/* * inet and unix socket functions for qemu * * (c) 2008 Gerd Hoffmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; under version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #ifdef CONFIG_AF_VSOCK #include #endif /* CONFIG_AF_VSOCK */ #include "monitor/monitor.h" #include "qapi/clone-visitor.h" #include "qapi/error.h" #include "qapi/qapi-visit-sockets.h" #include "qemu/sockets.h" #include "qemu/main-loop.h" #include "qapi/qobject-input-visitor.h" #include "qapi/qobject-output-visitor.h" #include "qemu/cutils.h" #include "trace.h" #ifndef AI_ADDRCONFIG # define AI_ADDRCONFIG 0 #endif #ifndef AI_V4MAPPED # define AI_V4MAPPED 0 #endif #ifndef AI_NUMERICSERV # define AI_NUMERICSERV 0 #endif static int inet_getport(struct addrinfo *e) { struct sockaddr_in *i4; struct sockaddr_in6 *i6; switch (e->ai_family) { case PF_INET6: i6 = (void*)e->ai_addr; return ntohs(i6->sin6_port); case PF_INET: i4 = (void*)e->ai_addr; return ntohs(i4->sin_port); default: return 0; } } static void inet_setport(struct addrinfo *e, int port) { struct sockaddr_in *i4; struct sockaddr_in6 *i6; switch (e->ai_family) { case PF_INET6: i6 = (void*)e->ai_addr; i6->sin6_port = htons(port); break; case PF_INET: i4 = (void*)e->ai_addr; i4->sin_port = htons(port); break; } } NetworkAddressFamily inet_netfamily(int family) { switch (family) { case PF_INET6: return NETWORK_ADDRESS_FAMILY_IPV6; case PF_INET: return NETWORK_ADDRESS_FAMILY_IPV4; case PF_UNIX: return NETWORK_ADDRESS_FAMILY_UNIX; #ifdef CONFIG_AF_VSOCK case PF_VSOCK: return NETWORK_ADDRESS_FAMILY_VSOCK; #endif /* CONFIG_AF_VSOCK */ } return NETWORK_ADDRESS_FAMILY_UNKNOWN; } bool fd_is_socket(int fd) { int optval; socklen_t optlen = sizeof(optval); return !getsockopt(fd, SOL_SOCKET, SO_TYPE, &optval, &optlen); } /* * Matrix we're trying to apply * * ipv4 ipv6 family * - - PF_UNSPEC * - f PF_INET * - t PF_INET6 * f - PF_INET6 * f f * f t PF_INET6 * t - PF_INET * t f PF_INET * t t PF_INET6/PF_UNSPEC * * NB, this matrix is only about getting the necessary results * from getaddrinfo(). Some of the cases require further work * after reading results from getaddrinfo in order to fully * apply the logic the end user wants. * * In the first and last cases, we must set IPV6_V6ONLY=0 * when binding, to allow a single listener to potentially * accept both IPv4+6 addresses. */ int inet_ai_family_from_address(InetSocketAddress *addr, Error **errp) { if (addr->has_ipv6 && addr->has_ipv4 && !addr->ipv6 && !addr->ipv4) { error_setg(errp, "Cannot disable IPv4 and IPv6 at same time"); return PF_UNSPEC; } if ((addr->has_ipv6 && addr->ipv6) && (addr->has_ipv4 && addr->ipv4)) { /* * Some backends can only do a single listener. In that case * we want empty hostname to resolve to "::" and then use the * flag IPV6_V6ONLY==0 to get both protocols on 1 socket. This * doesn't work for addresses other than "", so they're just * inevitably broken until multiple listeners can be used, * and thus we honour getaddrinfo automatic protocol detection * Once all backends do multi-listener, remove the PF_INET6 * branch entirely. */ if (!addr->host || g_str_equal(addr->host, "")) { return PF_INET6; } else { return PF_UNSPEC; } } if ((addr->has_ipv6 && addr->ipv6) || (addr->has_ipv4 && !addr->ipv4)) { return PF_INET6; } if ((addr->has_ipv4 && addr->ipv4) || (addr->has_ipv6 && !addr->ipv6)) { return PF_INET; } return PF_UNSPEC; } static int create_fast_reuse_socket(struct addrinfo *e) { int slisten = qemu_socket(e->ai_family, e->ai_socktype, e->ai_protocol); if (slisten < 0) { return -1; } socket_set_fast_reuse(slisten); return slisten; } static int try_bind(int socket, InetSocketAddress *saddr, struct addrinfo *e) { #ifndef IPV6_V6ONLY return bind(socket, e->ai_addr, e->ai_addrlen); #else /* * Deals with first & last cases in matrix in comment * for inet_ai_family_from_address(). */ int v6only = ((!saddr->has_ipv4 && !saddr->has_ipv6) || (saddr->has_ipv4 && saddr->ipv4 && saddr->has_ipv6 && saddr->ipv6)) ? 