 0) len = 0; } else { len = bdrv_pread(f->bs, f->base_offset + f->buf_offset, f->buf, IO_BUF_SIZE); if (len < 0) len = 0; } f->buf_index = 0; f->buf_size = len; f->buf_offset += len; } void qemu_fclose(QEMUFile *f) { if (f->is_writable) qemu_fflush(f); if (f->is_file) { fclose(f->outfile); } qemu_free(f); } void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size) { int l; while (size > 0) { l = IO_BUF_SIZE - f->buf_index; if (l > size) l = size; memcpy(f->buf + f->buf_index, buf, l); f->buf_index += l; buf += l; size -= l; if (f->buf_index >= IO_BUF_SIZE) qemu_fflush(f); } } void qemu_put_byte(QEMUFile *f, int v) { f->buf[f->buf_index++] = v; if (f->buf_index >= IO_BUF_SIZE) qemu_fflush(f); } int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1) { int size, l; size = size1; while (size > 0) { l = f->buf_size - f->buf_index; if (l == 0) { qemu_fill_buffer(f); l = f->buf_size - f->buf_index; if (l == 0) break; } if (l > size) l = size; memcpy(buf, f->buf + f->buf_index, l); f->buf_index += l; buf += l; size -= l; } return size1 - size; } int qemu_get_byte(QEMUFile *f) { if (f->buf_index >= f->buf_size) { qemu_fill_buffer(f); if (f->buf_index >= f->buf_size) return 0; } return f->buf[f->buf_index++]; } int64_t qemu_ftell(QEMUFile *f) { return f->buf_offset - f->buf_size + f->buf_index; } int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence) { if (whence == SEEK_SET) { /* nothing to do */ } else if (whence == SEEK_CUR) { pos += qemu_ftell(f); } else { /* SEEK_END not supported */ return -1; } if (f->is_writable) { qemu_fflush(f); f->buf_offset = pos; } else { f->buf_offset = pos; f->buf_index = 0; f->buf_size = 0; } return pos; } void qemu_put_be16(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be32(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 24); qemu_put_byte(f, v >> 16); qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be64(QEMUFile *f, uint64_t v) { qemu_put_be32(f, v >> 32); qemu_put_be32(f, v); } unsigned int qemu_get_be16(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } unsigned int qemu_get_be32(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 24; v |= qemu_get_byte(f) << 16; v |= qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } uint64_t qemu_get_be64(QEMUFile *f) { uint64_t v; v = (uint64_t)qemu_get_be32(f) << 32; v |= qemu_get_be32(f); return v; } typedef struct SaveStateEntry { char idstr[256]; int instance_id; int version_id; SaveStateHandler *save_state; LoadStateHandler *load_state; void *opaque; struct SaveStateEntry *next; } SaveStateEntry; static SaveStateEntry *first_se; int register_savevm(const char *idstr, int instance_id, int version_id, SaveStateHandler *save_state, LoadStateHandler *load_state, void *opaque) { SaveStateEntry *se, **pse; se = qemu_malloc(sizeof(SaveStateEntry)); if (!se) return -1; pstrcpy(se->idstr, sizeof(se->idstr), idstr); se->instance_id = instance_id; se->version_id = version_id; se->save_state = save_state; se->load_state = load_state; se->opaque = opaque; se->next = NULL; /* add at the end of list */ pse = &first_se; while (*pse != NULL) pse = &(*pse)->next; *pse = se; return 0; } #define QEMU_VM_FILE_MAGIC 0x5145564d #define QEMU_VM_FILE_VERSION 0x00000002 static int qemu_savevm_state(QEMUFile *f) { SaveStateEntry *se; int len, ret; int64_t cur_pos, len_pos, total_len_pos; qemu_put_be32(f, QEMU_VM_FILE_MAGIC); qemu_put_be32(f, QEMU_VM_FILE_VERSION); total_len_pos = qemu_ftell(f); qemu_put_be64(f, 0); /* total size */ for(se = first_se; se != NULL; se = se->next) { if (se->save_state == NULL) /* this one has a loader only, for backwards compatibility */ continue; /* ID string */ len = strlen(se->idstr); qemu_put_byte(f, len); qemu_put_buffer(f, (uint8_t *)se->idstr, len); qemu_put_be32(f, se->instance_id); qemu_put_be32(f, se->version_id); /* record size: filled later */ len_pos = qemu_ftell(f); qemu_put_be32(f, 0); se->save_state(f, se->opaque); /* fill record size */ cur_pos = qemu_ftell(f); len = cur_pos - len_pos - 4; qemu_fseek(f, len_pos, SEEK_SET); qemu_put_be32(f, len); qemu_fseek(f, cur_pos, SEEK_SET); } cur_pos = qemu_ftell(f); qemu_fseek(f, total_len_pos, SEEK_SET); qemu_put_be64(f, cur_pos - total_len_pos - 8); qemu_fseek(f, cur_pos, SEEK_SET); ret = 0; return ret; } static SaveStateEntry *find_se(const char *idstr, int instance_id) { SaveStateEntry *se; for(se = first_se; se != NULL; se = se->next) { if (!strcmp(se->idstr, idstr) && instance_id == se->instance_id) return se; } return NULL; } static int qemu_loadvm_state(QEMUFile *f) { SaveStateEntry *se; int len, ret, instance_id, record_len, version_id; int64_t total_len, end_pos, cur_pos; unsigned int v; char idstr[256]; v = qemu_get_be32(f); if (v != QEMU_VM_FILE_MAGIC) goto fail; v = qemu_get_be32(f); if (v != QEMU_VM_FILE_VERSION) { fail: ret = -1; goto the_end; } total_len = qemu_get_be64(f); end_pos = total_len + qemu_ftell(f); for(;;) { if (qemu_ftell(f) >= end_pos) break; len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)idstr, len); idstr[len] = '\0'; instance_id = qemu_get_be32(f); version_id = qemu_get_be32(f); record_len = qemu_get_be32(f); #if 0 printf("idstr=%s instance=0x%x version=%d len=%d\n", idstr, instance_id, version_id, record_len); #endif cur_pos = qemu_ftell(f); se = find_se(idstr, instance_id); if (!se) { fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", instance_id, idstr); } else { ret = se->load_state(f, se->opaque, version_id); if (ret < 0) { fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", instance_id, idstr); } } /* always seek to exact end of record */ qemu_fseek(f, cur_pos + record_len, SEEK_SET); } ret = 0; the_end: return ret; } /* device can contain snapshots */ static int bdrv_can_snapshot(BlockDriverState *bs) { return (bs && !bdrv_is_removable(bs) && !bdrv_is_read_only(bs)); } /* device must be snapshots in order to have a reliable snapshot */ static int bdrv_has_snapshot(BlockDriverState *bs) { return (bs && !bdrv_is_removable(bs) && !bdrv_is_read_only(bs)); } static BlockDriverState *get_bs_snapshots(void) { BlockDriverState *bs; int i; if (bs_snapshots) return bs_snapshots; for(i = 0; i <= nb_drives; i++) { bs = drives_table[i].bdrv; if (bdrv_can_snapshot(bs)) goto ok; } return NULL; ok: bs_snapshots = bs; return bs; } static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info, const char *name) { QEMUSnapshotInfo *sn_tab, *sn; int nb_sns, i, ret; ret = -ENOENT; nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns < 0) return ret; for(i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) { *sn_info = *sn; ret = 0; break; } } qemu_free(sn_tab); return ret; } void do_savevm(const char *name) { BlockDriverState *bs, *bs1; QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; int must_delete, ret, i; BlockDriverInfo bdi1, *bdi = &bdi1; QEMUFile *f; int saved_vm_running; #ifdef _WIN32 struct _timeb tb; #else struct timeval tv; #endif bs = get_bs_snapshots(); if (!bs) { term_printf("No block device can accept snapshots\n"); return; } /* ??? Should this occur after vm_stop? */ qemu_aio_flush(); saved_vm_running = vm_running; vm_stop(0); must_delete = 0; if (name) { ret = bdrv_snapshot_find(bs, old_sn, name); if (ret >= 0) { must_delete = 1; } } memset(sn, 0, sizeof(*sn)); if (must_delete) { pstrcpy(sn->name, sizeof(sn->name), old_sn->name); pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); } else { if (name) pstrcpy(sn->name, sizeof(sn->name), name); } /* fill