/* * QEMU System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #include #include #include #include #include #include #include #include #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #include #include #endif #if defined(CONFIG_SLIRP) #include "libslirp.h" #endif #ifdef _WIN32 #include #include #define getopt_long_only getopt_long #define memalign(align, size) malloc(size) #endif #ifdef CONFIG_SDL /* SDL use the pthreads and they modify sigaction. We don't want that. */ #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2) extern void __libc_sigaction(); #define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact) #else extern void __sigaction(); #define sigaction(sig, act, oact) __sigaction(sig, act, oact) #endif #endif /* CONFIG_SDL */ #include "disas.h" #include "exec-all.h" //#define DO_TB_FLUSH #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup" //#define DEBUG_UNUSED_IOPORT //#define DEBUG_IOPORT #if !defined(CONFIG_SOFTMMU) #define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024) #else #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024) #endif /* in ms */ #define GUI_REFRESH_INTERVAL 30 /* XXX: use a two level table to limit memory usage */ #define MAX_IOPORTS 65536 const char *bios_dir = CONFIG_QEMU_SHAREDIR; char phys_ram_file[1024]; CPUState *global_env; CPUState *cpu_single_env; void *ioport_opaque[MAX_IOPORTS]; IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS]; IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS]; BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD]; int vga_ram_size; static DisplayState display_state; int nographic; int64_t ticks_per_sec; int boot_device = 'c'; static int ram_size; static char network_script[1024]; int pit_min_timer_count = 0; int nb_nics; NetDriverState nd_table[MAX_NICS]; SerialState *serial_console; QEMUTimer *gui_timer; int vm_running; int audio_enabled = 0; /***********************************************************/ /* x86 ISA bus support */ target_phys_addr_t isa_mem_base = 0; uint32_t default_ioport_readb(void *opaque, uint32_t address) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "inb: port=0x%04x\n", address); #endif return 0xff; } void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data); #endif } /* default is to make two byte accesses */ uint32_t default_ioport_readw(void *opaque, uint32_t address) { uint32_t data; data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](opaque, address); data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](opaque, address + 1) << 8; return data; } void default_ioport_writew(void *opaque, uint32_t address, uint32_t data) { ioport_write_table[0][address & (MAX_IOPORTS - 1)](opaque, address, data & 0xff); ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](opaque, address + 1, (data >> 8) & 0xff); } uint32_t default_ioport_readl(void *opaque, uint32_t address) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "inl: port=0x%04x\n", address); #endif return 0xffffffff; } void default_ioport_writel(void *opaque, uint32_t address, uint32_t data) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data); #endif } void init_ioports(void) { int i; for(i = 0; i < MAX_IOPORTS; i++) { ioport_read_table[0][i] = default_ioport_readb; ioport_write_table[0][i] = default_ioport_writeb; ioport_read_table[1][i] = default_ioport_readw; ioport_write_table[1][i] = default_ioport_writew; ioport_read_table[2][i] = default_ioport_readl; ioport_write_table[2][i] = default_ioport_writel; } } /* size is the word size in byte */ int register_ioport_read(int start, int length, int size, IOPortReadFunc *func, void *opaque) { int i, bsize; if (size == 1) { bsize = 0; } else if (size == 2) { bsize = 1; } else if (size == 4) { bsize = 2; } else { hw_error("register_ioport_read: invalid size"); return -1; } for(i = start; i < start + length; i += size) { ioport_read_table[bsize][i] = func; if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque) hw_error("register_ioport_read: invalid opaque"); ioport_opaque[i] = opaque; } return 0; } /* size is the word size in byte */ int register_ioport_write(int start, int length, int size, IOPortWriteFunc *func, void *opaque) { int i, bsize; if (size == 1) { bsize = 0; } else if (size == 2) { bsize = 1; } else if (size == 4) { bsize = 2; } else { hw_error("register_ioport_write: invalid size"); return -1; } for(i = start; i < start + length; i += size) { ioport_write_table[bsize][i] = func; if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque) hw_error("register_ioport_read: invalid opaque"); ioport_opaque[i] = opaque; } return 0; } void pstrcpy(char *buf, int buf_size, const char *str) { int c; char *q = buf; if (buf_size <= 0) return; for(;;) { c = *str++; if (c == 0 || q >= buf + buf_size - 1) break; *q++ = c; } *q = '\0'; } /* strcat and truncate. */ char *pstrcat(char *buf, int buf_size, const char *s) { int len; len = strlen(buf); if (len < buf_size) pstrcpy(buf + len, buf_size - len, s); return buf; } /* return the size or -1 if error */ int load_image(const char *filename, uint8_t *addr) { int fd, size; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_SET); if (read(fd, addr, size) != size) { close(fd); return -1; } close(fd); return size; } void cpu_outb(CPUState *env, int addr, int val) { addr &= (MAX_IOPORTS - 1); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "outb: %04x %02x\n", addr, val); #endif ioport_write_table[0][addr](ioport_opaque[addr], addr, val); } void cpu_outw(CPUState *env, int addr, int val) { addr &= (MAX_IOPORTS - 1); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "outw: %04x %04x\n", addr, val); #endif ioport_write_table[1][addr](ioport_opaque[addr], addr, val); } void cpu_outl(CPUState *env, int addr, int val) { addr &= (MAX_IOPORTS - 1); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "outl: %04x %08x\n", addr, val); #endif ioport_write_table[2][addr](ioport_opaque[addr], addr, val); } int cpu_inb(CPUState *env, int addr) { int val; addr &= (MAX_IOPORTS - 1); val = ioport_read_table[0][addr](ioport_opaque[addr], addr); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "inb : %04x %02x\n", addr, val); #endif return val; } int cpu_inw(CPUState *env, int addr) { int val; addr &= (MAX_IOPORTS - 1); val = ioport_read_table[1][addr](ioport_opaque[addr], addr); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "inw : %04x %04x\n", addr, val); #endif return val; } int cpu_inl(CPUState *env, int addr) { int val; addr &= (MAX_IOPORTS - 1); val = ioport_read_table[2][addr](ioport_opaque[addr], addr); #ifdef DEBUG_IOPORT if (loglevel & CPU_LOG_IOPORT) fprintf(logfile, "inl : %04x %08x\n", addr, val); #endif return val; } /***********************************************************/ void hw_error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); fprintf(stderr, "qemu: hardware error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); #ifdef TARGET_I386 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP); #else cpu_dump_state(global_env, stderr, 0); #endif va_end(ap); abort(); } /***********************************************************/ /* timers */ #if defined(__powerpc__) static inline uint32_t get_tbl(void) { uint32_t tbl; asm volatile("mftb %0" : "=r" (tbl)); return tbl; } static inline uint32_t get_tbu(void) { uint32_t tbl; asm volatile("mftbu %0" : "=r" (tbl)); return tbl; } int64_t cpu_get_real_ticks(void) { uint32_t l, h, h1; /* NOTE: we test if wrapping has occurred */ do { h = get_tbu(); l = get_tbl(); h1 = get_tbu(); } while (h != h1); return ((int64_t)h << 32) | l; } #elif defined(__i386__) int64_t cpu_get_real_ticks(void) { int64_t val; asm volatile ("rdtsc" : "=A" (val)); return val; } #elif defined(__x86_64__) int64_t cpu_get_real_ticks(void) { uint32_t low,high; int64_t val; asm volatile("rdtsc" : "=a" (low), "=d" (high)); val = high; val <<= 32; val |= low; return val; } #else #error unsupported CPU #endif static int64_t cpu_ticks_offset; static int cpu_ticks_enabled; static inline int64_t cpu_get_ticks(void) { if (!cpu_ticks_enabled) { return cpu_ticks_offset; } else { return cpu_get_real_ticks() + cpu_ticks_offset; } } /* enable cpu_get_ticks() */ void cpu_enable_ticks(void) { if (!cpu_ticks_enabled) { cpu_ticks_offset -= cpu_get_real_ticks(); cpu_ticks_enabled = 1; } } /* disable cpu_get_ticks() : the clock is stopped. You must not call cpu_get_ticks() after that. */ void cpu_disable_ticks(void) { if (cpu_ticks_enabled) { cpu_ticks_offset = cpu_get_ticks(); cpu_ticks_enabled = 0; } } static int64_t get_clock(void) { #ifdef _WIN32 struct _timeb tb; _ftime(&tb); return ((int64_t)tb.time * 1000 + (int64_t)tb.millitm) * 1000; #else struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000LL + tv.tv_usec; #endif } void cpu_calibrate_ticks(void) { int64_t usec, ticks; usec = get_clock(); ticks = cpu_get_real_ticks(); #ifdef _WIN32 Sleep(50); #else usleep(50 * 1000); #endif usec = get_clock() - usec; ticks = cpu_get_real_ticks() - ticks; ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec; } /* compute with 96 bit intermediate result: (a*b)/c */ uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } #define QEMU_TIMER_REALTIME 0 #define QEMU_TIMER_VIRTUAL 1 struct QEMUClock { int type; /* XXX: add frequency */ }; struct QEMUTimer { QEMUClock *clock; int64_t expire_time; QEMUTimerCB *cb; void *opaque; struct QEMUTimer *next; }; QEMUClock *rt_clock; QEMUClock *vm_clock; static QEMUTimer *active_timers[2]; #ifdef _WIN32 static MMRESULT timerID; #else /* frequency of the times() clock tick */ static int timer_freq; #endif QEMUClock *qemu_new_clock(int type) { QEMUClock *clock; clock = qemu_mallocz(sizeof(QEMUClock)); if (!clock) return NULL; clock->type = type; return clock; } QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) { QEMUTimer *ts; ts = qemu_mallocz(sizeof(QEMUTimer)); ts->clock = clock; ts->cb = cb; ts->opaque = opaque; return ts; } void qemu_free_timer(QEMUTimer *ts) { qemu_free(ts); } /* stop a timer, but do not dealloc it */ void qemu_del_timer(QEMUTimer *ts) { QEMUTimer **pt, *t; /* NOTE: this code must be signal safe because qemu_timer_expired() can be called from a signal. */ pt = &active_timers[ts->clock->type]; for(;;) { t = *pt; if (!t) break; if (t == ts) { *pt = t->next; break; } pt = &t->next; } } /* modify the current timer so that it will be fired when current_time >= expire_time. The corresponding callback will be called. */ void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) { QEMUTimer **pt, *t; qemu_del_timer(ts); /* add the timer in the sorted list */ /* NOTE: this code must be signal safe because qemu_timer_expired() can be called from a signal. */ pt = &active_timers[ts->clock->type]; for(;;) { t = *pt; if (!t) break; if (t->expire_time > expire_time) break; pt = &t->next; } ts->expire_time = expire_time; ts->next = *pt; *pt = ts; } int qemu_timer_pending(QEMUTimer *ts) { QEMUTimer *t; for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { if (t == ts) return 1; } return 0; } static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) { if (!timer_head) return 0; return (timer_head->expire_time <= current_time); } static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time) { QEMUTimer *ts; for(;;) { ts = *ptimer_head; if (ts->expire_time > current_time) break; /* remove timer from the list before calling the callback */ *ptimer_head = ts->next; ts->next = NULL; /* run the callback (the timer list can be modified) */ ts->cb(ts->opaque); } } int64_t qemu_get_clock(QEMUClock *clock) { switch(clock->type) { case QEMU_TIMER_REALTIME: #ifdef _WIN32 return GetTickCount(); #else /* XXX: portability among Linux hosts */ if (timer_freq == 100) { return times(NULL) * 10; } else { return ((int64_t)times(NULL) * 1000) / timer_freq; } #endif default: case QEMU_TIMER_VIRTUAL: return cpu_get_ticks(); } } /* save a timer */ void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; if (qemu_timer_pending(ts)) { expire_time = ts->expire_time; } else { expire_time = -1; } qemu_put_be64(f, expire_time); } void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; expire_time = qemu_get_be64(f); if (expire_time != -1) { qemu_mod_timer(ts, expire_time); } else { qemu_del_timer(ts); } } static void timer_save(QEMUFile *f, void *opaque) { if (cpu_ticks_enabled) { hw_error("cannot save state if virtual timers are running"); } qemu_put_be64s(f, &cpu_ticks_offset); qemu_put_be64s(f, &ticks_per_sec); } static int timer_load(QEMUFile *f, void *opaque, int version_id) { if (version_id != 1) return -EINVAL; if (cpu_ticks_enabled) { return -EINVAL; } qemu_get_be64s(f, &cpu_ticks_offset); qemu_get_be64s(f, &ticks_per_sec); return 0; } #ifdef _WIN32 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2) #else static void host_alarm_handler(int host_signum) #endif { if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL], qemu_get_clock(vm_clock)) || qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME], qemu_get_clock(rt_clock))) { /* stop the cpu because a timer occured */ cpu_interrupt(global_env, CPU_INTERRUPT_EXIT); } } #ifndef _WIN32 #define RTC_FREQ 1024 static int rtc_fd; static int start_rtc_timer(void) { rtc_fd = open("/dev/rtc", O_RDONLY); if (rtc_fd < 0) return -1; if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); goto fail; } if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { fail: close(rtc_fd); return -1; } pit_min_timer_count = PIT_FREQ / RTC_FREQ; return 0; } #endif static void init_timers(void) { rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME); vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL); #ifdef _WIN32 { int count=0; timerID = timeSetEvent(10, // interval (ms) 0, // resolution host_alarm_handler, // function (DWORD)&count, // user parameter TIME_PERIODIC | TIME_CALLBACK_FUNCTION); if( !timerID ) { perror("failed timer alarm"); exit(1); } } pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000; #else { struct sigaction act; struct itimerval itv; /* get times() syscall frequency */ timer_freq = sysconf(_SC_CLK_TCK); /* timer signal */ sigfillset(&act.sa_mask); act.sa_flags = 0; #if defined (TARGET_I386) && defined(USE_CODE_COPY) act.sa_flags |= SA_ONSTACK; #endif act.sa_handler = host_alarm_handler; sigaction(SIGALRM, &act, NULL); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 1000; itv.it_value.tv_sec = 0; itv.it_value.tv_usec = 10 * 1000; setitimer(ITIMER_REAL, &itv, NULL); /* we probe the tick duration of the kernel to inform the user if the emulated kernel requested a too high timer frequency */ getitimer(ITIMER_REAL, &itv); if (itv.it_interval.tv_usec > 1000) { /* try to use /dev/rtc to have a faster timer */ if (start_rtc_timer() < 0) goto use_itimer; /* disable itimer */ itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = 0; itv.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &itv, NULL); /* use the RTC */ sigaction(SIGIO, &act, NULL); fcntl(rtc_fd, F_SETFL, O_ASYNC); fcntl(rtc_fd, F_SETOWN, getpid()); } else { use_itimer: pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 1000000; } } #endif } void quit_timers(void) { #ifdef _WIN32 timeKillEvent(timerID); #endif } /***********************************************************/ /* serial device */ #ifdef _WIN32 int serial_open_device(void) { return -1; } #else int serial_open_device(void) { char slave_name[1024]; int master_fd, slave_fd; if (serial_console == NULL && nographic) { /* use console for serial port */ return 0; } else { if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) { fprintf(stderr, "warning: could not create pseudo terminal for serial port\n"); return -1; } fprintf(stderr, "Serial port redirected to %s\n", slave_name); return master_fd; } } #endif /***********************************************************/ /* Linux network device redirectors */ void hex_dump(FILE *f, const uint8_t *buf, int size) { int len, i, j, c; for(i=0;i 16) len = 16; fprintf(f, "%08x ", i); for(j=0;j<16;j++) { if (j < len) fprintf(f, " %02x", buf[i+j]); else fprintf(f, " "); } fprintf(f, " "); for(j=0;j '~') c = '.'; fprintf(f, "%c", c); } fprintf(f, "\n"); } } void qemu_send_packet(NetDriverState *nd, const uint8_t *buf, int size) { nd->send_packet(nd, buf, size); } void qemu_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read, IOReadHandler *fd_read, void *opaque) { nd->add_read_packet(nd, fd_can_read, fd_read, opaque); } /* dummy network adapter */ static void dummy_send_packet(NetDriverState *nd, const uint8_t *buf, int size) { } static void dummy_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read, IOReadHandler *fd_read, void *opaque) { } static int net_dummy_init(NetDriverState *nd) { nd->send_packet = dummy_send_packet; nd->add_read_packet = dummy_add_read_packet; pstrcpy(nd->ifname, sizeof(nd->ifname), "dummy"); return 0; } #if defined(CONFIG_SLIRP) /* slirp network adapter */ static void *slirp_fd_opaque; static IOCanRWHandler *slirp_fd_can_read; static IOReadHandler *slirp_fd_read; static int slirp_inited; int slirp_can_output(void) { return slirp_fd_can_read(slirp_fd_opaque); } void slirp_output(const uint8_t *pkt, int pkt_len) { #if 0 printf("output:\n"); hex_dump(stdout, pkt, pkt_len); #endif slirp_fd_read(slirp_fd_opaque, pkt, pkt_len); } static void slirp_send_packet(NetDriverState *nd, const uint8_t *buf, int size) { #if 0 printf("input:\n"); hex_dump(stdout, buf, size); #endif slirp_input(buf, size); } static void slirp_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read, IOReadHandler *fd_read, void *opaque) { slirp_fd_opaque = opaque; slirp_fd_can_read = fd_can_read; slirp_fd_read = fd_read; } static int net_slirp_init(NetDriverState *nd) { if (!slirp_inited) { slirp_inited = 1; slirp_init(); } nd->send_packet = slirp_send_packet; nd->add_read_packet = slirp_add_read_packet; pstrcpy(nd->ifname, sizeof(nd->ifname), "slirp"); return 0; } #endif /* CONFIG_SLIRP */ #if !defined(_WIN32) static int tun_open(char *ifname, int ifname_size) { struct ifreq ifr; int fd, ret; fd = open("/dev/net/tun", O_RDWR); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n"); return -1; } memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d"); ret = ioctl(fd, TUNSETIFF, (void *) &ifr); if (ret != 0) { fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n"); close(fd); return -1; } printf("Connected to host network interface: %s\n", ifr.ifr_name); pstrcpy(ifname, ifname_size, ifr.ifr_name); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } static void tun_send_packet(NetDriverState *nd, const uint8_t *buf, int size) { write(nd->fd, buf, size); } static void tun_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read, IOReadHandler *fd_read, void *opaque) { qemu_add_fd_read_handler(nd->fd, fd_can_read, fd_read, opaque); } static int net_tun_init(NetDriverState *nd) { int pid, status; char *args[3]; char **parg; nd->fd = tun_open(nd->ifname, sizeof(nd->ifname)); if (nd->fd < 0) return -1; /* try to launch network init script */ pid = fork(); if (pid >= 0) { if (pid == 0) { parg = args; *parg++ = network_script; *parg++ = nd->ifname; *parg++ = NULL; execv(network_script, args); exit(1); } while (waitpid(pid, &status, 0) != pid); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { fprintf(stderr, "%s: could not launch network script\n", network_script); } } nd->send_packet = tun_send_packet; nd->add_read_packet = tun_add_read_packet; return 0; } static int net_fd_init(NetDriverState *nd, int fd) { nd->fd = fd; nd->send_packet = tun_send_packet; nd->add_read_packet = tun_add_read_packet; pstrcpy(nd->ifname, sizeof(nd->ifname), "tunfd"); return 0; } #endif /* !_WIN32 */ /***********************************************************/ /* dumb display */ #ifdef _WIN32 static void term_exit(void) { } static void term_init(void) { } #else /* init terminal so that we can grab keys */ static struct termios oldtty; static void term_exit(void) { tcsetattr (0, TCSANOW, &oldtty); } static void term_init(void) { struct termios tty; tcgetattr (0, &tty); oldtty = tty; tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP |INLCR|IGNCR|ICRNL|IXON); tty.c_oflag |= OPOST; tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN); /* if graphical mode, we allow Ctrl-C handling */ if (nographic) tty.c_lflag &= ~ISIG; tty.c_cflag &= ~(CSIZE|PARENB); tty.c_cflag |= CS8; tty.c_cc[VMIN] = 1; tty.c_cc[VTIME] = 0; tcsetattr (0, TCSANOW, &tty); atexit(term_exit); fcntl(0, F_SETFL, O_NONBLOCK); } #endif static void dumb_update(DisplayState *ds, int x, int y, int w, int h) { } static void dumb_resize(DisplayState *ds, int w, int h) { } static void dumb_refresh(DisplayState *ds) { vga_update_display(); } void dumb_display_init(DisplayState *ds) { ds->data = NULL; ds->linesize = 0; ds->depth = 0; ds->dpy_update = dumb_update; ds->dpy_resize = dumb_resize; ds->dpy_refresh = dumb_refresh; } #if !defined(CONFIG_SOFTMMU) /***********************************************************/ /* cpu signal handler */ static void host_segv_handler(int host_signum, siginfo_t *info, void *puc) { if (cpu_signal_handler(host_signum, info, puc)) return; term_exit(); abort(); } #endif /***********************************************************/ /* I/O handling */ #define MAX_IO_HANDLERS 64 typedef struct IOHandlerRecord { int fd; IOCanRWHandler *fd_can_read; IOReadHandler *fd_read; void *opaque; /* temporary data */ struct pollfd *ufd; int max_size; struct IOHandlerRecord *next; } IOHandlerRecord; static IOHandlerRecord *first_io_handler; int qemu_add_fd_read_handler(int fd, IOCanRWHandler *fd_can_read, IOReadHandler *fd_read, void *opaque) { IOHandlerRecord *ioh; ioh = qemu_mallocz(sizeof(IOHandlerRecord)); if (!ioh) return -1; ioh->fd = fd; ioh->fd_can_read = fd_can_read; ioh->fd_read = fd_read; ioh->opaque = opaque; ioh->next = first_io_handler; first_io_handler = ioh; return 0; } void qemu_del_fd_read_handler(int fd) { IOHandlerRecord **pioh, *ioh; pioh = &first_io_handler; for(;;) { ioh = *pioh; if (ioh == NULL) break; if (ioh->fd == fd) { *pioh = ioh->next; break; } pioh = &ioh->next; } } /***********************************************************/ /* savevm/loadvm support */ void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size) { fwrite(buf, 1, size, f); } void qemu_put_byte(QEMUFile *f, int v) { fputc(v, f); } void qemu_put_be16(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be32(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 24); qemu_put_byte(f, v >> 16); qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be64(QEMUFile *f, uint64_t v) { qemu_put_be32(f, v >> 32); qemu_put_be32(f, v); } int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size) { return fread(buf, 1, size, f); } int qemu_get_byte(QEMUFile *f) { int v; v = fgetc(f); if (v == EOF) return 0; else return v; } unsigned int qemu_get_be16(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } unsigned int qemu_get_be32(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 24; v |= qemu_get_byte(f) << 16; v |= qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } uint64_t qemu_get_be64(QEMUFile *f) { uint64_t v; v = (uint64_t)qemu_get_be32(f) << 32; v |= qemu_get_be32(f); return v; } int64_t qemu_ftell(QEMUFile *f) { return ftell(f); } int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence) { if (fseek(f, pos, whence) < 0) return -1; return ftell(f); } typedef struct SaveStateEntry { char idstr[256]; int instance_id; int version_id; SaveStateHandler *save_state; LoadStateHandler *load_state; void *opaque; struct SaveStateEntry *next; } SaveStateEntry; static SaveStateEntry *first_se; int register_savevm(const char *idstr, int instance_id, int version_id, SaveStateHandler *save_state, LoadStateHandler *load_state, void *opaque) { SaveStateEntry *se, **pse; se = qemu_malloc(sizeof(SaveStateEntry)); if (!se) return -1; pstrcpy(se->idstr, sizeof(se->idstr), idstr); se->instance_id = instance_id; se->version_id = version_id; se->save_state = save_state; se->load_state = load_state; se->opaque = opaque; se->next = NULL; /* add at the end of list */ pse = &first_se; while (*pse != NULL) pse = &(*pse)->next; *pse = se; return 0; } #define QEMU_VM_FILE_MAGIC 0x5145564d #define QEMU_VM_FILE_VERSION 0x00000001 int qemu_savevm(const char *filename) { SaveStateEntry *se; QEMUFile *f; int len, len_pos, cur_pos, saved_vm_running, ret; saved_vm_running = vm_running; vm_stop(0); f = fopen(filename, "wb"); if (!f) { ret = -1; goto the_end; } qemu_put_be32(f, QEMU_VM_FILE_MAGIC); qemu_put_be32(f, QEMU_VM_FILE_VERSION); for(se = first_se; se != NULL; se = se->next) { /* ID string */ len = strlen(se->idstr); qemu_put_byte(f, len); qemu_put_buffer(f, se->idstr, len); qemu_put_be32(f, se->instance_id); qemu_put_be32(f, se->version_id); /* record size: filled later */ len_pos = ftell(f); qemu_put_be32(f, 0); se->save_state(f, se->opaque); /* fill record size */ cur_pos = ftell(f); len = ftell(f) - len_pos - 4; fseek(f, len_pos, SEEK_SET); qemu_put_be32(f, len); fseek(f, cur_pos, SEEK_SET); } fclose(f); ret = 0; the_end: if (saved_vm_running) vm_start(); return ret; } static SaveStateEntry *find_se(const char *idstr, int instance_id) { SaveStateEntry *se; for(se = first_se; se != NULL; se = se->next) { if (!strcmp(se->idstr, idstr) && instance_id == se->instance_id) return se; } return NULL; } int qemu_loadvm(const char *filename) { SaveStateEntry *se; QEMUFile *f; int len, cur_pos, ret, instance_id, record_len, version_id; int saved_vm_running; unsigned int v; char idstr[256]; saved_vm_running = vm_running; vm_stop(0); f = fopen(filename, "rb"); if (!f) { ret = -1; goto the_end; } v = qemu_get_be32(f); if (v != QEMU_VM_FILE_MAGIC) goto fail; v = qemu_get_be32(f); if (v != QEMU_VM_FILE_VERSION) { fail: fclose(f); ret = -1; goto the_end; } for(;;) { #if defined (DO_TB_FLUSH) tb_flush(global_env); #endif len = qemu_get_byte(f); if (feof(f)) break; qemu_get_buffer(f, idstr, len); idstr[len] = '\0'; instance_id = qemu_get_be32(f); version_id = qemu_get_be32(f); record_len = qemu_get_be32(f); #if 0 printf("idstr=%s instance=0x%x version=%d len=%d\n", idstr, instance_id, version_id, record_len); #endif cur_pos = ftell(f); se = find_se(idstr, instance_id); if (!se) { fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", instance_id, idstr); } else { ret = se->load_state(f, se->opaque, version_id); if (ret < 0) { fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", instance_id, idstr); } } /* always seek to exact end of record */ qemu_fseek(f, cur_pos + record_len, SEEK_SET); } fclose(f); ret = 0; the_end: if (saved_vm_running) vm_start(); return ret; } /***********************************************************/ /* cpu save/restore */ #if defined(TARGET_I386) static void cpu_put_seg(QEMUFile *f, SegmentCache *dt) { qemu_put_be32(f, (uint32_t)dt->base); qemu_put_be32(f, dt->limit); qemu_put_be32(f, dt->flags); } static void cpu_get_seg(QEMUFile *f, SegmentCache *dt) { dt->base = (uint8_t *)qemu_get_be32(f); dt->limit = qemu_get_be32(f); dt->flags = qemu_get_be32(f); } void cpu_save(QEMUFile *f, void *opaque) { CPUState *env = opaque; uint16_t fptag, fpus, fpuc; uint32_t hflags; int i; for(i = 0; i < 8; i++) qemu_put_be32s(f, &env->regs[i]); qemu_put_be32s(f, &env->eip); qemu_put_be32s(f, &env->eflags); qemu_put_be32s(f, &env->eflags); hflags = env->hflags; /* XXX: suppress most of the redundant hflags */ qemu_put_be32s(f, &hflags); /* FPU */ fpuc = env->fpuc; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; fptag = 0; for (i=7; i>=0; i--) { fptag <<= 2; if (env->fptags[i]) { fptag |= 3; } } qemu_put_be16s(f, &fpuc); qemu_put_be16s(f, &fpus); qemu_put_be16s(f, &fptag); for(i = 0; i < 8; i++) { uint64_t mant; uint16_t exp; cpu_get_fp80(&mant, &exp, env->fpregs[i]); qemu_put_be64(f, mant); qemu_put_be16(f, exp); } for(i = 0; i < 6; i++) cpu_put_seg(f, &env->segs[i]); cpu_put_seg(f, &env->ldt); cpu_put_seg(f, &env->tr); cpu_put_seg(f, &env->gdt); cpu_put_seg(f, &env->idt); qemu_put_be32s(f, &env->sysenter_cs); qemu_put_be32s(f, &env->sysenter_esp); qemu_put_be32s(f, &env->sysenter_eip); qemu_put_be32s(f, &env->cr[0]); qemu_put_be32s(f, &env->cr[2]); qemu_put_be32s(f, &env->cr[3]); qemu_put_be32s(f, &env->cr[4]); for(i = 0; i < 8; i++) qemu_put_be32s(f, &env->dr[i]); /* MMU */ qemu_put_be32s(f, &env->a20_mask); } int cpu_load(QEMUFile *f, void *opaque, int version_id) { CPUState *env = opaque; int i; uint32_t hflags; uint16_t fpus, fpuc, fptag; if (version_id != 1) return -EINVAL; for(i = 0; i < 8; i++) qemu_get_be32s(f, &env->regs[i]); qemu_get_be32s(f, &env->eip); qemu_get_be32s(f, &env->eflags); qemu_get_be32s(f, &env->eflags); qemu_get_be32s(f, &hflags); qemu_get_be16s(f, &fpuc); qemu_get_be16s(f, &fpus); qemu_get_be16s(f, &fptag); for(i = 0; i < 8; i++) { uint64_t mant; uint16_t exp; mant = qemu_get_be64(f); exp = qemu_get_be16(f); env->fpregs[i] = cpu_set_fp80(mant, exp); } env->fpuc = fpuc; env->fpstt = (fpus >> 11) & 7; env->fpus = fpus & ~0x3800; for(i = 0; i < 8; i++) { env->fptags[i] = ((fptag & 3) == 3); fptag >>= 2; } for(i = 0; i < 6; i++) cpu_get_seg(f, &env->segs[i]); cpu_get_seg(f, &env->ldt); cpu_get_seg(f, &env->tr); cpu_get_seg(f, &env->gdt); cpu_get_seg(f, &env->idt); qemu_get_be32s(f, &env->sysenter_cs); qemu_get_be32s(f, &env->sysenter_esp); qemu_get_be32s(f, &env->sysenter_eip); qemu_get_be32s(f, &env->cr[0]); qemu_get_be32s(f, &env->cr[2]); qemu_get_be32s(f, &env->cr[3]); qemu_get_be32s(f, &env->cr[4]); for(i = 0; i < 8; i++) qemu_get_be32s(f, &env->dr[i]); /* MMU */ qemu_get_be32s(f, &env->a20_mask); /* XXX: compute hflags from scratch, except for CPL and IIF */ env->hflags = hflags; tlb_flush(env, 1); return 0; } #elif defined(TARGET_PPC) void cpu_save(QEMUFile *f, void *opaque) { } int cpu_load(QEMUFile *f, void *opaque, int version_id) { return 0; } #else #warning No CPU save/restore functions #endif /***********************************************************/ /* ram save/restore */ /* we just avoid storing empty pages */ static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len) { int i, v; v = buf[0]; for(i = 1; i < len; i++) { if (buf[i] != v) goto normal_save; } qemu_put_byte(f, 1); qemu_put_byte(f, v); return; normal_save: qemu_put_byte(f, 0); qemu_put_buffer(f, buf, len); } static int ram_get_page(QEMUFile *f, uint8_t *buf, int len) { int v; v = qemu_get_byte(f); switch(v) { case 0: if (qemu_get_buffer(f, buf, len) != len) return -EIO; break; case 1: v = qemu_get_byte(f); memset(buf, v, len); break; default: return -EINVAL; } return 0; } static void ram_save(QEMUFile *f, void *opaque) { int i; qemu_put_be32(f, phys_ram_size); for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) { ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE); } } static int ram_load(QEMUFile *f, void *opaque, int version_id) { int i, ret; if (version_id != 1) return -EINVAL; if (qemu_get_be32(f) != phys_ram_size) return -EINVAL; for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) { ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE); if (ret) return ret; } return 0; } /***********************************************************/ /* main execution loop */ void gui_update(void *opaque) { display_state.dpy_refresh(&display_state); qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock)); } /* XXX: support several handlers */ VMStopHandler *vm_stop_cb; VMStopHandler *vm_stop_opaque; int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque) { vm_stop_cb = cb; vm_stop_opaque = opaque; return 0; } void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque) { vm_stop_cb = NULL; } void vm_start(void) { if (!vm_running) { cpu_enable_ticks(); vm_running = 1; } } void vm_stop(int reason) { if (vm_running) { cpu_disable_ticks(); vm_running = 0; if (reason != 0) { if (vm_stop_cb) { vm_stop_cb(vm_stop_opaque, reason); } } } } int main_loop(void) { #ifndef _WIN32 struct pollfd ufds[MAX_IO_HANDLERS + 1], *pf; IOHandlerRecord *ioh, *ioh_next; uint8_t buf[4096]; int n, max_size; #endif int ret, timeout; CPUState *env = global_env; for(;;) { if (vm_running) { ret = cpu_exec(env); if (reset_requested) { ret = EXCP_INTERRUPT; break; } if (ret == EXCP_DEBUG) { vm_stop(EXCP_DEBUG); } /* if hlt instruction, we wait until the next IRQ */ /* XXX: use timeout computed from timers */ if (ret == EXCP_HLT) timeout = 10; else timeout = 0; } else { timeout = 10; } #ifdef _WIN32 if (timeout > 0) Sleep(timeout); #else /* poll any events */ /* XXX: separate device handlers from system ones */ pf = ufds; for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (!ioh->fd_can_read) { max_size = 0; pf->fd = ioh->fd; pf->events = POLLIN; ioh->ufd = pf; pf++; } else { max_size = ioh->fd_can_read(ioh->opaque); if (max_size > 0) { if (max_size > sizeof(buf)) max_size = sizeof(buf); pf->fd = ioh->fd; pf->events = POLLIN; ioh->ufd = pf; pf++; } else { ioh->ufd = NULL; } } ioh->max_size = max_size; } ret = poll(ufds, pf - ufds, timeout); if (ret > 0) { /* XXX: better handling of removal */ for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) { ioh_next = ioh->next; pf = ioh->ufd; if (pf) { if (pf->revents & POLLIN) { if (ioh->max_size == 0) { /* just a read event */ ioh->fd_read(ioh->opaque, NULL, 0); } else { n = read(ioh->fd, buf, ioh->max_size); if (n >= 0) { ioh->fd_read(ioh->opaque, buf, n); } else if (errno != -EAGAIN) { ioh->fd_read(ioh->opaque, NULL, -errno); } } } } } } #if defined(CONFIG_SLIRP) /* XXX: merge with poll() */ if (slirp_inited) { fd_set rfds, wfds, xfds; int nfds; struct timeval tv; nfds = -1; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); slirp_select_fill(&nfds, &rfds, &wfds, &xfds); tv.tv_sec = 0; tv.tv_usec = 0; ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv); if (ret >= 0) { slirp_select_poll(&rfds, &wfds, &xfds); } } #endif #endif if (vm_running) { qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], qemu_get_clock(vm_clock)); if (audio_enabled) { /* XXX: add explicit timer */ SB16_run(); } /* run dma transfers, if any */ DMA_run(); } /* real time timers */ qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], qemu_get_clock(rt_clock)); } cpu_disable_ticks(); return ret; } void help(void) { printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2004 Fabrice Bellard\n" "usage: %s [options] [disk_image]\n" "\n" "'disk_image' is a raw hard image image for IDE hard disk 0\n" "\n" "Standard options:\n" "-fda/-fdb file use 'file' as floppy disk 0/1 image\n" "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n" "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n" "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n" "-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n" "-snapshot write to temporary files instead of disk image files\n" "-m megs set virtual RAM size to megs MB\n" "-nographic disable graphical output and redirect serial I/Os to console\n" "-enable-audio enable audio support\n" "\n" "Network options:\n" "-nics n simulate 'n' network cards [default=1]\n" "-macaddr addr set the mac address of the first interface\n" "-n script set tap/tun network init script [default=%s]\n" "-tun-fd fd use this fd as already opened tap/tun interface\n" #ifdef CONFIG_SLIRP "-user-net use user