0 : 1; int stat; rebind: if (e->ai_family == PF_INET6) { setsockopt(socket, IPPROTO_IPV6, IPV6_V6ONLY, &v6only, sizeof(v6only)); } stat = bind(socket, e->ai_addr, e->ai_addrlen); if (!stat) { return 0; } /* If we got EADDRINUSE from an IPv6 bind & v6only is unset, * it could be that the IPv4 port is already claimed, so retry * with v6only set */ if (e->ai_family == PF_INET6 && errno == EADDRINUSE && !v6only) { v6only = 1; goto rebind; } return stat; #endif } static int inet_listen_saddr(InetSocketAddress *saddr, int port_offset, int num, Error **errp) { ERRP_GUARD(); struct addrinfo ai, *res, *e; char port[33]; char uaddr[INET6_ADDRSTRLEN+1]; char uport[33]; int rc, port_min, port_max, p; int slisten = -1; int saved_errno = 0; bool socket_created = false; if (saddr->keep_alive) { error_setg(errp, "keep-alive option is not supported for passive " "sockets"); return -1; } memset(&ai,0, sizeof(ai)); ai.ai_flags = AI_PASSIVE; if (saddr->has_numeric && saddr->numeric) { ai.ai_flags |= AI_NUMERICHOST | AI_NUMERICSERV; } ai.ai_socktype = SOCK_STREAM; ai.ai_family = inet_ai_family_from_address(saddr, errp); if (*errp) { return -1; } if (saddr->host == NULL) { error_setg(errp, "host not specified"); return -1; } if (saddr->port != NULL) { pstrcpy(port, sizeof(port), saddr->port); } else { port[0] = '\0'; } /* lookup */ if (port_offset) { uint64_t baseport; if (strlen(port) == 0) { error_setg(errp, "port not specified"); return -1; } if (parse_uint_full(port, 10, &baseport) < 0) { error_setg(errp, "can't convert to a number: %s", port); return -1; } if (baseport > 65535 || baseport + port_offset > 65535) { error_setg(errp, "port %s out of range", port); return -1; } snprintf(port, sizeof(port), "%d", (int)baseport + port_offset); } rc = getaddrinfo(strlen(saddr->host) ? saddr->host : NULL, strlen(port) ? port : NULL, &ai, &res); if (rc != 0) { error_setg(errp, "address resolution failed for %s:%s: %s", saddr->host, port, gai_strerror(rc)); return -1; } /* create socket + bind/listen */ for (e = res; e != NULL; e = e->ai_next) { #ifdef HAVE_IPPROTO_MPTCP if (saddr->has_mptcp && saddr->mptcp) { e->ai_protocol = IPPROTO_MPTCP; } #endif getnameinfo((struct sockaddr*)e->ai_addr,e->ai_addrlen, uaddr,INET6_ADDRSTRLEN,uport,32, NI_NUMERICHOST | NI_NUMERICSERV); port_min = inet_getport(e); port_max = saddr->has_to ? saddr->to + port_offset : port_min; for (p = port_min; p <= port_max; p++) { inet_setport(e, p); slisten = create_fast_reuse_socket(e); if (slisten < 0) { /* First time we expect we might fail to create the socket * eg if 'e' has AF_INET6 but ipv6 kmod is not loaded. * Later iterations should always succeed if first iteration * worked though, so treat that as fatal. */ if (p == port_min) { continue; } else { error_setg_errno(errp, errno, "Failed to recreate failed listening socket"); goto listen_failed; } } socket_created = true; rc = try_bind(slisten, saddr, e); if (rc < 0) { if (errno != EADDRINUSE) { error_setg_errno(errp, errno, "Failed to bind socket"); goto listen_failed; } } else { if (!listen(slisten, num)) { goto listen_ok; } if (errno != EADDRINUSE) { error_setg_errno(errp, errno, "Failed to listen on socket"); goto listen_failed; } } /* Someone else managed to bind to the same port and beat us * to listen on it! Socket semantics does not allow us to * recover from this situation, so we need to recreate the * socket to allow bind attempts for subsequent ports: */ close(slisten); slisten = -1; } } error_setg_errno(errp, errno, socket_created ? "Failed to find an available port" : "Failed