auxiliary fields */ #ifdef _WIN32 _ftime(&tb); sn->date_sec = tb.time; sn->date_nsec = tb.millitm * 1000000; #else gettimeofday(&tv, NULL); sn->date_sec = tv.tv_sec; sn->date_nsec = tv.tv_usec * 1000; #endif sn->vm_clock_nsec = qemu_get_clock(vm_clock); if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) { term_printf("Device %s does not support VM state snapshots\n", bdrv_get_device_name(bs)); goto the_end; } /* save the VM state */ f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1); if (!f) { term_printf("Could not open VM state file\n"); goto the_end; } ret = qemu_savevm_state(f); sn->vm_state_size = qemu_ftell(f); qemu_fclose(f); if (ret < 0) { term_printf("Error %d while writing VM\n", ret); goto the_end; } /* create the snapshots */ for(i = 0; i < nb_drives; i++) { bs1 = drives_table[i].bdrv; if (bdrv_has_snapshot(bs1)) { if (must_delete) { ret = bdrv_snapshot_delete(bs1, old_sn->id_str); if (ret < 0) { term_printf("Error while deleting snapshot on '%s'\n", bdrv_get_device_name(bs1)); } } ret = bdrv_snapshot_create(bs1, sn); if (ret < 0) { term_printf("Error while creating snapshot on '%s'\n", bdrv_get_device_name(bs1)); } } } the_end: if (saved_vm_running) vm_start(); } void do_loadvm(const char *name) { BlockDriverState *bs, *bs1; BlockDriverInfo bdi1, *bdi = &bdi1; QEMUFile *f; int i, ret; int saved_vm_running; bs = get_bs_snapshots(); if (!bs) { term_printf("No block device supports snapshots\n"); return; } /* Flush all IO requests so they don't interfere with the new state. */ qemu_aio_flush(); saved_vm_running = vm_running; vm_stop(0); for(i = 0; i <= nb_drives; i++) { bs1 = drives_table[i].bdrv; if (bdrv_has_snapshot(bs1)) { ret = bdrv_snapshot_goto(bs1, name); if (ret < 0) { if (bs != bs1) term_printf("Warning: "); switch(ret) { case -ENOTSUP: term_printf("Snapshots not supported on device '%s'\n", bdrv_get_device_name(bs1)); break; case -ENOENT: term_printf("Could not find snapshot '%s' on device '%s'\n", name, bdrv_get_device_name(bs1)); break; default: term_printf("Error %d while activating snapshot on '%s'\n", ret, bdrv_get_device_name(bs1)); break; } /* fatal on snapshot block device */ if (bs == bs1) goto the_end; } } } if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) { term_printf("Device %s does not support VM state snapshots\n", bdrv_get_device_name(bs)); return; } /* restore the VM state */ f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0); if (!f) { term_printf("Could not open VM state file\n"); goto the_end; } ret = qemu_loadvm_state(f); qemu_fclose(f); if (ret < 0) { term_printf("Error %d while loading VM state\n", ret); } the_end: if (saved_vm_running) vm_start(); } void do_delvm(const char *name) { BlockDriverState *bs, *bs1; int i, ret; bs = get_bs_snapshots(); if (!bs) { term_printf("No block device supports snapshots\n"); return; } for(i = 0; i <= nb_drives; i++) { bs1 = drives_table[i].bdrv; if (bdrv_has_snapshot(bs1)) { ret = bdrv_snapshot_delete(bs1, name); if (ret < 0) { if (ret == -ENOTSUP) term_printf("Snapshots not supported on device '%s'\n", bdrv_get_device_name(bs1)); else term_printf("Error %d while deleting snapshot on '%s'\n", ret, bdrv_get_device_name(bs1)); } } } } void do_info_snapshots(void) { BlockDriverState *bs, *bs1; QEMUSnapshotInfo *sn_tab, *sn; int nb_sns, i; char buf[256]; bs = get_bs_snapshots(); if (!bs) { term_printf("No available block device supports snapshots\n"); return; } term_printf("Snapshot devices:"); for(i = 0; i <= nb_drives; i++) { bs1 = drives_table[i].bdrv; if (bdrv_has_snapshot(bs1)) { if (bs == bs1) term_printf(" %s", bdrv_get_device_name(bs1)); } } term_printf("\n"); nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns < 0) { term_printf("bdrv_snapshot_list: error %d\n", nb_sns); return; } term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs)); term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL)); for(i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn)); } qemu_free(sn_tab); } /***********************************************************/ /* ram save/restore */ static int ram_get_page(QEMUFile *f, uint8_t *buf, int len) { int v; v = qemu_get_byte(f); switch(v) { case 0: if (qemu_get_buffer(f, buf, len) != len) return -EIO; break; case 1: v = qemu_get_byte(f); memset(buf, v, len); break; default: return -EINVAL; } return 0; } static int ram_load_v1(QEMUFile *f, void *opaque) { int ret; ram_addr_t i; if (qemu_get_be32(f) != phys_ram_size) return -EINVAL; for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) { ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE); if (ret) return ret; } return 0; } #define BDRV_HASH_BLOCK_SIZE 1024 #define IOBUF_SIZE 4096 #define RAM_CBLOCK_MAGIC 0xfabe typedef struct RamCompressState { z_stream zstream; QEMUFile *f; uint8_t buf[IOBUF_SIZE]; } RamCompressState; static int ram_compress_open(RamCompressState *s, QEMUFile *f) { int ret; memset(s, 0, sizeof(*s)); s->f = f; ret = deflateInit2(&s->zstream, 1, Z_DEFLATED, 15, 9, Z_DEFAULT_STRATEGY); if (ret != Z_OK) return -1; s->zstream.avail_out = IOBUF_SIZE; s->zstream.next_out = s->buf; return 0; } static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len) { qemu_put_be16(s->f, RAM_CBLOCK_MAGIC); qemu_put_be16(s->f, len); qemu_put_buffer(s->f, buf, len); } static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len) { int ret; s->zstream.avail_in = len; s->zstream.next_in = (uint8_t *)buf; while (s->zstream.avail_in > 0) { ret = deflate(&s->zstream, Z_NO_FLUSH); if (ret != Z_OK) return -1; if (s->zstream.avail_out == 0) { ram_put_cblock(s, s->buf, IOBUF_SIZE); s->zstream.avail_out = IOBUF_SIZE; s->zstream.next_out = s->buf; } } return 0; } static void ram_compress_close(RamCompressState *s) { int len, ret; /* compress last bytes */ for(;;) { ret = deflate(&s->zstream, Z_FINISH); if (ret == Z_OK || ret == Z_STREAM_END) { len = IOBUF_SIZE - s->zstream.avail_out; if (len > 0) { ram_put_cblock(s, s->buf, len); } s->zstream.avail_out = IOBUF_SIZE; s->zstream.next_out = s->buf; if (ret == Z_STREAM_END) break; } else { goto fail; } } fail: deflateEnd(&s->zstream); } typedef struct RamDecompressState { z_stream zstream; QEMUFile *f; uint8_t buf[IOBUF_SIZE]; } RamDecompressState; static int ram_decompress_open(RamDecompressState *s, QEMUFile *f) { int ret; memset(s, 0, sizeof(*s)); s->f = f; ret = inflateInit(&s->zstream); if (ret != Z_OK) return -1; return 0; } static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len) { int ret, clen; s->zstream.avail_out = len; s->zstream.next_out = buf; while (s->zstream.avail_out > 0) { if (s->zstream.avail_in == 0) { if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC) return -1; clen = qemu_get_be16(s->f); if (clen > IOBUF_SIZE) return -1; qemu_get_buffer(s->f, s->buf, clen); s->zstream.avail_in = clen; s->zstream.next_in = s->buf; } ret = inflate(&s->zstream, Z_PARTIAL_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { return -1; } } return 0; } static void ram_decompress_close(RamDecompressState *s) { inflateEnd(&s->zstream); } static void ram_save(QEMUFile *f, void *opaque) { ram_addr_t i; RamCompressState s1, *s = &s1; uint8_t buf[10]; qemu_put_be32(f, phys_ram_size); if (ram_compress_open(s, f) < 0) return; for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) { #if 0 if (tight_savevm_enabled) { int64_t sector_num; int j; /* find if the memory block is available on a virtual block device */ sector_num = -1; for(j = 0; j < nb_drives; j++) { sector_num = bdrv_hash_find(drives_table[j].bdrv, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE); if (sector_num >= 0) break; } if (j == nb_drives) goto normal_compress; buf[0] = 1; buf[1] = j; cpu_to_be64wu((uint64_t *)(buf + 2), sector_num); ram_compress_buf(s, buf, 10); } else #endif { // normal_compress: buf[0] = 0; ram_compress_buf(s, buf, 1); ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE); } } ram_compress_close(s); } static int ram_load(QEMUFile *f, void *opaque, int version_id) { RamDecompressState s1, *s = &s1; uint8_t buf[10]; ram_addr_t i; if (version_id == 1) return ram_load_v1(f, opaque); if (version_id != 2) return -EINVAL; if (qemu_get_be32(f) != phys_ram_size) return -EINVAL; if (ram_decompress_open(s, f) < 0) return -EINVAL; for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) { if (ram_decompress_buf(s, buf, 1) < 0) { fprintf(stderr, "Error while reading ram block header\n"); goto error; } if (buf[0] == 0) { if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) { fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i); goto error; } } else #if 0 if (buf[0] == 1) { int bs_index; int64_t sector_num; ram_decompress_buf(s, buf + 1, 9); bs_index = buf[1]; sector_num = be64_to_cpupu((const uint64_t *)(buf + 2)); if (bs_index >= nb_drives) { fprintf(stderr, "Invalid block device index %d\n", bs_index); goto error; } if (bdrv_read(drives_table[bs_index].bdrv, sector_num, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE / 512) < 0) { fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n", bs_index, sector_num); goto error; } } else #endif { error: printf("Error block header\n"); return -EINVAL; } } ram_decompress_close(s); return 0; } /***********************************************************/ /* bottom halves (can be seen as timers which expire ASAP) */ struct QEMUBH { QEMUBHFunc *cb; void *opaque; int scheduled; QEMUBH *next; }; static QEMUBH *first_bh = NULL; QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) { QEMUBH *bh; bh = qemu_mallocz(sizeof(QEMUBH)); if (!bh) return NULL; bh->cb = cb; bh->opaque = opaque; return bh; } int qemu_bh_poll(void) { QEMUBH *bh, **pbh; int ret; ret = 0; for(;;) { pbh = &first_bh; bh = *pbh; if (!bh) break; ret = 1; *pbh = bh->next; bh->scheduled = 0; bh->cb(bh->opaque); } return ret; } void qemu_bh_schedule(QEMUBH *bh) { CPUState *env = cpu_single_env; if (bh->scheduled) return; bh->scheduled = 1; bh->next = first_bh; first_bh = bh; /* stop the currently executing CPU to execute the BH ASAP */ if (env) { cpu_interrupt(env, CPU_INTERRUPT_EXIT); } } void qemu_bh_cancel(QEMUBH *bh) { QEMUBH **pbh; if (bh->scheduled) { pbh = &first_bh; while (*pbh != bh) pbh = &(*pbh)->next; *pbh = bh->next; bh->scheduled = 0; } } void qemu_bh_delete(QEMUBH *bh) { qemu_bh_cancel(bh); qemu_free(bh); } /***********************************************************/ /* machine registration */ QEMUMachine *first_machine = NULL; int qemu_register_machine(QEMUMachine *m) { QEMUMachine **pm; pm = &first_machine; while (*pm != NULL) pm = &(*pm)->next; m->next = NULL; *pm = m; return 0; } static QEMUMachine *find_machine(const char *name) { QEMUMachine *m; for(m = first_machine; m != NULL; m = m->next) { if (!strcmp(m->name, name)) return m; } return NULL; } /***********************************************************/ /* main execution loop */ static void gui_update(void *opaque) { DisplayState *ds = opaque; ds->dpy_refresh(ds); qemu_mod_timer(ds->gui_timer, (ds->gui_timer_interval ? ds->gui_timer_interval : GUI_REFRESH_INTERVAL) + qemu_get_clock(rt_clock)); } struct vm_change_state_entry { VMChangeStateHandler *cb; void *opaque; LIST_ENTRY (vm_change_state_entry) entries; }; static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head; VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb, void *opaque) { VMChangeStateEntry *e; e = qemu_mallocz(sizeof (*e)); if (!e) return NULL; e->cb = cb; e->opaque = opaque; LIST_INSERT_HEAD(&vm_change_state_head, e, entries); return e; } void qemu_del_vm_change_state_handler(VMChangeStateEntry *e) { LIST_REMOVE (e, entries); qemu_free (e); } static void vm_state_notify(int running) { VMChangeStateEntry *e; for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) { e->cb(e->opaque, running); } } /* XXX: support several handlers */ static VMStopHandler *vm_stop_cb; static void *vm_stop_opaque; int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque) { vm_stop_cb = cb; vm_stop_opaque = opaque; return 0; } void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque) { vm_stop_cb = NULL; } void vm_start(void) { if (!vm_running) { cpu_enable_ticks(); vm_running = 1; vm_state_notify(1); qemu_rearm_alarm_timer(alarm_timer); } } void vm_stop(int reason) { if (vm_running) { cpu_disable_ticks(); vm_running = 0; if (reason != 0) { if (vm_stop_cb) { vm_stop_cb(vm_stop_opaque, reason); } } vm_state_notify(0); } } /* reset/shutdown handler */ typedef struct QEMUResetEntry { QEMUResetHandler *func; void *opaque; struct QEMUResetEntry *next; } QEMUResetEntry; static QEMUResetEntry *first_reset_entry; static int reset_requested; static int shutdown_requested; static int powerdown_requested; int qemu_shutdown_requested(void) { int r = shutdown_requested; shutdown_requested = 0; return r; } int qemu_reset_requested(void) { int r = reset_requested; reset_requested = 0; return r; } int qemu_powerdown_requested(void) { int r = powerdown_requested; powerdown_requested = 0; return r; } void qemu_register_reset(QEMUResetHandler *func, void *opaque) { QEMUResetEntry **pre, *re; pre = &first_reset_entry; while (*pre != NULL) pre = &(*pre)->next; re = qemu_mallocz(sizeof(QEMUResetEntry)); re->func = func; re->opaque = opaque; re->next = NULL; *pre = re; } void qemu_system_reset(void) { QEMUResetEntry *re; /* reset all devices */ for(re = first_reset_entry; re != NULL; re = re->next) { re->func(re->opaque); } } void qemu_system_reset_request(void) { if (no_reboot) { shutdown_requested = 1; } else { reset_requested = 1; } if (cpu_single_env) cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); } void qemu_system_shutdown_request(void) { shutdown_requested = 1; if (cpu_single_env) cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); } void qemu_system_powerdown_request(void) { powerdown_requested = 1; if (cpu_single_env) cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); } /* boot_set handler */ QEMUBootSetHandler *qemu_boot_set_handler = NULL; void qemu_register_boot_set(QEMUBootSetHandler *func) { qemu_boot_set_handler = func; } void main_loop_wait(int timeout) { IOHandlerRecord *ioh; fd_set rfds, wfds, xfds; int ret, nfds; #ifdef _WIN32 int ret2, i; #endif struct timeval tv; PollingEntry *pe; /* XXX: need to suppress polling by better using win32 events */ ret = 0; for(pe = first_polling_entry; pe != NULL; pe = pe->next) { ret |= pe->func(pe->opaque); } #ifdef _WIN32 if (ret == 0) { int err; WaitObjects *w = &wait_objects; ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout); if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) { if (w->func[ret - WAIT_OBJECT_0]) w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]); /* Check for additional signaled events */ for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) { /* Check if event is signaled */ ret2 = WaitForSingleObject(w->events[i], 0); if(ret2 == WAIT_OBJECT_0) { if (w->func[i]) w->func[i](w->opaque[i]); } else if (ret2 == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err); } } } else if (ret == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err); } } #endif /* poll any events */ /* XXX: separate device handlers from system ones */ nfds = -1; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (ioh->deleted) continue; if (ioh->fd_read && (!ioh->fd_read_poll || ioh->fd_read_poll(ioh->opaque) != 0)) { FD_SET(ioh->fd, &rfds); if (ioh->fd > nfds) nfds = ioh->fd; } if (ioh->fd_write) { FD_SET(ioh->fd, &wfds); if (ioh->fd > nfds) nfds = ioh->fd; } } tv.tv_sec = 0; #ifdef _WIN32 tv.tv_usec = 0; #else tv.tv_usec = timeout * 1000; #endif #if defined(CONFIG_SLIRP) if (slirp_inited) { slirp_select_fill(&nfds, &rfds, &wfds, &xfds); } #endif ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv); if (ret > 0) { IOHandlerRecord **pioh; for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) { ioh->fd_read(ioh->opaque); } if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) { ioh->fd_write(ioh->opaque); } } /* remove deleted IO handlers */ pioh = &first_io_handler; while (*pioh) { ioh = *pioh; if (ioh->deleted) { *pioh = ioh->next; qemu_free(ioh); } else pioh = &ioh->next; } } #if defined(CONFIG_SLIRP) if (slirp_inited) { if (ret < 0) { FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); } slirp_select_poll(&rfds, &wfds, &xfds); } #endif qemu_aio_poll(); if (vm_running) { if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER))) qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], qemu_get_clock(vm_clock)); /* run dma transfers, if any */ DMA_run(); } /* real time timers */ qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], qemu_get_clock(rt_clock)); if (alarm_timer->flags & ALARM_FLAG_EXPIRED) { alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED); qemu_rearm_alarm_timer(alarm_timer); } /* Check bottom-halves last in case any of the earlier events triggered them. */ qemu_bh_poll(); } static int main_loop(void) { int ret, timeout; #ifdef CONFIG_PROFILER int64_t ti; #endif CPUState *env; cur_cpu = first_cpu; next_cpu = cur_cpu->next_cpu ?: first_cpu; for(;;) { if (vm_running) { for(;;) { /* get next cpu */ env = next_cpu; #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif ret = cpu_exec(env); #ifdef CONFIG_PROFILER qemu_time += profile_getclock() - ti; #endif next_cpu = env->next_cpu ?: first_cpu; if (event_pending && likely(ret != EXCP_DEBUG)) { ret = EXCP_INTERRUPT; event_pending = 0; break; } if (ret == EXCP_HLT) { /* Give the next CPU a chance to run. */ cur_cpu = env; continue; } if (ret != EXCP_HALTED) break; /* all CPUs are halted ? */ if (env == cur_cpu) break; } cur_cpu = env; if (shutdown_requested) { ret = EXCP_INTERRUPT; if (no_shutdown) { vm_stop(0); no_shutdown = 0; } else break; } if (reset_requested) { reset_requested = 0; qemu_system_reset(); ret = EXCP_INTERRUPT; } if (powerdown_requested) { powerdown_requested = 0; qemu_system_powerdown(); ret = EXCP_INTERRUPT; } if (unlikely(ret == EXCP_DEBUG)) { vm_stop(EXCP_DEBUG); } /* If all cpus are halted then wait until the next IRQ */ /* XXX: use timeout computed from timers */ if (ret == EXCP_HALTED) timeout = 10; else timeout = 0; } else { timeout = 10; } #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif main_loop_wait(timeout); #ifdef CONFIG_PROFILER dev_time += profile_getclock() - ti; #endif } cpu_disable_ticks(); return ret; } static void help(int exitcode) { printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n" "usage: %s [options] [disk_image]\n" "\n" "'disk_image' is a raw hard image image for IDE hard disk 0\n" "\n" "Standard options:\n" "-M machine select emulated machine (-M ? for list)\n" "-cpu cpu select CPU (-cpu ? for list)\n" "-fda/-fdb file use 'file' as floppy disk 0/1 image\n" "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n" "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n" "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n" "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n" " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n" " [,cache=on|off][,format=f]\n" " use 'file' as a drive image\n" "-mtdblock file use 'file' as on-board Flash memory image\n" "-sd file use 'file' as SecureDigital card image\n" "-pflash file use 'file' as a parallel flash image\n" "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n" "-snapshot write to temporary files instead of disk image files\n" #ifdef CONFIG_SDL "-no-frame open SDL window without a frame and window decorations\n" "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n" "-no-quit disable SDL window close capability\n" #endif #ifdef TARGET_I386 "-no-fd-bootchk disable boot signature checking for floppy disks\n" #endif "-m megs set virtual RAM size to megs MB [default=%d]\n" "-smp n set the number of CPUs to 'n' [default=1]\n" "-nographic disable graphical output and redirect serial I/Os to console\n" "-portrait rotate graphical output 90 deg left (only PXA LCD)\n" #ifndef _WIN32 "-k language use keyboard layout (for example \"fr\" for French)\n" #endif #ifdef HAS_AUDIO "-audio-help print list of audio drivers and their options\n" "-soundhw c1,... enable audio support\n" " and only specified sound cards (comma separated list)\n" " use -soundhw ? to get the list of supported cards\n" " use -soundhw all to enable all of them\n" #endif "-localtime set the real time clock to local time [default=utc]\n" "-full-screen start in full screen\n" #ifdef TARGET_I386 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n" #endif "-usb enable the USB driver (will be the default soon)\n" "-usbdevice name add the host or guest USB device 'name'\n" #if defined(TARGET_PPC) || defined(TARGET_SPARC) "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n" #endif "-name string set the name of the guest\n" "\n" "Network options:\n" "-net nic[,vlan=n][,macaddr=addr][,model=type]\n" " create a new Network Interface Card and connect it to VLAN 'n'\n" #ifdef CONFIG_SLIRP "-net user[,vlan=n][,hostname=host]\n" " connect the user mode network stack to VLAN 'n' and send\n" " hostname 'host' to DHCP clients\n" #endif #ifdef _WIN32 "-net tap[,vlan=n],ifname=name\n" " connect the host TAP network interface to VLAN 'n'\n" #else "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n" " connect the host TAP network interface to VLAN 'n' and use the\n" " network scripts 'file' (default=%s)\n" " and 'dfile' (default=%s);\n" " use '[down]script=no' to disable script execution;\n" " use 'fd=h' to connect to an already opened TAP interface\n" #endif "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n" " connect the vlan 'n' to another VLAN using a socket connection\n" "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n" " connect the vlan 'n' to multicast maddr and port\n" "-net none use it alone to have zero network devices; if no -net option\n" " is provided, the default is '-net nic -net user'\n" "\n" #ifdef CONFIG_SLIRP "-tftp dir allow tftp access to files in dir [-net user]\n" "-bootp file advertise file in BOOTP replies\n" #ifndef _WIN32 "-smb dir allow SMB access to files in 'dir' [-net user]\n" #endif "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n" " redirect TCP or UDP connections from host to guest [-net user]\n" #endif "\n" "Linux boot specific:\n" "-kernel bzImage use 'bzImage' as kernel image\n" "-append cmdline use 'cmdline' as kernel command line\n" "-initrd