mode network stack [default if no tap/tun script]\n" #endif "-dummy-net use dummy network stack\n" "\n" "Linux boot specific:\n" "-kernel bzImage use 'bzImage' as kernel image\n" "-append cmdline use 'cmdline' as kernel command line\n" "-initrd file use 'file' as initial ram disk\n" "\n" "Debug/Expert options:\n" "-s wait gdb connection to port %d\n" "-p port change gdb connection port\n" "-d item1,... output log to %s (use -d ? for a list of log items)\n" "-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n" "-L path set the directory for the BIOS and VGA BIOS\n" #ifdef USE_CODE_COPY "-no-code-copy disable code copy acceleration\n" #endif "\n" "During emulation, use C-a h to get terminal commands:\n", #ifdef CONFIG_SOFTMMU "qemu", #else "qemu-fast", #endif DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT, "/tmp/qemu.log"); term_print_help(); #ifndef CONFIG_SOFTMMU printf("\n" "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n" "work. Please use the 'qemu' executable to have a more accurate (but slower)\n" "PC emulation.\n"); #endif exit(1); } struct option long_options[] = { { "initrd", 1, NULL, 0, }, { "hda", 1, NULL, 0, }, { "hdb", 1, NULL, 0, }, { "snapshot", 0, NULL, 0, }, { "hdachs", 1, NULL, 0, }, { "nographic", 0, NULL, 0, }, { "kernel", 1, NULL, 0, }, { "append", 1, NULL, 0, }, { "tun-fd", 1, NULL, 0, }, { "hdc", 1, NULL, 0, }, { "hdd", 1, NULL, 0, }, { "cdrom", 1, NULL, 0, }, { "boot", 1, NULL, 0, }, { "fda", 1, NULL, 0, }, { "fdb", 1, NULL, 0, }, { "no-code-copy", 0, NULL, 0 }, { "nics", 1, NULL, 0 }, { "macaddr", 1, NULL, 0 }, { "user-net", 0, NULL, 0 }, { "dummy-net", 0, NULL, 0 }, { "enable-audio", 0, NULL, 0 }, { NULL, 0, NULL, 0 }, }; #if defined (TARGET_I386) && defined(USE_CODE_COPY) /* this stack is only used during signal handling */ #define SIGNAL_STACK_SIZE 32768 static uint8_t *signal_stack; #endif #define NET_IF_TUN 0 #define NET_IF_USER 1 #define NET_IF_DUMMY 2 int main(int argc, char **argv) { #ifdef CONFIG_GDBSTUB int use_gdbstub, gdbstub_port; #endif int c, i, long_index, has_cdrom; int snapshot, linux_boot; CPUState *env; const char *initrd_filename; const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD]; const char *kernel_filename, *kernel_cmdline; DisplayState *ds = &display_state; int cyls, heads, secs; int start_emulation = 1; uint8_t macaddr[6]; int net_if_type, nb_tun_fds, tun_fds[MAX_NICS]; #if !defined(CONFIG_SOFTMMU) /* we never want that malloc() uses mmap() */ mallopt(M_MMAP_THRESHOLD, 4096 * 1024); #endif initrd_filename = NULL; for(i = 0; i < MAX_FD; i++) fd_filename[i] = NULL; for(i = 0; i < MAX_DISKS; i++) hd_filename[i] = NULL; ram_size = 32 * 1024 * 1024; vga_ram_size = VGA_RAM_SIZE; pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT); #ifdef CONFIG_GDBSTUB use_gdbstub = 0; gdbstub_port = DEFAULT_GDBSTUB_PORT; #endif snapshot = 0; nographic = 0; kernel_filename = NULL; kernel_cmdline = ""; has_cdrom = 1; cyls = heads = secs = 0; nb_tun_fds = 0; net_if_type = -1; nb_nics = 1; /* default mac address of the first network interface */ macaddr[0] = 0x52; macaddr[1] = 0x54; macaddr[2] = 0x00; macaddr[3] = 0x12; macaddr[4] = 0x34; macaddr[5] = 0x56; for(;;) { c = getopt_long_only(argc, argv, "hm:d:n:sp:L:S", long_options, &long_index); if (c == -1) break; switch(c) { case 0: switch(long_index) { case 0: initrd_filename = optarg; break; case 1: hd_filename[0] = optarg; break; case 2: hd_filename[1] = optarg; break; case 3: snapshot = 1; break; case 4: { const char *p; p = optarg; cyls = strtol(p, (char **)&p, 0); if (*p != ',') goto chs_fail; p++; heads = strtol(p, (char **)&p, 0); if (*p != ',') goto chs_fail; p++; secs = strtol(p, (char **)&p, 0); if (*p != '\0') { chs_fail: cyls = 0; } } break; case 5: nographic = 1; break; case 6: kernel_filename = optarg; break; case 7: kernel_cmdline = optarg; break; case 8: { const char *p; int fd; if (nb_tun_fds < MAX_NICS) { fd = strtol(optarg, (char **)&p, 0); if (*p != '\0') { fprintf(stderr, "qemu: invalid fd for network interface %d\n", nb_tun_fds); exit(1); } tun_fds[nb_tun_fds++] = fd; } } break; case 9: hd_filename[2] = optarg; has_cdrom = 0; break; case 10: hd_filename[3] = optarg; break; case 11: hd_filename[2] = optarg; has_cdrom = 1; break; case 12: boot_device = optarg[0]; if (boot_device != 'a' && boot_device != 'b' && boot_device != 'c' && boot_device != 'd') { fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device); exit(1); } break; case 13: fd_filename[0] = optarg; break; case 14: fd_filename[1] = optarg; break; case 15: code_copy_enabled = 0; break; case 16: nb_nics = atoi(optarg); if (nb_nics < 1 || nb_nics > MAX_NICS) { fprintf(stderr, "qemu: invalid number of network interfaces\n"); exit(1); } break; case 17: { const char *p; int i; p = optarg; for(i = 0; i < 6; i++) { macaddr[i] = strtol(p, (char **)&p, 16); if (i == 5) { if (*p != '\0') goto macaddr_error; } else { if (*p != ':') { macaddr_error: fprintf(stderr, "qemu: invalid syntax for ethernet address\n"); exit(1); } p++; } } } break; case 18: net_if_type = NET_IF_USER; break; case 19: net_if_type = NET_IF_DUMMY; break; case 20: audio_enabled = 1; break; } break; case 'h': help(); break; case 'm': ram_size = atoi(optarg) * 1024 * 1024; if (ram_size <= 0) help(); if (ram_size > PHYS_RAM_MAX_SIZE) { fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n", PHYS_RAM_MAX_SIZE / (1024 * 1024)); exit(1); } break; case 'd': { int mask; CPULogItem *item; mask = cpu_str_to_log_mask(optarg); if (!mask) { printf("Log items (comma separated):\n"); for(item = cpu_log_items; item->mask != 0; item++) { printf("%-10s %s\n", item->name, item->help); } exit(1); } cpu_set_log(mask); } break; case 'n': pstrcpy(network_script, sizeof(network_script), optarg); break; #ifdef CONFIG_GDBSTUB case 's': use_gdbstub = 1; break; case 'p': gdbstub_port = atoi(optarg); break; #endif