to create a socket"); listen_failed: saved_errno = errno; if (slisten >= 0) { close(slisten); } freeaddrinfo(res); errno = saved_errno; return -1; listen_ok: freeaddrinfo(res); return slisten; } #ifdef _WIN32 #define QEMU_SOCKET_RC_INPROGRESS(rc) \ ((rc) == -EINPROGRESS || (rc) == -EWOULDBLOCK || (rc) == -WSAEALREADY) #else #define QEMU_SOCKET_RC_INPROGRESS(rc) \ ((rc) == -EINPROGRESS) #endif static int inet_connect_addr(const InetSocketAddress *saddr, struct addrinfo *addr, Error **errp) { int sock, rc; sock = qemu_socket(addr->ai_family, addr->ai_socktype, addr->ai_protocol); if (sock < 0) { error_setg_errno(errp, errno, "Failed to create socket family %d", addr->ai_family); return -1; } /* connect to peer */ do { rc = 0; if (connect(sock, addr->ai_addr, addr->ai_addrlen) < 0) { rc = -errno; } } while (rc == -EINTR); if (rc < 0) { error_setg_errno(errp, errno, "Failed to connect to '%s:%s'", saddr->host, saddr->port); close(sock); return -1; } return sock; } static struct addrinfo *inet_parse_connect_saddr(InetSocketAddress *saddr, Error **errp) { ERRP_GUARD(); struct addrinfo ai, *res; int rc; static int useV4Mapped = 1; memset(&ai, 0, sizeof(ai)); ai.ai_flags = AI_CANONNAME | AI_ADDRCONFIG; if (qatomic_read(&useV4Mapped)) { ai.ai_flags |= AI_V4MAPPED; } ai.ai_socktype = SOCK_STREAM; ai.ai_family = inet_ai_family_from_address(saddr, errp); if (*errp) { return NULL; } if (saddr->host == NULL || saddr->port == NULL) { error_setg(errp, "host and/or port not specified"); return NULL; } /* lookup */ rc = getaddrinfo(saddr->host, saddr->port, &ai, &res); /* At least FreeBSD and OS-X 10.6 declare AI_V4MAPPED but * then don't implement it in their getaddrinfo(). Detect * this and retry without the flag since that's preferable * to a fatal error */ if (rc == EAI_BADFLAGS && (ai.ai_flags & AI_V4MAPPED)) { qatomic_set(&useV4Mapped, 0); ai.ai_flags &= ~AI_V4MAPPED; rc = getaddrinfo(saddr->host, saddr->port, &ai, &res); } if (rc != 0) { error_setg(errp, "address resolution failed for %s:%s: %s", saddr->host, saddr->port, gai_strerror(rc)); return NULL; } return res; } /** * Create a socket and connect it to an address. * * @saddr: Inet socket address specification * @errp: set on error * * Returns: -1 on error, file descriptor on success. */ int inet_connect_saddr(InetSocketAddress *saddr, Error **errp) { Error *local_err = NULL; struct addrinfo *res, *e; int sock = -1; res = inet_parse_connect_saddr(saddr, errp); if (!res) { return -1; } for (e = res; e != NULL; e = e->ai_next) { error_free(local_err); local_err = NULL; #ifdef HAVE_IPPROTO_MPTCP if (saddr->has_mptcp && saddr->mptcp) { e->ai_protocol = IPPROTO_MPTCP; } #endif sock = inet_connect_addr(saddr, e, &local_err); if (sock >= 0) { break; } } freeaddrinfo(res); if (sock < 0) { error_propagate(errp, local_err); return sock; } if (saddr->keep_alive) { int val = 1; int ret = setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, &val, sizeof(val)); if (ret < 0) { error_setg_errno(errp, errno, "Unable to set KEEPALIVE"); close(sock); return -1; } } return sock; } static int inet_dgram_saddr(InetSocketAddress *sraddr, InetSocketAddress *sladdr, Error **errp) { ERRP_GUARD(); struct addrinfo ai, *peer = NULL, *local = NULL; const char *addr; const char *port; int sock = -1, rc; /* lookup peer addr */ memset(&ai,0, sizeof(ai)); ai.ai_flags = AI_CANONNAME | AI_V4MAPPED | AI_ADDRCONFIG; ai.ai_socktype = SOCK_DGRAM; ai.ai_family = inet_ai_family_from_address(sraddr, errp); if (*errp) { goto err; } addr = sraddr->host; port = sraddr->port; if (addr == NULL || strlen(addr) == 0) { addr = "localhost"; } if (port == NULL || strlen(port) == 0) { error_setg(errp, "remote port not specified"); goto err; } if ((rc = getaddrinfo(addr, port, &ai, &peer)) != 