file use 'file' as initial ram disk\n" "\n" "Debug/Expert options:\n" "-monitor dev redirect the monitor to char device 'dev'\n" "-serial dev redirect the serial port to char device 'dev'\n" "-parallel dev redirect the parallel port to char device 'dev'\n" "-pidfile file Write PID to 'file'\n" "-S freeze CPU at startup (use 'c' to start execution)\n" "-s wait gdb connection to port\n" "-p port set gdb connection port [default=%s]\n" "-d item1,... output log to %s (use -d ? for a list of log items)\n" "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n" " translation (t=none or lba) (usually qemu can guess them)\n" "-L path set the directory for the BIOS, VGA BIOS and keymaps\n" #ifdef USE_KQEMU "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n" "-no-kqemu disable KQEMU kernel module usage\n" #endif #ifdef TARGET_I386 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n" " (default is CL-GD5446 PCI VGA)\n" "-no-acpi disable ACPI\n" #endif #ifdef CONFIG_CURSES "-curses use a curses/ncurses interface instead of SDL\n" #endif "-no-reboot exit instead of rebooting\n" "-no-shutdown stop before shutdown\n" "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n" "-vnc display start a VNC server on display\n" #ifndef _WIN32 "-daemonize daemonize QEMU after initializing\n" #endif "-option-rom rom load a file, rom, into the option ROM space\n" #ifdef TARGET_SPARC "-prom-env variable=value set OpenBIOS nvram variables\n" #endif "-clock force the use of the given methods for timer alarm.\n" " To see what timers are available use -clock ?\n" "-startdate select initial date of the clock\n" "\n" "During emulation, the following keys are useful:\n" "ctrl-alt-f toggle full screen\n" "ctrl-alt-n switch to virtual console 'n'\n" "ctrl-alt toggle mouse and keyboard grab\n" "\n" "When using -nographic, press 'ctrl-a h' to get some help.\n" , "qemu", DEFAULT_RAM_SIZE, #ifndef _WIN32 DEFAULT_NETWORK_SCRIPT, DEFAULT_NETWORK_DOWN_SCRIPT, #endif DEFAULT_GDBSTUB_PORT, "/tmp/qemu.log"); exit(exitcode); } #define HAS_ARG 0x0001 enum { QEMU_OPTION_h, QEMU_OPTION_M, QEMU_OPTION_cpu, QEMU_OPTION_fda, QEMU_OPTION_fdb, QEMU_OPTION_hda, QEMU_OPTION_hdb, QEMU_OPTION_hdc, QEMU_OPTION_hdd, QEMU_OPTION_drive, QEMU_OPTION_cdrom, QEMU_OPTION_mtdblock, QEMU_OPTION_sd, QEMU_OPTION_pflash, QEMU_OPTION_boot, QEMU_OPTION_snapshot, #ifdef TARGET_I386 QEMU_OPTION_no_fd_bootchk, #endif QEMU_OPTION_m, QEMU_OPTION_nographic, QEMU_OPTION_portrait, #ifdef HAS_AUDIO QEMU_OPTION_audio_help, QEMU_OPTION_soundhw, #endif QEMU_OPTION_net, QEMU_OPTION_tftp, QEMU_OPTION_bootp, QEMU_OPTION_smb, QEMU_OPTION_redir, QEMU_OPTION_kernel, QEMU_OPTION_append, QEMU_OPTION_initrd, QEMU_OPTION_S, QEMU_OPTION_s, QEMU_OPTION_p, QEMU_OPTION_d, QEMU_OPTION_hdachs, QEMU_OPTION_L, QEMU_OPTION_bios, QEMU_OPTION_k, QEMU_OPTION_localtime, QEMU_OPTION_cirrusvga, QEMU_OPTION_vmsvga, QEMU_OPTION_g, QEMU_OPTION_std_vga, QEMU_OPTION_echr, QEMU_OPTION_monitor, QEMU_OPTION_serial, QEMU_OPTION_parallel, QEMU_OPTION_loadvm, QEMU_OPTION_full_screen, QEMU_OPTION_no_frame, QEMU_OPTION_alt_grab, QEMU_OPTION_no_quit, QEMU_OPTION_pidfile, QEMU_OPTION_no_kqemu, QEMU_OPTION_kernel_kqemu, QEMU_OPTION_win2k_hack, QEMU_OPTION_usb, QEMU_OPTION_usbdevice, QEMU_OPTION_smp, QEMU_OPTION_vnc, QEMU_OPTION_no_acpi, QEMU_OPTION_curses, QEMU_OPTION_no_reboot, QEMU_OPTION_no_shutdown, QEMU_OPTION_show_cursor, QEMU_OPTION_daemonize, QEMU_OPTION_option_rom, QEMU_OPTION_semihosting, QEMU_OPTION_name, QEMU_OPTION_prom_env, QEMU_OPTION_old_param, QEMU_OPTION_clock, QEMU_OPTION_startdate, QEMU_OPTION_tb_size, }; typedef struct QEMUOption { const char *name; int flags; int index; } QEMUOption; const QEMUOption qemu_options[] = { { "h", 0, QEMU_OPTION_h }, { "help", 0, QEMU_OPTION_h }, { "M", HAS_ARG, QEMU_OPTION_M }, { "cpu", HAS_ARG, QEMU_OPTION_cpu }, { "fda", HAS_ARG, QEMU_OPTION_fda }, { "fdb", HAS_ARG, QEMU_OPTION_fdb }, { "hda", HAS_ARG, QEMU_OPTION_hda }, { "hdb", HAS_ARG, QEMU_OPTION_hdb }, { "hdc", HAS_ARG, QEMU_OPTION_hdc }, { "hdd", HAS_ARG, QEMU_OPTION_hdd }, { "drive", HAS_ARG, QEMU_OPTION_drive }, { "cdrom", HAS_ARG, QEMU_OPTION_cdrom }, { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock }, { "sd", HAS_ARG, QEMU_OPTION_sd }, { "pflash", HAS_ARG, QEMU_OPTION_pflash }, { "boot", HAS_ARG, QEMU_OPTION_boot }, { "snapshot", 0, QEMU_OPTION_snapshot }, #ifdef TARGET_I386 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk }, #endif { "m", HAS_ARG, QEMU_OPTION_m }, { "nographic", 0, QEMU_OPTION_nographic }, { "portrait", 0, QEMU_OPTION_portrait }, { "k", HAS_ARG, QEMU_OPTION_k }, #ifdef HAS_AUDIO { "audio-help", 0, QEMU_OPTION_audio_help }, { "soundhw", HAS_ARG, QEMU_OPTION_soundhw }, #endif { "net", HAS_ARG, QEMU_OPTION_net}, #ifdef CONFIG_SLIRP { "tftp", HAS_ARG, QEMU_OPTION_tftp }, { "bootp", HAS_ARG, QEMU_OPTION_bootp }, #ifndef _WIN32 { "smb", HAS_ARG, QEMU_OPTION_smb }, #endif { "redir", HAS_ARG, QEMU_OPTION_redir }, #endif { "kernel", HAS_ARG, QEMU_OPTION_kernel }, { "append", HAS_ARG, QEMU_OPTION_append }, { "initrd", HAS_ARG, QEMU_OPTION_initrd }, { "S", 0, QEMU_OPTION_S }, { "s", 0, QEMU_OPTION_s }, { "p", HAS_ARG, QEMU_OPTION_p }, { "d", HAS_ARG, QEMU_OPTION_d }, { "hdachs", HAS_ARG, QEMU_OPTION_hdachs }, { "L", HAS_ARG, QEMU_OPTION_L }, { "bios", HAS_ARG, QEMU_OPTION_bios }, #ifdef USE_KQEMU { "no-kqemu", 0, QEMU_OPTION_no_kqemu }, { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu }, #endif #if defined(TARGET_PPC) || defined(TARGET_SPARC) { "g", 1, QEMU_OPTION_g }, #endif { "localtime", 0, QEMU_OPTION_localtime }, { "std-vga", 0, QEMU_OPTION_std_vga }, { "echr", HAS_ARG, QEMU_OPTION_echr }, { "monitor", HAS_ARG, QEMU_OPTION_monitor }, { "serial", HAS_ARG, QEMU_OPTION_serial }, { "parallel", HAS_ARG, QEMU_OPTION_parallel }, { "loadvm", HAS_ARG, QEMU_OPTION_loadvm }, { "full-screen", 0, QEMU_OPTION_full_screen }, #ifdef CONFIG_SDL { "no-frame", 0, QEMU_OPTION_no_frame }, { "alt-grab", 0, QEMU_OPTION_alt_grab }, { "no-quit", 0, QEMU_OPTION_no_quit }, #endif { "pidfile", HAS_ARG, QEMU_OPTION_pidfile }, { "win2k-hack", 0, QEMU_OPTION_win2k_hack }, { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice }, { "smp", HAS_ARG, QEMU_OPTION_smp }, { "vnc", HAS_ARG, QEMU_OPTION_vnc }, #ifdef CONFIG_CURSES { "curses", 0, QEMU_OPTION_curses }, #endif /* temporary options */ { "usb", 0, QEMU_OPTION_usb }, { "cirrusvga", 0, QEMU_OPTION_cirrusvga }, { "vmwarevga", 0, QEMU_OPTION_vmsvga }, { "no-acpi", 0, QEMU_OPTION_no_acpi }, { "no-reboot", 0, QEMU_OPTION_no_reboot }, { "no-shutdown", 0, QEMU_OPTION_no_shutdown }, { "show-cursor", 0, QEMU_OPTION_show_cursor }, { "daemonize", 0, QEMU_OPTION_daemonize }, { "option-rom", HAS_ARG, QEMU_OPTION_option_rom }, #if defined(TARGET_ARM) || defined(TARGET_M68K) { "semihosting", 0, QEMU_OPTION_semihosting }, #endif { "name", HAS_ARG, QEMU_OPTION_name }, #if defined(TARGET_SPARC) { "prom-env", HAS_ARG, QEMU_OPTION_prom_env }, #endif #if defined(TARGET_ARM) { "old-param", 0, QEMU_OPTION_old_param }, #endif { "clock", HAS_ARG, QEMU_OPTION_clock }, { "startdate", HAS_ARG, QEMU_OPTION_startdate }, { "tb-size", HAS_ARG, QEMU_OPTION_tb_size }, { NULL }, }; /* password input */ int qemu_key_check(BlockDriverState *bs, const char *name) { char password[256]; int i; if (!bdrv_is_encrypted(bs)) return 0; term_printf("%s is encrypted.