case 'L': bios_dir = optarg; break; case 'S': start_emulation = 0; break; } } if (optind < argc) { hd_filename[0] = argv[optind++]; } linux_boot = (kernel_filename != NULL); if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' && fd_filename[0] == '\0') help(); /* boot to cd by default if no hard disk */ if (hd_filename[0] == '\0' && boot_device == 'c') { if (fd_filename[0] != '\0') boot_device = 'a'; else boot_device = 'd'; } #if !defined(CONFIG_SOFTMMU) /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ { static uint8_t stdout_buf[4096]; setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf)); } #else setvbuf(stdout, NULL, _IOLBF, 0); #endif /* init host network redirectors */ if (net_if_type == -1) { net_if_type = NET_IF_TUN; #if defined(CONFIG_SLIRP) if (access(network_script, R_OK) < 0) { net_if_type = NET_IF_USER; } #endif } for(i = 0; i < nb_nics; i++) { NetDriverState *nd = &nd_table[i]; nd->index = i; /* init virtual mac address */ nd->macaddr[0] = macaddr[0]; nd->macaddr[1] = macaddr[1]; nd->macaddr[2] = macaddr[2]; nd->macaddr[3] = macaddr[3]; nd->macaddr[4] = macaddr[4]; nd->macaddr[5] = macaddr[5] + i; switch(net_if_type) { #if defined(CONFIG_SLIRP) case NET_IF_USER: net_slirp_init(nd); break; #endif #if !defined(_WIN32) case NET_IF_TUN: if (i < nb_tun_fds) { net_fd_init(nd, tun_fds[i]); } else { if (net_tun_init(nd) < 0) net_dummy_init(nd); } break; #endif case NET_IF_DUMMY: default: net_dummy_init(nd); break; } } /* init the memory */ phys_ram_size = ram_size + vga_ram_size; #ifdef CONFIG_SOFTMMU phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size); if (!phys_ram_base) { fprintf(stderr, "Could not allocate physical memory\n"); exit(1); } #else /* as we must map the same page at several addresses, we must use a fd */ { const char *tmpdir; tmpdir = getenv("QEMU_TMPDIR"); if (!tmpdir) tmpdir = "/tmp"; snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir); if (mkstemp(phys_ram_file) < 0) { fprintf(stderr, "Could not create temporary memory file '%s'\n", phys_ram_file); exit(1); } phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600); if (phys_ram_fd < 0) { fprintf(stderr, "Could not open temporary memory file '%s'\n", phys_ram_file); exit(1); } ftruncate(phys_ram_fd, phys_ram_size); unlink(phys_ram_file); phys_ram_base = mmap(get_mmap_addr(phys_ram_size), phys_ram_size, PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, phys_ram_fd, 0); if (phys_ram_base == MAP_FAILED) { fprintf(stderr, "Could not map physical memory\n"); exit(1); } } #endif /* we always create the cdrom drive, even if no disk is there */ if (has_cdrom) { bs_table[2] = bdrv_new("cdrom"); bdrv_set_type_hint(bs_table[2], BDRV_TYPE_CDROM); } /* open the virtual block devices */ for(i = 0; i < MAX_DISKS; i++) { if (hd_filename[i]) { if (!bs_table[i]) { char buf[64]; snprintf(buf, sizeof(buf), "hd%c", i + 'a'); bs_table[i] = bdrv_new(buf); } if (bdrv_open(bs_table[i], hd_filename[i], snapshot) < 0) { fprintf(stderr, "qemu: could not open hard disk image '%s\n", hd_filename[i]); exit(1); } if (i == 0 && cyls != 0) bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs); } } /* we always create at least one floppy disk */ fd_table[0] = bdrv_new("fda"); bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY); for(i = 0; i < MAX_FD; i++) { if (fd_filename[i]) { if (!fd_table[i]) { char buf[64]; snprintf(buf, sizeof(buf), "fd%c", i + 'a'); fd_table[i] = bdrv_new(buf); bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY); } if (fd_filename[i] != '\0') { if (bdrv_open(fd_table[i], fd_filename[i], snapshot) < 0) { fprintf(stderr, "qemu: could not open floppy disk image '%s'\n", fd_filename[i]); exit(1); } } } } /* init CPU state */ env = cpu_init(); global_env = env; cpu_single_env = env; register_savevm("timer", 0, 1, timer_save, timer_load, env); register_savevm("cpu", 0, 1, cpu_save, cpu_load, env); register_savevm("ram", 0, 1, ram_save, ram_load, NULL); init_ioports(); cpu_calibrate_ticks(); /* terminal init */ if (nographic) { dumb_display_init(ds); } else { #ifdef CONFIG_SDL sdl_display_init(ds); #else dumb_display_init(ds); #endif } /* setup cpu signal handlers for MMU / self modifying code handling */ #if !defined(CONFIG_SOFTMMU) #if defined (TARGET_I386) && defined(USE_CODE_COPY) { stack_t stk; signal_stack = memalign(16, SIGNAL_STACK_SIZE); stk.ss_sp = signal_stack; stk.ss_size = SIGNAL_STACK_SIZE; stk.ss_flags = 0; if (sigaltstack(&stk, NULL) < 0) { perror("sigaltstack"); exit(1); } } #endif { struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = SA_SIGINFO; #if defined (TARGET_I386) && defined(USE_CODE_COPY) act.sa_flags |= SA_ONSTACK; #endif act.sa_sigaction = host_segv_handler; sigaction(SIGSEGV, &act, NULL); sigaction(SIGBUS, &act, NULL); #if defined (TARGET_I386) && defined(USE_CODE_COPY) sigaction(SIGFPE, &act, NULL); #endif } #endif #ifndef _WIN32 { struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_IGN; sigaction(SIGPIPE, &act, NULL); } #endif init_timers(); #if defined(TARGET_I386) pc_init(ram_size, vga_ram_size, boot_device, ds, fd_filename, snapshot, kernel_filename, kernel_cmdline, initrd_filename); #elif defined(TARGET_PPC) ppc_init(ram_size, vga_ram_size, boot_device, ds, fd_filename, snapshot, kernel_filename, kernel_cmdline, initrd_filename); #endif /* launched after the device init so that it can display or not a banner */ monitor_init(); gui_timer = qemu_new_timer(rt_clock, gui_update, NULL); qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock)); #ifdef CONFIG_GDBSTUB if (use_gdbstub) { if (gdbserver_start(gdbstub_port) < 0) { fprintf(stderr, "Could not open gdbserver socket on port %d\n", gdbstub_port); exit(1); } else { printf("Waiting gdb connection on port %d\n", gdbstub_port); } } else #endif if (start_emulation) { vm_start(); } term_init(); main_loop(); quit_timers(); return 0; }