0) { error_setg(errp, "address resolution failed for %s:%s: %s", addr, port, gai_strerror(rc)); goto err; } /* lookup local addr */ memset(&ai,0, sizeof(ai)); ai.ai_flags = AI_PASSIVE; ai.ai_family = peer->ai_family; ai.ai_socktype = SOCK_DGRAM; if (sladdr) { addr = sladdr->host; port = sladdr->port; if (addr == NULL || strlen(addr) == 0) { addr = NULL; } if (!port || strlen(port) == 0) { port = "0"; } } else { addr = NULL; port = "0"; } if ((rc = getaddrinfo(addr, port, &ai, &local)) != 0) { error_setg(errp, "address resolution failed for %s:%s: %s", addr, port, gai_strerror(rc)); goto err; } /* create socket */ sock = qemu_socket(peer->ai_family, peer->ai_socktype, peer->ai_protocol); if (sock < 0) { error_setg_errno(errp, errno, "Failed to create socket family %d", peer->ai_family); goto err; } socket_set_fast_reuse(sock); /* bind socket */ if (bind(sock, local->ai_addr, local->ai_addrlen) < 0) { error_setg_errno(errp, errno, "Failed to bind socket"); goto err; } /* connect to peer */ if (connect(sock,peer->ai_addr,peer->ai_addrlen) < 0) { error_setg_errno(errp, errno, "Failed to connect to '%s:%s'", addr, port); goto err; } freeaddrinfo(local); freeaddrinfo(peer); return sock; err: if (sock != -1) { close(sock); } if (local) { freeaddrinfo(local); } if (peer) { freeaddrinfo(peer); } return -1; } /* compatibility wrapper */ static int inet_parse_flag(const char *flagname, const char *optstr, bool *val, Error **errp) { char *end; size_t len; end = strstr(optstr, ","); if (end) { if (end[1] == ',') { /* Reject 'ipv6=on,,foo' */ error_setg(errp, "error parsing '%s' flag '%s'", flagname, optstr); return -1; } len = end - optstr; } else { len = strlen(optstr); } if (len == 0 || (len == 3 && strncmp(optstr, "=on", len) == 0)) { *val = true; } else if (len == 4 && strncmp(optstr, "=off", len) == 0) { *val = false; } else { error_setg(errp, "error parsing '%s' flag '%s'", flagname, optstr); return -1; } return 0; } int inet_parse(InetSocketAddress *addr, const char *str, Error **errp) { const char *optstr, *h; char host[65]; char port[33]; int to; int pos; char *begin; memset(addr, 0, sizeof(*addr)); /* parse address */ if (str[0] == ':') { /* no host given */ host[0] = '\0'; if (sscanf(str, ":%32[^,]%n", port, &pos) != 1) { error_setg(errp, "error parsing port in address '%s'", str); return -1; } } else if (str[0] == '[') { /* IPv6 addr */ if (sscanf(str, "[%64[^]]]:%32[^,]%n", host, port, &pos) != 2) { error_setg(errp, "error parsing IPv6 address '%s'", str); return -1; } } else { /* hostname or IPv4 addr */ if (sscanf(str, "%64[^:]:%32[^,]%n", host, port, &pos) != 2) { error_setg(errp, "error parsing address '%s'", str); return -1; } } addr->host = g_strdup(host); addr->port = g_strdup(port); /* parse options */ optstr = str + pos; h = strstr(optstr, ",to="); if (h) { h += 4; if (sscanf(h, "%d%n", &to, &pos) != 1 || (h[pos] != '\0' && h[pos] != ',')) { error_setg(errp, "error parsing to= argument"); return -1; } addr->has_to = true; addr->to = to; } begin = strstr(optstr, ",ipv4"); if (begin) { if (inet_parse_flag("ipv4", begin + 5, &addr->ipv4, errp) < 0) { return -1; } addr->has_ipv4 = true; } begin = strstr(optstr, ",ipv6"); if (begin) { if (inet_parse_flag("ipv6", begin + 5, &addr->ipv6, errp) < 0) { return -1; } addr->has_ipv6 = true; } begin = strstr(optstr, ",keep-alive"); if (begin) { if (inet_parse_flag("keep-alive", begin + strlen(",keep-alive"), &addr->keep_alive, errp) < 0) { return -1; } addr->has_keep_alive = true; } #ifdef HAVE_IPPROTO_MPTCP begin = strstr(optstr, ",mptcp"); if (begin) { if (inet_parse_flag("mptcp", begin + strlen(",mptcp"), &addr->mptcp, errp) < 0) { return -1; } addr->has_mptcp = true; } #endif return 0; } #ifdef CONFIG_AF_VSOCK static bool vsock_parse_vaddr_to_sockaddr(const