\n", name); for(i = 0; i < 3; i++) { monitor_readline("Password: ", 1, password, sizeof(password)); if (bdrv_set_key(bs, password) == 0) return 0; term_printf("invalid password\n"); } return -EPERM; } static BlockDriverState *get_bdrv(int index) { if (index > nb_drives) return NULL; return drives_table[index].bdrv; } static void read_passwords(void) { BlockDriverState *bs; int i; for(i = 0; i < 6; i++) { bs = get_bdrv(i); if (bs) qemu_key_check(bs, bdrv_get_device_name(bs)); } } #ifdef HAS_AUDIO struct soundhw soundhw[] = { #ifdef HAS_AUDIO_CHOICE #if defined(TARGET_I386) || defined(TARGET_MIPS) { "pcspk", "PC speaker", 0, 1, { .init_isa = pcspk_audio_init } }, #endif { "sb16", "Creative Sound Blaster 16", 0, 1, { .init_isa = SB16_init } }, #ifdef CONFIG_CS4231A { "cs4231a", "CS4231A", 0, 1, { .init_isa = cs4231a_init } }, #endif #ifdef CONFIG_ADLIB { "adlib", #ifdef HAS_YMF262 "Yamaha YMF262 (OPL3)", #else "Yamaha YM3812 (OPL2)", #endif 0, 1, { .init_isa = Adlib_init } }, #endif #ifdef CONFIG_GUS { "gus", "Gravis Ultrasound GF1", 0, 1, { .init_isa = GUS_init } }, #endif #ifdef CONFIG_AC97 { "ac97", "Intel 82801AA AC97 Audio", 0, 0, { .init_pci = ac97_init } }, #endif { "es1370", "ENSONIQ AudioPCI ES1370", 0, 0, { .init_pci = es1370_init } }, #endif { NULL, NULL, 0, 0, { NULL } } }; static void select_soundhw (const char *optarg) { struct soundhw *c; if (*optarg == '?') { show_valid_cards: printf ("Valid sound card names (comma separated):\n"); for (c = soundhw; c->name; ++c) { printf ("%-11s %s\n", c->name, c->descr); } printf ("\n-soundhw all will enable all of the above\n"); exit (*optarg != '?'); } else { size_t l; const char *p; char *e; int bad_card = 0; if (!strcmp (optarg, "all")) { for (c = soundhw; c->name; ++c) { c->enabled = 1; } return; } p = optarg; while (*p) { e = strchr (p, ','); l = !e ? strlen (p) : (size_t) (e - p); for (c = soundhw; c->name; ++c) { if (!strncmp (c->name, p, l)) { c->enabled = 1; break; } } if (!c->name) { if (l > 80) { fprintf (stderr, "Unknown sound card name (too big to show)\n"); } else { fprintf (stderr, "Unknown sound card name `%.*s'\n", (int) l, p); } bad_card = 1; } p += l + (e != NULL); } if (bad_card) goto show_valid_cards; } } #endif #ifdef _WIN32 static BOOL WINAPI qemu_ctrl_handler(DWORD type) { exit(STATUS_CONTROL_C_EXIT); return TRUE; } #endif #define MAX_NET_CLIENTS 32 int main(int argc, char **argv) { #ifdef CONFIG_GDBSTUB int use_gdbstub; const char *gdbstub_port; #endif uint32_t boot_devices_bitmap = 0; int i; int snapshot, linux_boot, net_boot; const char *initrd_filename; const char *kernel_filename, *kernel_cmdline; const char *boot_devices = ""; DisplayState *ds = &display_state; int cyls, heads, secs, translation; const char *net_clients[MAX_NET_CLIENTS]; int nb_net_clients; int hda_index; int optind; const char *r, *optarg; CharDriverState *monitor_hd; const char *monitor_device; const char *serial_devices[MAX_SERIAL_PORTS]; int serial_device_index; const char *parallel_devices[MAX_PARALLEL_PORTS]; int parallel_device_index; const char *loadvm = NULL; QEMUMachine *machine; const char *cpu_model; const char *usb_devices[MAX_USB_CMDLINE]; int usb_devices_index; int fds[2]; int tb_size; const char *pid_file = NULL; VLANState *vlan; LIST_INIT (&vm_change_state_head); #ifndef _WIN32 { struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_IGN; sigaction(SIGPIPE, &act, NULL); } #else SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE); /* Note: cpu_interrupt() is currently not SMP safe, so we force QEMU to run on a single CPU */ { HANDLE h; DWORD mask, smask; int i; h = GetCurrentProcess(); if (GetProcessAffinityMask(h, &mask, &smask)) { for(i = 0; i < 32; i++) { if (mask & (1 << i)) break; } if (i != 32) { mask = 1 << i; SetProcessAffinityMask(h, mask); } } } #endif register_machines(); machine = first_machine; cpu_model = NULL; initrd_filename = NULL; ram_size = 0; vga_ram_size = VGA_RAM_SIZE; #ifdef CONFIG_GDBSTUB use_gdbstub = 0; gdbstub_port = DEFAULT_GDBSTUB_PORT; #endif snapshot = 0; nographic = 0; curses = 0; kernel_filename = NULL; kernel_cmdline = ""; cyls = heads = secs = 0; translation = BIOS_ATA_TRANSLATION_AUTO; monitor_device = "vc:800x600"; serial_devices[0] = "vc:80Cx24C"; for(i = 1; i < MAX_SERIAL_PORTS; i++) serial_devices[i] = NULL; serial_device_index = 0; parallel_devices[0] = "vc:640x480"; for(i = 1; i < MAX_PARALLEL_PORTS; i++) parallel_devices[i] = NULL; parallel_device_index = 0; usb_devices_index = 0; nb_net_clients = 0; nb_drives = 0; nb_drives_opt = 0; hda_index = -1; nb_nics = 0; tb_size = 0; optind = 1; for(;;) { if (optind >= argc) break; r = argv[optind]; if (r[0] != '-') { hda_index = drive_add(argv[optind++], HD_ALIAS, 0); } else { const QEMUOption *popt; optind++; /* Treat --foo the same as -foo. */ if (r[1] == '-') r++; popt = qemu_options; for(;;) { if (!popt->name) { fprintf(stderr, "%s: invalid option -- '%s'\n", argv[0], r); exit(1); } if (!strcmp(popt->name, r + 1)) break; popt++; } if (popt->flags & HAS_ARG) { if (optind >= argc) { fprintf(stderr, "%s: option '%s' requires an argument\n", argv[0], r); exit(1); } optarg = argv[optind++]; } else { optarg = NULL; } switch(popt->index) { case QEMU_OPTION_M: machine = find_machine(optarg); if (!machine) { QEMUMachine *m; printf("Supported machines are:\n"); for(m = first_machine; m != NULL; m = m->next) { printf("%-10s %s%s\n", m->name, m->desc, m == first_machine ? " (default)" : ""); } exit(*optarg != '?'); } break; case QEMU_OPTION_cpu: /* hw initialization will check this */ if (*optarg == '?') { /* XXX: implement xxx_cpu_list for targets that still miss it */ #if defined(cpu_list) cpu_list(stdout, &fprintf); #endif exit(0); } else { cpu_model = optarg; } break; case QEMU_OPTION_initrd: initrd_filename = optarg; break; case QEMU_OPTION_hda: if (cyls == 0) hda_index = drive_add(optarg, HD_ALIAS, 0); else hda_index = drive_add(optarg, HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s", 0, cyls, heads, secs, translation == BIOS_ATA_TRANSLATION_LBA ? ",trans=lba" : translation == BIOS_ATA_TRANSLATION_NONE ? ",trans=none" : ""); break; case QEMU_OPTION_hdb: case QEMU_OPTION_hdc: case QEMU_OPTION_hdd: drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda); break; case QEMU_OPTION_drive: drive_add(NULL, "%s", optarg); break; case QEMU_OPTION_mtdblock: drive_add(optarg, MTD_ALIAS); break; case QEMU_OPTION_sd: drive_add(optarg, SD_ALIAS); break; case QEMU_OPTION_pflash: drive_add(optarg, PFLASH_ALIAS); break; case QEMU_OPTION_snapshot: snapshot = 1; break; case QEMU_OPTION_hdachs: { const char *p; p = optarg; cyls = strtol(p, (char **)&p, 0); if (cyls < 1 || cyls > 16383) goto chs_fail; if (*p != ',') goto chs_fail; p++; heads = strtol(p, (char **)&p, 0); if (heads < 1 || heads > 16) goto chs_fail; if (*p != ',') goto chs_fail; p++; secs = strtol(p, (char **)&p, 0); if (secs < 1 || secs > 63) goto chs_fail; if (*p == ',') { p++; if (!strcmp(p, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(p, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(p, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else goto chs_fail; } else if (*p != '\0') { chs_fail: fprintf(stderr, "qemu: invalid physical CHS format\n"); exit(1); } if (hda_index != -1) snprintf(drives_opt[hda_index].opt, sizeof(drives_opt[hda_index].opt), HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s", 0, cyls, heads, secs, translation == BIOS_ATA_TRANSLATION_LBA ? ",trans=lba" : translation == BIOS_ATA_TRANSLATION_NONE ? ",trans=none" : ""); } break; case