VsockSocketAddress *vaddr, struct sockaddr_vm *svm, Error **errp) { uint64_t val; memset(svm, 0, sizeof(*svm)); svm->svm_family = AF_VSOCK; if (parse_uint_full(vaddr->cid, 10, &val) < 0 || val > UINT32_MAX) { error_setg(errp, "Failed to parse cid '%s'", vaddr->cid); return false; } svm->svm_cid = val; if (parse_uint_full(vaddr->port, 10, &val) < 0 || val > UINT32_MAX) { error_setg(errp, "Failed to parse port '%s'", vaddr->port); return false; } svm->svm_port = val; return true; } static int vsock_connect_addr(const VsockSocketAddress *vaddr, const struct sockaddr_vm *svm, Error **errp) { int sock, rc; sock = qemu_socket(AF_VSOCK, SOCK_STREAM, 0); if (sock < 0) { error_setg_errno(errp, errno, "Failed to create socket family %d", AF_VSOCK); return -1; } /* connect to peer */ do { rc = 0; if (connect(sock, (const struct sockaddr *)svm, sizeof(*svm)) < 0) { rc = -errno; } } while (rc == -EINTR); if (rc < 0) { error_setg_errno(errp, errno, "Failed to connect to '%s:%s'", vaddr->cid, vaddr->port); close(sock); return -1; } return sock; } static int vsock_connect_saddr(VsockSocketAddress *vaddr, Error **errp) { struct sockaddr_vm svm; if (!vsock_parse_vaddr_to_sockaddr(vaddr, &svm, errp)) { return -1; } return vsock_connect_addr(vaddr, &svm, errp); } static int vsock_listen_saddr(VsockSocketAddress *vaddr, int num, Error **errp) { struct sockaddr_vm svm; int slisten; if (!vsock_parse_vaddr_to_sockaddr(vaddr, &svm, errp)) { return -1; } slisten = qemu_socket(AF_VSOCK, SOCK_STREAM, 0); if (slisten < 0) { error_setg_errno(errp, errno, "Failed to create socket"); return -1; } if (bind(slisten, (const struct sockaddr *)&svm, sizeof(svm)) != 0) { error_setg_errno(errp, errno, "Failed to bind socket"); close(slisten); return -1; } if (listen(slisten, num) != 0) { error_setg_errno(errp, errno, "Failed to listen on socket"); close(slisten); return -1; } return slisten; } static int vsock_parse(VsockSocketAddress *addr, const char *str, Error **errp) { char cid[33]; char port[33]; int n; if (sscanf(str, "%32[^:]:%32[^,]%n", cid, port, &n) != 2) { error_setg(errp, "error parsing address '%s'", str); return -1; } if (str[n] != '\0') { error_setg(errp, "trailing characters in address '%s'", str); return -1; } addr->cid = g_strdup(cid); addr->port = g_strdup(port); return 0; } #else static void vsock_unsupported(Error **errp) { error_setg(errp, "socket family AF_VSOCK unsupported"); } static int vsock_connect_saddr(VsockSocketAddress *vaddr, Error **errp) { vsock_unsupported(errp); return -1; } static int vsock_listen_saddr(VsockSocketAddress *vaddr, int num, Error **errp) { vsock_unsupported(errp); return -1; } static int vsock_parse(VsockSocketAddress *addr, const char *str, Error **errp) { vsock_unsupported(errp); return -1; } #endif /* CONFIG_AF_VSOCK */ static bool saddr_is_abstract(UnixSocketAddress *saddr) { #ifdef CONFIG_LINUX return saddr->abstract; #else return false; #endif } static bool saddr_is_tight(UnixSocketAddress *saddr) { #ifdef CONFIG_LINUX return !saddr->has_tight || saddr->tight; #else return false; #endif } static int unix_listen_saddr(UnixSocketAddress *saddr, int num, Error **errp) { bool abstract = saddr_is_abstract(saddr); struct sockaddr_un un; int sock, fd; char *pathbuf = NULL; const char *path; size_t pathlen; size_t addrlen; sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0); if (sock < 0) { error_setg_errno(errp, errno, "Failed to create Unix socket"); return -1; } if (saddr->path[0] || abstract) { path = saddr->path; } else { path = pathbuf = g_strdup_printf("%s/qemu-socket-XXXXXX", g_get_tmp_dir()); } pathlen = strlen(path); if (pathlen > sizeof(un.sun_path) || (abstract && pathlen > (sizeof(un.sun_path) - 1))) { error_setg(errp, "UNIX socket path '%s' is too long", path); error_append_hint(errp, "Path must be less than %zu bytes\n", abstract ? sizeof(un.sun_path) - 1 : sizeof(un.sun_path)); goto err; } if (pathbuf != NULL) { /* * This dummy fd usage silences the mktemp() insecure warning. * Using mkstemp() doesn't make things more secure here * though. bind() complains about existing files, so we have * to unlink first and thus re-open the race window. The * worst case possible is bind() failing, i.e. a DoS attack. */ fd = mkstemp(pathbuf); if (fd < 0) { error_setg_errno(errp, errno, "Failed to make a temporary socket %s", pathbuf); goto err; } close(fd); } if (!abstract && unlink(path) < 0 && errno != ENOENT) { error_setg_errno(errp, errno, "Failed to unlink socket %s", path); goto err; } memset(&un, 0, sizeof(un)); un.sun_family = AF_UNIX; addrlen = sizeof(un); if (abstract) { un.sun_path[0] = '\0'; memcpy(&un.sun_path[1], path, pathlen); if (saddr_is_tight(saddr)) { addrlen = offsetof(struct sockaddr_un, sun_path) + 1 + pathlen; } } else { memcpy(un.sun_path, path, pathlen); } if (bind(sock, (struct sockaddr *) &un, addrlen) < 0) { error_setg_errno(errp, errno, "Failed to bind socket to %s", path); goto err; } if (listen(sock, num) < 0) { error_setg_errno(errp, errno, "Failed to listen on socket"); goto err; } g_free(pathbuf); return sock; err: g_free(pathbuf); close(sock); return -1; } static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp) { bool abstract = saddr_is_abstract(saddr); struct sockaddr_un un; int sock, rc; size_t pathlen; size_t addrlen; if (saddr->path == NULL) { error_setg(errp, "unix connect: no path specified"); return -1; } sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0); if (sock < 0) { error_setg_errno(errp, errno, "Failed to create socket"); return -1; } pathlen = strlen(saddr->path); if (pathlen > sizeof(un.sun_path) || (abstract && pathlen > (sizeof(un.sun_path) - 1))) { error_setg(errp, "UNIX socket path '%s' is too long", saddr->path); error_append_hint(errp, "Path must be less than %zu bytes\n", abstract ? sizeof(un.sun_path) - 1 : sizeof(un.sun_path)); goto err; } memset(&un, 0, sizeof(un)); un.sun_family = AF_UNIX; addrlen = sizeof(un); if (abstract) { un.sun_path[0] = '\0'; memcpy(&un.sun_path[1], saddr->path, pathlen); if (saddr_is_tight(saddr)) { addrlen = offsetof(struct sockaddr_un, sun_path) + 1 + pathlen; } } else { memcpy(un.sun_path, saddr->path, pathlen); } /* connect to peer */ do { rc = 0; if (connect(sock, (struct sockaddr *) &un, addrlen) < 0) { rc = -errno; } } while (rc == -EINTR); if (rc < 0) { error_setg_errno(errp, -rc, "Failed to connect to '%s'", saddr->path); goto err; } return sock; err: close(sock); return -1; } /* compatibility wrapper */ int unix_listen(const char *str, Error **errp) { UnixSocketAddress *saddr; int sock; saddr = g_new0(UnixSocketAddress, 1); saddr->path = g_strdup(str); sock = unix_listen_saddr(saddr, 1, errp); qapi_free_UnixSocketAddress(saddr); return sock; } int unix_connect(const char *path, Error **errp) { UnixSocketAddress *saddr; int sock; saddr = g_new0(UnixSocketAddress, 1); saddr->path = g_strdup(path); sock = unix_connect_saddr(saddr, errp); qapi_free_UnixSocketAddress(saddr); return sock; } char *socket_uri(SocketAddress *addr) { switch (addr->type) { case SOCKET_ADDRESS_TYPE_INET: return g_strdup_printf("tcp:%s:%s", addr->u.inet.host, addr->u.inet.port); case SOCKET_ADDRESS_TYPE_UNIX: return g_strdup_printf("unix:%s", addr->u.q_unix.path); case SOCKET_ADDRESS_TYPE_FD: return g_strdup_printf("fd:%s", addr->u.fd.str); case SOCKET_ADDRESS_TYPE_VSOCK: return g_strdup_printf("vsock:%s:%s", addr->u.vsock.cid, addr->u.vsock.port); default: return g_strdup("unknown address type"); } } SocketAddress *socket_parse(const char *str, Error **errp) { SocketAddress *addr; addr = g_new0(SocketAddress, 1); if (strstart(str, "unix:", NULL)) { if (str[5] == '\0') { error_setg(errp, "invalid Unix socket address"); goto fail; } else { addr->type = SOCKET_ADDRESS_TYPE_UNIX; addr->u.q_unix.path = g_strdup(str + 5); } } else if (strstart(str, "fd:", NULL)) { if (str[3] == '\0') { error_setg(errp, "invalid file descriptor address"); goto fail; } else { addr->type = SOCKET_ADDRESS_TYPE_FD; addr->u.fd.str = g_strdup(str + 3); } } else if (strstart(str, "vsock:", NULL)) { addr->type = SOCKET_ADDRESS_TYPE_VSOCK; if (vsock_parse(&addr->u.vsock, str + strlen("vsock:"), errp)) { goto fail; } } else if (strstart(str, "tcp:", NULL)) { addr->type = SOCKET_ADDRESS_TYPE_INET; if (inet_parse(&addr->u.inet, str + strlen("tcp:"), errp)) { goto fail; } } else { addr->type = SOCKET_ADDRESS_TYPE_INET; if (inet_parse(&addr->u.inet, str, errp)) { goto fail; } } return addr; fail: qapi_free_SocketAddress(addr); return NULL; } static int socket_get_fd(const char *fdstr, Error **errp) { Monitor *cur_mon = monitor_cur(); int fd; if (cur_mon) { fd = monitor_get_fd(cur_mon, fdstr, errp); if (fd < 0) { return -1; } } else { if (qemu_strtoi(fdstr, NULL, 10, &fd) < 0) { error_setg_errno(errp, errno, "Unable to parse FD number %s", fdstr); return -1; } } if (!fd_is_socket(fd)) { error_setg(errp, "File descriptor '%s' is not a socket", fdstr); close(fd); return -1; } return fd; } int socket_address_parse_named_fd(SocketAddress *addr, Error **errp) { int fd; if (addr->type != SOCKET_ADDRESS_TYPE_FD) { return 0; } fd = socket_get_fd(addr->u.fd.str, errp); if (fd < 0) { return fd; } g_free(addr->u.fd.str); addr->u.fd.str = g_strdup_printf("%d", fd); return 0; } int socket_connect(SocketAddress *addr, Error **errp) { int fd; switch (addr->type) { case SOCKET_ADDRESS_TYPE_INET: fd = inet_connect_saddr(&addr->u.inet, errp); break; case SOCKET_ADDRESS_TYPE_UNIX: fd = unix_connect_saddr(&addr->u.q_unix, errp); break; case SOCKET_ADDRESS_TYPE_FD: fd = socket_get_fd(addr->u.fd.str, errp); break; case SOCKET_ADDRESS_TYPE_VSOCK: fd = vsock_connect_saddr(&addr->u.vsock, errp); break; default: abort(); } return fd; } int socket_listen(SocketAddress *addr, int num, Error **errp) { int fd; trace_socket_listen(num); switch (addr->type) { case SOCKET_ADDRESS_TYPE_INET: fd = inet_listen_saddr(&addr->u.inet, 0, num, errp); break; case SOCKET_ADDRESS_TYPE_UNIX: fd = unix_listen_saddr(&addr->u.q_unix, num, errp); break; case SOCKET_ADDRESS_TYPE_FD: fd = socket_get_fd(addr->u.fd.str, errp); if (fd < 0) { return -1; } /* * If the socket is not yet in the listen state, then transition it to * the listen state now. * * If it's already listening then this updates the backlog value as * requested. * * If this socket cannot listen because it's already in another state * (e.g. unbound or connected) then we'll catch the error here. */ if (listen(fd, num) != 0) { error_setg_errno(errp, errno, "Failed to listen on fd socket"); close(fd); return -1; } break; case SOCKET_ADDRESS_TYPE_VSOCK: fd = vsock_listen_saddr(&addr->u.vsock, num, errp); break; default: abort(); } return fd; } void socket_listen_cleanup(int fd, Error **errp) { SocketAddress *addr; addr = socket_local_address(fd, errp); if (!addr) { return; } if (addr->type == SOCKET_ADDRESS_TYPE_UNIX && addr->u.q_unix.path) { if (unlink(addr->u.q_unix.path) < 0 && errno != ENOENT) { error_setg_errno(errp, errno, "Failed to unlink socket %s", addr->u.q_unix.path); } } qapi_free_SocketAddress(addr); } int socket_dgram(SocketAddress *remote, SocketAddress *local, Error **errp) { int fd; /* * TODO SOCKET_ADDRESS_TYPE_FD when fd is AF_INET or AF_INET6 * (although other address families can do SOCK_DGRAM, too) */ switch (remote->type) { case SOCKET_ADDRESS_TYPE_INET: fd = inet_dgram_saddr(&remote->u.inet, local ? &local->u.inet : NULL, errp); break; default: error_setg(errp, "socket type unsupported for datagram"); fd = -1; } return fd; } static SocketAddress * socket_sockaddr_to_address_inet(struct sockaddr_storage *sa, socklen_t salen, Error **errp) { char host[NI_MAXHOST]; char serv[NI_MAXSERV]; SocketAddress *addr; InetSocketAddress *inet; int ret; ret = getnameinfo((struct sockaddr *)sa, salen, host, sizeof(host), serv, sizeof(serv), NI_NUMERICHOST | NI_NUMERICSERV); if (ret != 0) { error_setg(errp, "Cannot format numeric socket address: %s", gai_strerror(ret)); return NULL; } addr = g_new0(SocketAddress, 1); addr->type = SOCKET_ADDRESS_TYPE_INET; inet = &addr->u.inet; inet->host = g_strdup(host); inet->port = g_strdup(serv); if (sa->ss_family == AF_INET) { inet->has_ipv4 = inet->ipv4 = true; } else { inet->has_ipv6 = inet->ipv6 = true; } return addr; } static SocketAddress * socket_sockaddr_to_address_unix(struct sockaddr_storage *sa, socklen_t salen, Error **errp) { SocketAddress *addr; struct sockaddr_un *su = (struct sockaddr_un *)sa; addr = g_new0(SocketAddress, 1); addr->type = SOCKET_ADDRESS_TYPE_UNIX; salen -= offsetof(struct sockaddr_un, sun_path); #ifdef CONFIG_LINUX if (salen > 0 && !su->sun_path[0]) { /* Linux abstract socket */ addr->u.q_unix.path = g_strndup(su->sun_path + 1, salen - 1); addr->u.q_unix.has_abstract = true; addr->u.q_unix.abstract = true; addr->u.q_unix.has_tight = true; addr->u.q_unix.tight = salen < sizeof(su->sun_path); return addr; } #endif addr->u.q_unix.path = g_strndup(su->sun_path, salen); return addr; } #ifdef CONFIG_AF_VSOCK static SocketAddress * socket_sockaddr_to_address_vsock(struct sockaddr_storage *sa, socklen_t salen, Error **errp) { SocketAddress *addr; VsockSocketAddress *vaddr; struct sockaddr_vm *svm = (struct sockaddr_vm *)sa; addr = g_new0(SocketAddress, 1); addr->type = SOCKET_ADDRESS_TYPE_VSOCK; vaddr = &addr->u.vsock; vaddr->cid = g_strdup_printf("%u", svm->svm_cid); vaddr->port = g_strdup_printf("%u", svm->svm_port); return addr; } #endif /* CONFIG_AF_VSOCK */ SocketAddress * socket_sockaddr_to_address(struct sockaddr_storage *sa, socklen_t salen, Error **errp) { switch (sa->ss_family) { case AF_INET: case AF_INET6: return socket_sockaddr_to_address_inet(sa, salen, errp); case AF_UNIX: return socket_sockaddr_to_address_unix(sa, salen, errp); #ifdef CONFIG_AF_VSOCK case AF_VSOCK: return socket_sockaddr_to_address_vsock(sa, salen, errp); #endif default: error_setg(errp, "socket family %d unsupported", sa->ss_family); return NULL; } return 0; } SocketAddress *socket_local_address(int fd, Error **errp) { struct sockaddr_storage ss; socklen_t sslen = sizeof(ss); if (getsockname(fd, (struct sockaddr *)&ss, &sslen) < 0) { error_setg_errno(errp, errno, "%s", "Unable to query local socket address"); return NULL; } return socket_sockaddr_to_address(&ss, sslen, errp); } SocketAddress *socket_address_flatten(SocketAddressLegacy *addr_legacy) { SocketAddress *addr; if (!addr_legacy) { return NULL; } addr = g_new(SocketAddress, 1); switch (addr_legacy->type) { case SOCKET_ADDRESS_TYPE_INET: addr->type = SOCKET_ADDRESS_TYPE_INET; QAPI_CLONE_MEMBERS(InetSocketAddress, &addr->u.inet, addr_legacy->u.inet.data); break; case SOCKET_ADDRESS_TYPE_UNIX: addr->type = SOCKET_ADDRESS_TYPE_UNIX; QAPI_CLONE_MEMBERS(UnixSocketAddress, &addr->u.q_unix, addr_legacy->u.q_unix.data); break; case SOCKET_ADDRESS_TYPE_VSOCK: addr->type = SOCKET_ADDRESS_TYPE_VSOCK; QAPI_CLONE_MEMBERS(VsockSocketAddress, &addr->u.vsock, addr_legacy->u.vsock.data); break; case SOCKET_ADDRESS_TYPE_FD: addr->type = SOCKET_ADDRESS_TYPE_FD; QAPI_CLONE_MEMBERS(FdSocketAddress, &addr->u.fd, addr_legacy->u.fd.data); break; default: abort(); } return addr; }