QEMU_OPTION_nographic: serial_devices[0] = "stdio"; parallel_devices[0] = "null"; monitor_device = "stdio"; nographic = 1; break; #ifdef CONFIG_CURSES case QEMU_OPTION_curses: curses = 1; break; #endif case QEMU_OPTION_portrait: graphic_rotate = 1; break; case QEMU_OPTION_kernel: kernel_filename = optarg; break; case QEMU_OPTION_append: kernel_cmdline = optarg; break; case QEMU_OPTION_cdrom: drive_add(optarg, CDROM_ALIAS); break; case QEMU_OPTION_boot: boot_devices = optarg; /* We just do some generic consistency checks */ { /* Could easily be extended to 64 devices if needed */ const char *p; boot_devices_bitmap = 0; for (p = boot_devices; *p != '\0'; p++) { /* Allowed boot devices are: * a b : floppy disk drives * c ... f : IDE disk drives * g ... m : machine implementation dependant drives * n ... p : network devices * It's up to each machine implementation to check * if the given boot devices match the actual hardware * implementation and firmware features. */ if (*p < 'a' || *p > 'q') { fprintf(stderr, "Invalid boot device '%c'\n", *p); exit(1); } if (boot_devices_bitmap & (1 << (*p - 'a'))) { fprintf(stderr, "Boot device '%c' was given twice\n",*p); exit(1); } boot_devices_bitmap |= 1 << (*p - 'a'); } } break; case QEMU_OPTION_fda: case QEMU_OPTION_fdb: drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda); break; #ifdef TARGET_I386 case QEMU_OPTION_no_fd_bootchk: fd_bootchk = 0; break; #endif case QEMU_OPTION_net: if (nb_net_clients >= MAX_NET_CLIENTS) { fprintf(stderr, "qemu: too many network clients\n"); exit(1); } net_clients[nb_net_clients] = optarg; nb_net_clients++; break; #ifdef CONFIG_SLIRP case QEMU_OPTION_tftp: tftp_prefix = optarg; break; case QEMU_OPTION_bootp: bootp_filename = optarg; break; #ifndef _WIN32 case QEMU_OPTION_smb: net_slirp_smb(optarg); break; #endif case QEMU_OPTION_redir: net_slirp_redir(optarg); break; #endif #ifdef HAS_AUDIO case QEMU_OPTION_audio_help: AUD_help (); exit (0); break; case QEMU_OPTION_soundhw: select_soundhw (optarg); break; #endif case QEMU_OPTION_h: help(0); break; case QEMU_OPTION_m: { uint64_t value; char *ptr; value = strtoul(optarg, &ptr, 10); switch (*ptr) { case 0: case 'M': case 'm': value <<= 20; break; case 'G': case 'g': value <<= 30; break; default: fprintf(stderr, "qemu: invalid ram size: %s\n", optarg); exit(1); } /* On 32-bit hosts, QEMU is limited by virtual address space */ if (value > (2047 << 20) #ifndef USE_KQEMU && HOST_LONG_BITS == 32 #endif ) { fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n"); exit(1); } if (value != (uint64_t)(ram_addr_t)value) { fprintf(stderr, "qemu: ram size too large\n"); exit(1); } ram_size = value; break; } case QEMU_OPTION_d: { int mask; CPULogItem *item; mask = cpu_str_to_log_mask(optarg); if (!mask) { printf("Log items (comma separated):\n"); for(item = cpu_log_items; item->mask != 0; item++) { printf("%-10s %s\n", item->name, item->help); } exit(1); } cpu_set_log(mask); } break; #ifdef CONFIG_GDBSTUB case QEMU_OPTION_s: use_gdbstub = 1; break; case QEMU_OPTION_p: gdbstub_port = optarg; break; #endif case QEMU_OPTION_L: bios_dir = optarg; break; case QEMU_OPTION_bios: bios_name = optarg; break; case QEMU_OPTION_S: autostart = 0; break; case QEMU_OPTION_k: keyboard_layout = optarg; break; case QEMU_OPTION_localtime: rtc_utc = 0; break; case QEMU_OPTION_cirrusvga: cirrus_vga_enabled = 1; vmsvga_enabled = 0; break; case QEMU_OPTION_vmsvga: cirrus_vga_enabled = 0; vmsvga_enabled = 1; break; case QEMU_OPTION_std_vga: cirrus_vga_enabled = 0; vmsvga_enabled = 0; break; case QEMU_OPTION_g: { const char *p; int w, h, depth; p = optarg; w = strtol(p, (char **)&p, 10); if (w <= 0) { graphic_error: fprintf(stderr, "qemu: invalid resolution or depth\n"); exit(1); } if (*p != 'x') goto graphic_error; p++; h = strtol(p, (char **)&p, 10); if (h <= 0) goto graphic_error; if (*p == 'x') { p++; depth = strtol(p, (char **)&p, 10); if (depth != 8 && depth != 15 && depth != 16 && depth != 24 && depth != 32) goto graphic_error; } else if (*p == '\0') { depth = graphic_depth; } else { goto graphic_error; } graphic_width = w; graphic_height = h; graphic_depth = depth; } break; case QEMU_OPTION_echr: { char *r; term_escape_char = strtol(optarg, &r, 0); if (r == optarg) printf("Bad argument to echr\n"); break; } case QEMU_OPTION_monitor: monitor_device = optarg; break; case QEMU_OPTION_serial: if (serial_device_index >= MAX_SERIAL_PORTS) { fprintf(stderr, "qemu: too many serial ports\n"); exit(1); } serial_devices[serial_device_index] = optarg; serial_device_index++; break; case QEMU_OPTION_parallel: if (parallel_device_index >= MAX_PARALLEL_PORTS) { fprintf(stderr, "qemu: too many parallel ports\n"); exit(1); } parallel_devices[parallel_device_index] = optarg; parallel_device_index++; break; case QEMU_OPTION_loadvm: loadvm = optarg; break; case QEMU_OPTION_full_screen: full_screen = 1; break; #ifdef CONFIG_SDL case QEMU_OPTION_no_frame: no_frame = 1; break; case QEMU_OPTION_alt_grab: alt_grab = 1; break; case QEMU_OPTION_no_quit: no_quit = 1; break; #endif case QEMU_OPTION_pidfile: pid_file = optarg; break; #ifdef TARGET_I386 case QEMU_OPTION_win2k_hack: win2k_install_hack = 1; break; #endif #ifdef USE_KQEMU case QEMU_OPTION_no_kqemu: kqemu_allowed = 0; break; case QEMU_OPTION_kernel_kqemu: kqemu_allowed = 2; break; #endif case QEMU_OPTION_usb: usb_enabled = 1; break; case QEMU_OPTION_usbdevice: usb_enabled = 1; if (usb_devices_index >= MAX_USB_CMDLINE) { fprintf(stderr, "Too many USB devices\n"); exit(1); } usb_devices[usb_devices_index] = optarg; usb_devices_index++; break; case QEMU_OPTION_smp: smp_cpus = atoi(optarg); if (smp_cpus < 1 || smp_cpus > MAX_CPUS) { fprintf(stderr, "Invalid number of CPUs\n"); exit(1); } break; case QEMU_OPTION_vnc: vnc_display = optarg; break; case QEMU_OPTION_no_acpi: acpi_enabled = 0; break; case QEMU_OPTION_no_reboot: no_reboot = 1; break; case QEMU_OPTION_no_shutdown: no_shutdown = 1; break; case QEMU_OPTION_show_cursor: cursor_hide = 0; break; case QEMU_OPTION_daemonize: daemonize = 1; break; case QEMU_OPTION_option_rom: if (nb_option_roms >= MAX_OPTION_ROMS) { fprintf(stderr, "Too many option ROMs\n"); exit(1); } option_rom[nb_option_roms] = optarg; nb_option_roms++; break; case QEMU_OPTION_semihosting: semihosting_enabled = 1; break; case QEMU_OPTION_name: qemu_name = optarg; break; #ifdef TARGET_SPARC case QEMU_OPTION_prom_env: if (nb_prom_envs >= MAX_PROM_ENVS) { fprintf(stderr, "Too many prom variables\n"); exit(1); } prom_envs[nb_prom_envs] = optarg; nb_prom_envs++; break; #endif #ifdef TARGET_ARM case QEMU_OPTION_old_param: old_param = 1; break; #endif case QEMU_OPTION_clock: configure_alarms(optarg); break; case QEMU_OPTION_startdate: { struct tm tm; time_t rtc_start_date; if (!strcmp(optarg, "now")) { rtc_date_offset = -1; } else { if (sscanf(optarg, "%d-%d-%dT%d:%d:%d", &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &tm.tm_hour, &tm.tm_min, &tm.tm_sec) == 6) { /* OK */ } else if (sscanf(optarg, "%d-%d-%d", &tm.tm_year, &tm.tm_mon, &tm.tm_mday) == 3) { tm.tm_hour = 0; tm.tm_min = 0; tm.tm_sec = 0; } else { goto date_fail; } tm.tm_year -= 1900; tm.tm_mon--; rtc_start_date = mktimegm(&tm); if (rtc_start_date == -1) { date_fail: fprintf(stderr, "Invalid date format. Valid format are:\n" "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n"); exit(1); } rtc_date_offset = time(NULL) - rtc_start_date; } } break; case QEMU_OPTION_tb_size: tb_size = strtol(optarg, NULL, 0); if (tb_size < 0) tb_size = 0; break; } } } #ifndef _WIN32 if (daemonize && !nographic && vnc_display == NULL) { fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n"); daemonize = 0; } if (daemonize) { pid_t pid; if (pipe(fds) == -1) exit(1); pid = fork(); if (pid > 0) { uint8_t status; ssize_t len; close(fds[1]); again: len = read(fds[0], &status, 1); if (len == -1 && (errno == EINTR)) goto again; if (len != 1) exit(1); else if (status == 1) { fprintf(stderr, "Could not acquire pidfile\n"); exit(1); } else exit(0); } else if (pid < 0) exit(1); setsid(); pid = fork(); if (pid > 0) exit(0); else if (pid < 0) exit(1); umask(027); chdir("/"); signal(SIGTSTP, SIG_IGN); signal(SIGTTOU, SIG_IGN); signal(SIGTTIN, SIG_IGN); } #endif if (pid_file && qemu_create_pidfile(pid_file) != 0) { if (daemonize) { uint8_t status = 1; write(fds[1], &status, 1); } else fprintf(stderr, "Could not acquire pid file\n"); exit(1); } #ifdef USE_KQEMU if (smp_cpus > 1) kqemu_allowed = 0; #endif linux_boot = (kernel_filename != NULL); net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF; /* XXX: this should not be: some embedded targets just have flash */ if (!linux_boot && net_boot == 0 && nb_drives_opt == 0) help(1); /* boot to floppy or the default cd if no hard disk defined yet */ if (!boot_devices[0]) { boot_devices = "cad"; } setvbuf(stdout, NULL, _IOLBF, 0); init_timers(); init_timer_alarm(); qemu_aio_init(); #ifdef _WIN32 socket_init(); #endif /* init network clients */ if (nb_net_clients == 0) { /* if no clients, we use a default config */ net_clients[0] = "nic"; net_clients[1] = "user"; nb_net_clients = 2; } for(i = 0;i < nb_net_clients; i++) { if (net_client_init(net_clients[i]) < 0) exit(1); } for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0) continue; if (vlan->nb_guest_devs == 0) { fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id); exit(1); } if (vlan->nb_host_devs == 0) fprintf(stderr, "Warning: vlan %d is not connected to host network\n", vlan->id); } #ifdef TARGET_I386 /* XXX: this should be moved in the PC machine instantiation code */ if (net_boot != 0) { int netroms = 0; for (i = 0; i < nb_nics && i < 4; i++) { const char *model = nd_table[i].model; char buf[1024]; if (net_boot & (1 << i)) { if (model == NULL) model = "ne2k_pci"; snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model); if (get_image_size(buf) > 0) { if (nb_option_roms >= MAX_OPTION_ROMS) { fprintf(stderr, "Too many option ROMs\n"); exit(1); } option_rom[nb_option_roms] = strdup(buf); nb_option_roms++; netroms++; } } } if (netroms == 0) { fprintf(stderr, "No valid PXE rom found for network device\n"); exit(1); } } #endif /* init the memory */ phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED; if (machine->ram_require & RAMSIZE_FIXED) { if (ram_size > 0) { if (ram_size < phys_ram_size) { fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n", machine->name, (unsigned long long) phys_ram_size); exit(-1); } phys_ram_size = ram_size; } else ram_size = phys_ram_size; } else { if (ram_size == 0) ram_size = DEFAULT_RAM_SIZE * 1024 * 1024; phys_ram_size += ram_size; } phys_ram_base = qemu_vmalloc(phys_ram_size); if (!phys_ram_base) { fprintf(stderr, "Could not allocate physical memory\n"); exit(1); } /* init the dynamic translator */ cpu_exec_init_all(tb_size * 1024 * 1024); bdrv_init(); /* we always create the cdrom drive, even if no disk is there */ if (nb_drives_opt < MAX_DRIVES) drive_add(NULL, CDROM_ALIAS); /* we always create at least one floppy */ if (nb_drives_opt < MAX_DRIVES) drive_add(NULL, FD_ALIAS, 0); /* we always create one sd slot, even if no card is in it */ if (nb_drives_opt < MAX_DRIVES) drive_add(NULL, SD_ALIAS); /* open the virtual block devices */ for(i = 0; i < nb_drives_opt; i++) if (drive_init(&drives_opt[i], snapshot, machine) == -1) exit(1); register_savevm("timer", 0, 2, timer_save, timer_load, NULL); register_savevm("ram", 0, 2, ram_save, ram_load, NULL); init_ioports(); /* terminal init */ memset(&display_state, 0, sizeof(display_state)); if (nographic) { if (curses) { fprintf(stderr, "fatal: -nographic can't be used with -curses\n"); exit(1); } /* nearly nothing to do */ dumb_display_init(ds); } else if (vnc_display != NULL) { vnc_display_init(ds); if (vnc_display_open(ds, vnc_display) < 0) exit(1); } else #if defined(CONFIG_CURSES) if (curses) { curses_display_init(ds, full_screen); } else #endif { #if defined(CONFIG_SDL) sdl_display_init(ds, full_screen, no_frame); #elif defined(CONFIG_COCOA) cocoa_display_init(ds, full_screen); #else dumb_display_init(ds); #endif } /* Maintain compatibility with multiple stdio monitors */ if (!strcmp(monitor_device,"stdio")) { for (i = 0; i < MAX_SERIAL_PORTS; i++) { const char *devname = serial_devices[i]; if (devname && !strcmp(devname,"mon:stdio")) { monitor_device = NULL; break; } else if (devname && !strcmp(devname,"stdio")) { monitor_device = NULL; serial_devices[i] = "mon:stdio"; break; } } } if (monitor_device) { monitor_hd = qemu_chr_open(monitor_device); if (!monitor_hd) { fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device); exit(1); } monitor_init(monitor_hd, !nographic); } for(i = 0; i < MAX_SERIAL_PORTS; i++) { const char *devname = serial_devices[i]; if (devname && strcmp(devname, "none")) { serial_hds[i] = qemu_chr_open(devname); if (!serial_hds[i]) { fprintf(stderr, "qemu: could not open serial device '%s'\n", devname); exit(1); } if (strstart(devname, "vc", 0)) qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { const char *devname = parallel_devices[i]; if (devname && strcmp(devname, "none")) { parallel_hds[i] = qemu_chr_open(devname); if (!parallel_hds[i]) { fprintf(stderr, "qemu: could not open parallel device '%s'\n", devname); exit(1); } if (strstart(devname, "vc", 0)) qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i); } } machine->init(ram_size, vga_ram_size, boot_devices, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); /* init USB devices */ if (usb_enabled) { for(i = 0; i < usb_devices_index; i++) { if (usb_device_add(usb_devices[i]) < 0) { fprintf(stderr, "Warning: could not add USB device %s\n", usb_devices[i]); } } } if (display_state.dpy_refresh) { display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state); qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock)); } #ifdef CONFIG_GDBSTUB if (use_gdbstub) { /* XXX: use standard host:port notation and modify options accordingly. */ if (gdbserver_start(gdbstub_port) < 0) { fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n", gdbstub_port); exit(1); } } #endif if (loadvm) do_loadvm(loadvm); { /* XXX: simplify init */ read_passwords(); if (autostart) { vm_start(); } } if (daemonize) { uint8_t status = 0; ssize_t len; int fd; again1: len = write(fds[1], &status, 1); if (len == -1 && (errno == EINTR)) goto again1; if (len != 1) exit(1); TFR(fd = open("/dev/null", O_RDWR)); if (fd == -1) exit(1); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } main_loop(); quit_timers(); #if !defined(_WIN32) /* close network clients */ for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { VLANClientState *vc; for(vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc->fd_read == tap_receive) { char ifname[64]; TAPState *s = vc->opaque; if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 && s->down_script[0]) launch_script(s->down_script, ifname, s->fd); } } } #endif return 0; }